
Citation: Korkos, P.; Kleemola, J.;

Linjama, M.; Lehtovaara, A.

Representation Learning for

Detecting the Faults in a Wind

Turbine Hydraulic Pitch System

Using Deep Learning. Energies 2022,

15, 9279. https://doi.org/10.3390/

en15249279

Academic Editor: Davide Astolfi

Received: 8 November 2022

Accepted: 4 December 2022

Published: 7 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Representation Learning for Detecting the Faults in a Wind
Turbine Hydraulic Pitch System Using Deep Learning
Panagiotis Korkos 1,* , Jaakko Kleemola 2, Matti Linjama 3 and Arto Lehtovaara 1,†

1 Tribology and Machine Elements, Materials Science and Environmental Engineering, Faculty of Engineering
and Natural Sciences, Tampere University, P.O. Box 589, 33014 Tampere, Finland

2 Suomen Hyötytuuli Oy, P.O. Box 305, 28601 Pori, Finland
3 Automation Technology and Mechanical Engineering Unit, Faculty of Engineering and Natural Sciences,

Tampere University, P.O. Box 589, 33014 Tampere, Finland
* Correspondence: panagiotis.korkos@tuni.fi
† Retired.

Abstract: Wind turbine operators usually use data from a Supervisory Control and Data Acquisition
system to monitor their conditions, but it is challenging to make decisions about maintenance
based on hundreds of different parameters. Information is often hidden within measurements that
operators are unaware of. Therefore, different feature extraction techniques are recommended. The
pitch system is of particular importance, and operators are highly motivated to search for effective
monitoring solutions. This study investigated different dimensionality reduction techniques for
monitoring a hydraulic pitch system in wind turbines. These techniques include principal component
analysis (PCA), kernel PCA and a deep autoencoder. Their effectiveness was evaluated based on
the performance of a support vector machine classifier whose input space is the new extracted
feature set. The developed methodology has been applied to data from a wind farm consisting of
five 2.3 MW fixed-speed onshore wind turbines. The available dataset is composed of nine pitch
events representing normal and faulty classes. The results indicate that the features extracted by
the deep autoencoder are more informative than those extracted by PCA and kernel PCA. These
features led to the achievement of a 95.5% F1-score, proving its superiority over the traditional usage
of original features.

Keywords: pitch system; wind turbine; SCADA; fault detection; feature extraction; deep autoencoder

1. Introduction

Nowadays, wind farms are critical infrastructures for every country, especially with
the power production market changing because of Russian gas restrictions. The power
produced by wind farms is expected to balance the demand and keep the levelised cost of
energy as low as possible. However, wind farm production depends on the wind conditions
and the availability of wind turbines, meaning that they should be fault-free for when
there are ideal conditions for power production. The latter is the only factor that can
be controlled by humans; thus, the condition monitoring of wind turbines is crucial to
ensure their availability. As a result, predictive maintenance can also lower the cost of the
produced energy. According to the latest data from Danish wind farms [1,2], the operation
and maintenance (O&M) costs of a wind turbine, regarding the market price, correspond to
approximately 1.3–1.6 euro cents/kWh to ensure the profitability of the asset. The levelised
cost of energy produced by an onshore wind turbine is assumed to be between 3.94 and
5.01 euro cents/kWh when under favourable wind conditions [3]. For this reason, operators
are urged to lower these costs by utilising more sophisticated tools for scheduling their
maintenance tasks. The Supervisory Control and Data Acquisition (SCADA) system is a
key element in achieving these goals. Every wind turbine, regardless of the manufacturer,
is equipped with a SCADA system whose task is to store the sensor measurements in a

Energies 2022, 15, 9279. https://doi.org/10.3390/en15249279 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15249279
https://doi.org/10.3390/en15249279
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-0311-4826
https://doi.org/10.3390/en15249279
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15249279?type=check_update&version=1

Energies 2022, 15, 9279 2 of 17

database at a specific time interval. Therefore, this system provides a cheap solution for
monitoring the status of the components of a wind turbine, but more complex techniques
are indispensable for taking full advantage of SCADA signals. Thus, it is not necessary to
install more sensors and further increase the complexity. Typical time intervals include 10 s,
1 min or 10 min periods, during which a set of statistical measures, such as the average and
standard deviation, are stored for each measured parameter.

The condition monitoring of wind turbines has been the subject of a notable number
of studies in the literature [4–7]. Various forms of machine learning, including deep
learning techniques, have been applied for monitoring, and they have been summarised in
corresponding review papers [8,9]. However, modern statistical and artificial intelligence
techniques can also provide efficient solutions to search for hidden information within
SCADA data. When this hidden information is extracted, algorithms can work more
efficiently, often with fewer parameters that are rich in information. These techniques
constitute a field of machine learning/deep learning called manifold learning [10,11]. For
instance, during the condition monitoring of wind turbines, these new extracted features
can be fed to advanced machine learning/deep learning techniques to detect and predict
faults. Furthermore, a feature extraction task leads to a set of more representative features
that can unveil the differences between all possible fault types. Thus, the fault extraction
task allows transferability, where the same developed model for extracting features can be
used in other systems or fault types. Finally, automating the feature-engineering process is
aligned with the current trend of end-to-end learning processes, proving its importance in
the industry [12].

According to the literature, several researchers have used these techniques for wind
turbine monitoring, that is, to reduce the dimensions of SCADA features and extract
new, more informative ones. Their efforts have been focused mainly on using principal
component analysis (PCA) before fault detection [13,14], PCA before fault detection in a
distributed generation system [15] and PCA before blade fault detection [16]. In addition,
autoencoders and their variations, which are based on nonlinear relationships, seem to be
quite popular among researchers in wind turbine monitoring. More specifically, an autoen-
coder for dimensionality reduction has been applied before the diagnosis of blade icing [17]
and, more generally, for wind turbine fault detection [18–20]. Additionally, advanced
versions of autoencoders have been used, such as a deep joint variational autoencoder
(JVAE) for gearbox monitoring [21], a moving-window-stacked multilevel denoising AE
(MW-SMDAE) [22], sparse-dictionary-learning-based adversarial variational autoencoders
(AVAE_SDL) [23] and a stacked denoising autoencoder [22] for wind turbine fault detection.

However, feature extraction has not been reported in the literature for the case of pitch
system monitoring, which, according to several surveys [24–26], has the highest number
of failures and one of the longest downtimes compared with the rest of the systems. The
literature is limited only to the use of the original feature set using an adaptive neuro-fuzzy
inference system (ANFIS) [27–31], support vector machine (SVM) for classification [32–34]
and regression [35], and asymmetric SVM [36] and Gaussian processes [37,38]. The one
exception is Wu et al. [18], who have suggested a multilevel denoising autoencoder to detect
a pitch system fault but have done so without mentioning any additional information about
the specific components of the pitch system. Therefore, it is indispensable to investigate
dimensionality reduction—or, in other words, feature extraction techniques—in the case of
hydraulic pitch system monitoring.

The purpose of the present study is to investigate feature extraction techniques for the
fault detection of a wind turbine hydraulic pitch system. The studied techniques include
PCA, kernel PCA (KPCA) and a deep autoencoder, representing linear and nonlinear
transformations of the input space. All of these techniques transform the high-dimensional
input space into lower dimensions. These extraction techniques are assessed in the context
of SVM implementation. The novelty of the present study is that no other paper has
investigated feature extraction and fault detection in a supervised manner for hydraulic
pitch systems. Additionally, the current study highlights the dependence of each original

Energies 2022, 15, 9279 3 of 17

monitoring feature on the new extracted ones by calculating the mutual information scores.
This procedure is essential and clarifies the importance of this process. The available
dataset contains several features related to the hydraulic pitch system, which are stored
by SCADA in 10 min intervals. The dataset includes a set of nine pitch events of different
types presenting healthy and faulty operations. Hence, the advantage of having a dataset
full of diverse faults of pitch systems is very beneficial. Furthermore, among the three
methods, the best performance has been demonstrated by the developed autoencoder.

The rest of the current paper is organised as follows: In Section 2, PCA, KPCA and
the autoencoder for dimensionality reduction and feature extraction are described. In
Section 3, the SVM theory for classification is demonstrated. Section 4 refers to the dataset
and original SCADA features, while Section 5 presents the training and evaluation process
of the developed model. The results of the present paper are included in Section 6, followed
by conclusions in the last section.

2. Feature Extraction Methods
2.1. Principal Component Analysis (PCA)

PCA is a very popular technique used not only for dimensionality reduction but also
for data compression, feature extraction, data visualisation and the data preprocessing task,
focusing mainly on the standardisation of features [10,39]. PCA, which is alternatively
known as the Karhunen–Loève transform, is a linear dimensionality reduction technique.
From a group of correlated variables, it allows us to obtain a set of linearly uncorrelated
vectors called principal components (PCs) or scores. The main concept behind PC trans-
formation is to find the most informative projections that maximise variances [40]. The
obtained PCs are mutually uncorrelated and ordered by descending explained variance.
PCA is an unsupervised technique, meaning that it requires only the input, not the out-
put, values.

PCA is based on orthogonal projections of the input space to another subspace called
the principal subspace. Suppose that the input space is a collection of N points xn = (x1,
x2, . . . , xN)T in Rm. Assuming a centred input space, the average of every feature should
be equal to zero. This requirement should be fulfilled before implementing the PCA
algorithm. The idea behind PCA is to find a linear and orthogonal projection of the high-
dimensional input space m to a lower one (let it be p) that is sufficient to provide an
adequate approximation of the original data. This dimensionality reduction must ensure
the maintenance of most of the information that is included in the original data. Thus, a
lower representation of xn could be zn ε Rp, whose expression is given in Equation (1).

zn = WTxn (1)

where W is the pxp orthogonal matrix. After applying PCA, we have as many principal
components as the number of original features. Zn is also known as the latent vector,
consisting of latent values that are not observed in the data [41]. The dimension of zn
is the same as xn after applying PCA, but because the goal is to drastically reduce this
dimension, a lower value, p, is selected according to the criteria mentioned below. W should
be equal to matrix U, which contains p eigenvectors with the largest eigenvalues of the
empirical covariance matrix, which is given in Equation (2). Therefore, the problem of linear
dimensionality reduction is transformed into the problem of calculating the eigenvectors of
covariance matrix D.

D =
1
N

N

∑
n=1

xnxn
T (2)

If matrix U contains ui eigenvectors, the eigenvalues, λi, must be found through
Equation (3):

λi·ui = D·ui, i = 1, . . . , m (3)

where λi is an eigenvalue of the empirical covariance matrix (D), and ui is the corresponding
eigenvector. After calculating the eigenvectors, PCs are calculated via Equation (4), such

Energies 2022, 15, 9279 4 of 17

that the optimal solution of the reconstruction error is as if the orthogonal matrix is equal
to the eigenvector matrix.

zn(i) = ui
Txn, i = 1, . . . , m (4)

Dimensionality reduction is accomplished by selecting the first several PCs, zn(i),
which are in descending order of variance or, in other words, in descending order of
eigenvalues. PCA results in mutually uncorrelated principal components, whose number
is selected based on different methods, which include setting an arbitrary threshold for the
cumulative explained variance or looking at a scree plot, which is a plot of eigenvalues
with respect to the number of principal components. Each eigenvalue gives the variance
along its axis.

2.2. Kernel PCA

Often, linear models have limited effects in complex systems; thus, nonlinear ones are
needed. Kernel PCA is a nonlinear generalisation of PCA that employs the kernel trick.
Kernel PCA relies on an eigendecomposition of a full matrix of pairwise similarities in the
feature space instead of the ambient space, which is executed when implementing PCA [41].
The basic concept of kernel PCA is to expand the features by nonlinear transformations into
a high-dimensional feature space ϕ(xn) (ϕ ∈ RL) and then apply PCA in the new feature
space. Thus, a linear PCA in ϕ(xn) corresponds to a nonlinear PCA in the original data
space xn because xn is replaced by ϕ(xn).

Kernel PCA requires the calculation of eigenvalues but avoids working in the feature
space ϕ(xn). The eigenvalue problem is expressed in Equation (5):

λi·vi = S·vi, i = 1, . . . , L (5)

where matrix S is the L × L sample of the covariance matrix of ϕ(xn), which is given in
Equation (6), λi is one of the nonzero eigenvalues of the sample covariance matrix (S) and
vi is the corresponding eigenvector. The expression shown in Equation (6) requires that the
projected dataset is centred, meaning that it has a zero mean (∑n ϕ(xn) = 0).

S =
1
N

N

∑
n=1

ϕ(xn)ϕ(xn)
T (6)

Combining Equations (5) and (6), vector vi ends up being a linear combination of ϕ(xn),
whose coefficients are the ai parameters in Equation (7):

vi =
1
N

N

∑
n=1

ain ϕ(xn) (7)

Replacing vi in Equation (5) with the expression given in Equation (7), Equation (8)
is obtained by also introducing the expression K(xn, xm) = ϕ(xn)

T ϕ(xm), which ends up
as an equation that includes the kernel function K. Equation (8) can be further simplified
into Equation (9), which gives the eigenvalues of the new problem after fulfilling the
requirement of normalising the eigenvectors in the feature space.

1
N

N

∑
n=1

K(xl , xn)
L

∑
l=1

ailK(xn, xl) = λi

N

∑
n=1

ainK(xl , xn) (8)

Kai = λi Nai, i = 1, . . . , L (9)

Energies 2022, 15, 9279 5 of 17

After formulating the new eigenvalue problem in the feature space, which is pre-
sented in Equation (9), the PCs for xn are given by Equation (10), which is essentially PCA
implementation in the feature space.

ti(x) = ϕ(xn)
Tvi =

N

∑
n=1

ain ϕ(x)T ϕ(xn) =
N

∑
n=1

ainK(x, xn) (10)

However, there is a very crucial aspect that has been neglected. The algorithm
so far has been expressed based on the assumption that ϕ(xn) has a zero mean, which
does not represent the typical case. Consequently, if the centred ϕ(xn) is represented
by ϕ̃(xn) = ϕ(xn)− 1

N ∑N
l=1 ϕ(xl), then the kernel function K is expressed in terms of

ϕ̃(xn), such as in K̃(xn, xm) = ϕ̃(xn)
T ϕ̃(xm). The final expression of K̃ is demonstrated

in Equation (11), which is expressed in matrix notation and depends only on the kernel
function K.

K̃ = K− 1NK− K1N + 1NK1N (11)

where 1N is an N × N matrix of ones multiplied by 1/N. K̃ is further used to determine the
eigenvalues and eigenvectors of this problem.

Calculating ti(x) may result in a higher dimensionality than the dimension m of
the original input space. This means that the number of nonlinear PCs may exceed m.
Nevertheless, the first few eigenvectors should be selected to reduce the dimensionality
of the original input space. However, when implementing PCA in an Rm input space, the
maximum number of eigenvectors would be m. However, there is a technical constraint
when implementing kernel PCA. The number of nonzero eigenvalues cannot be greater
than the number of data points, N.

Several different kernels may be selected when implementing kernel PCA. The sim-
plest one is the linear kernel, which is the same as the regular PCA when it is used for
kernel PCA. Here, more advanced kernels are radial basis function (RBF) kernels and
polynomial kernels.

2.3. Autoencoder

If PCA is used to learn a linear mapping from x→ z (encoder) and vice versa (decoder)
from z→ x using a linear expression, the autoencoder consists of a nonlinear encoder and
decoder for learning nonlinear mappings. More specifically, an autoencoder is a type of
neural network whose task is to copy its input to its output. However, this task is not
particularly useful when trying to learn new features or search for latent factors. Thus, it
performs the task of copying only approximately in order to learn the useful properties of
the data.

Dimensionality reduction using an autoencoder belongs to unsupervised learning
techniques, where the output is not used for learning. In this case, the autoencoder consists
of the same number of nodes in the input and output layers, hence corresponding to the
first and last layers, respectively. Figure 1 shows an illustration of an autoencoder that
consists of the encoder part and decoder part and one hidden layer, which is called the
bottleneck layer. The bottleneck layer is often used as the new feature set when using an
autoencoder for dimensionality reduction. Although the autoencoder is trained to perform
the input-copying task, the bottleneck layer includes salient properties of the dataset, given
that its dimension is much smaller than the dimension of the input space. Nevertheless, a
drawback for undercomplete autoencoders is that if the width of the encoder and decoder
is too large, the autoencoder fails to extract something useful from the dataset.

Energies 2022, 15, 9279 6 of 17Energies 2022, 15, x FOR PEER REVIEW 6 of 18

Figure 1. An autoencoder consisting of an encoder and decoder and having one hidden layer.

A simple autoencoder may be either undercomplete or overcomplete. Here, let the

original input space be m-dimensional and the bottleneck layer be p-dimensional. Thus,

an autoencoder is called undercomplete if p << m, whereas for an overcomplete autoen-

coder, it would be p >> m. An undercomplete autoencoder is ideal for dimensionality re-

duction tasks because the dimension of the bottleneck layer is smaller than the dimension

of the input.

An autoencoder is equivalent to PCA when the encoder and decoder are linear, there

is a single hidden layer, and the loss function is the mean squared error. This means that

using nonlinear encoder and decoder functions, the autoencoder turns into a nonlinear

PCA generalisation. Typical activation functions include the sigmoid function, the hyper-

bolic tangent (tanh) function, and rectified linear unit (ReLU) and its variants.

Regarding the mathematical formulation of autoencoders, first, the encoder is re-

sponsible for the mapping of the input x ϵ ℝ𝑚 to a hidden representation h via the activa-

tion function fs. This formulation is presented in Equation (12), as follows:

ℎ = 𝑓𝑠(𝑊𝑥 + 𝑏) (12)

where W is an m × m weight matrix and b is a bias vector. On the other hand, the decoder,

which is presented in Equation (13), is responsible for the reconstruction of x from the

latent representation, hence producing 𝑥̂ in the output layer.

𝑥̂ = 𝑓𝑠(𝑊′ℎ + 𝑏′) (13)

where 𝑊′ and 𝑏′ are the parameters of the decoder. The parameters of both the encoder

and decoder, namely, 𝜃 = {𝑊, 𝑏} and 𝜃′ = {𝑊′, 𝑏′}, are estimated based on the minimisa-

tion of the average reconstruction error, as shown in Equation (14).

𝜃∗, 𝜃′∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜃,𝜃′

1

𝑛
∑ 𝐿(𝑥(𝑖), 𝑥̂(𝑖))

𝑛

𝑖=1

 (14)

The L function represents the loss function of this algorithm, which is usually the

mean squared error 𝐿(𝑥, 𝑥̂) = ‖𝑥 − 𝑥̂‖2.

3. Support Vector Machine (SVM) for Classification

SVMs [42] are some of the most useful machine learning techniques belonging to su-

pervised techniques. Essentially, an SVM provides a nonprobabilistic predictor used for

either classification or regression problems. The goal of an SVM is to map the input space

into a higher-dimensional space using nonlinear expressions while also constructing a lin-

ear decision boundary to separate the classes in the new feature space. Therefore, the lin-

ear decision boundary produced in the feature space is not a straight line in the original

input space. Originally, the problem was finding the optimal hyperplane, which is defined

by the support vectors, to optimally separate two classes. Consequently, the support

Figure 1. An autoencoder consisting of an encoder and decoder and having one hidden layer.

A simple autoencoder may be either undercomplete or overcomplete. Here, let the
original input space be m-dimensional and the bottleneck layer be p-dimensional. Thus, an
autoencoder is called undercomplete if p� m, whereas for an overcomplete autoencoder, it
would be p�m. An undercomplete autoencoder is ideal for dimensionality reduction tasks
because the dimension of the bottleneck layer is smaller than the dimension of the input.

An autoencoder is equivalent to PCA when the encoder and decoder are linear, there is
a single hidden layer, and the loss function is the mean squared error. This means that using
nonlinear encoder and decoder functions, the autoencoder turns into a nonlinear PCA
generalisation. Typical activation functions include the sigmoid function, the hyperbolic
tangent (tanh) function, and rectified linear unit (ReLU) and its variants.

Regarding the mathematical formulation of autoencoders, first, the encoder is respon-
sible for the mapping of the input x ε Rm to a hidden representation h via the activation
function fs. This formulation is presented in Equation (12), as follows:

h = fs(Wx + b) (12)

where W is an m × m weight matrix and b is a bias vector. On the other hand, the decoder,
which is presented in Equation (13), is responsible for the reconstruction of x from the latent
representation, hence producing x̂ in the output layer.

x̂ = fs
(
W ′h + b′

)
(13)

where W ′ and b′ are the parameters of the decoder. The parameters of both the encoder and
decoder, namely, θ = {W, b} and θ′ = {W ′, b′}, are estimated based on the minimisation
of the average reconstruction error, as shown in Equation (14).

θ∗, θ′∗ = argmin
θ,θ′

1
n

n

∑
i=1

L
(

x(i), x̂(i)
)

(14)

The L function represents the loss function of this algorithm, which is usually the
mean squared error L(x, x̂) =‖ x− x̂ ‖2.

3. Support Vector Machine (SVM) for Classification

SVMs [42] are some of the most useful machine learning techniques belonging to
supervised techniques. Essentially, an SVM provides a nonprobabilistic predictor used
for either classification or regression problems. The goal of an SVM is to map the input
space into a higher-dimensional space using nonlinear expressions while also constructing
a linear decision boundary to separate the classes in the new feature space. Therefore,
the linear decision boundary produced in the feature space is not a straight line in the
original input space. Originally, the problem was finding the optimal hyperplane, which

Energies 2022, 15, 9279 7 of 17

is defined by the support vectors, to optimally separate two classes. Consequently, the
support vectors are a subset of the training dataset that determines the optimal margins for
the separation task.

An SVM is represented by the linear model given in Equation (15), which is similar to
logistic regression. However, the difference is that it does not calculate the probabilities,
but the output is a class identity [11]:

f (x) = rT ϕ(x) + d (15)

where ϕ(x) represents the nonlinear transformation of the input space to the high-dimensional
feature space. If the training dataset is represented by (xi, yi) pairs, the target values
yi ε {−1, 1}, according to the literature, rather than {0, 1}. The SVM predicts the positive
class if f is positive and the negative class if f is negative. This means that the SVM classifies
input data points based on the sign of f.

The coefficients r and d in Equation (15) are estimated by minimising the regularised
risk function (Equation (16)), which serves as the objective function of this problem. This is
performed to prevent overfitting and obtain a better generalisation:

C
N

∑
n=1

ξn +
1
2
‖ r ‖2 (16)

where C is the regularisation coefficient, which is always positive. C is essentially a
hyperparameter, is determined through cross-validation and controls the number of points
that are allowed to be misclassified. For C→ ∞, the case corresponds to fully separable
classes. ξn represents non-negative variables, which are called slack variables and have
been introduced to provide a soft margin, hence allowing for the misclassification of some
of the data points during training. The minimisation problem expressed in Equation (16)
can be transformed into a minimisation of the Lagrangian function, which is given in
Equation (17) and which takes into account the classification constraints that depend on ξn:

L(r, d, a) =
1
2
‖ r ‖2 +C

N

∑
n=1

ξn −
N

∑
n=1

an{yn f (xn)− 1 + ξn} −
N

∑
n=1

µnξn (17)

where an and µn are non-negative Lagrangian multipliers. Finally, r and d are given in
Equations (18) and (19), respectively. Equation (18) shows that vector r corresponds to a
linear combination of the support vectors [42]:

r =
N

∑
n=1

anynφ(xn) (18)

d =
1

NM
∑

nεM

(
yn − ∑

mεS
amymK(xn, xm)

)
(19)

whereM represents the set of indices of data points, where 0 < an < C. The coefficients an
are calculated by minimising the dual Lagrangian L̃ in Equation (20), which only depends
on the coefficients an:

L̃(a) =
N

∑
n=1

an −
1
2

N

∑
n=1

N

∑
m=1

anamynymK(xn, xm) (20)

where K(xn, xm) = ϕ(xn)
T ϕ(xm). If K represents a kernel function, the technique is called a

kernel SVM, transforming the linear SVM into a nonlinear SVM. Common kernel functions

Energies 2022, 15, 9279 8 of 17

are the dth-degree polynomial kernel (Equation (21)), the radial basis function (RBF) kernel
(Equation (22)) and the sigmoid kernel (Equation (23)):

K(xn, xm) =
(

xn
Txm + 1

)d
(21)

K(xn, xm) = exp
(
−γ ‖ xn − xm ‖2

)
(22)

K(xn, xm) = tanh
(

γxn
Txm + c0

)
(23)

The hyperparameter γ, which is shown in Equations (22) and (23), is determined
through cross-validation. In the case of the RBF kernel, γ = 0.5σ2, where σ is the variance.

4. Data Description

The dataset used in the present study is derived from a 10-year-long SCADA dataset
of a wind farm located in northwestern Finland. Thus, this dataset has the advantage of
including multiple failure events, which typically occur rather rarely. More specifically, the
wind farm contains five fixed-speed 2.3 MW wind turbines with a hydraulic pitch system
that was commissioned in 2004. The SCADA data are stored in 10 min intervals on average,
along with the standard deviation and the maximum and minimum values. A number of
measured features are available, but only a subset of them have been selected based on
their effect on the hydraulic pitch system [29]. In addition, the present study followed the
same methods for preprocessing and labelling the data as those used by Korkos et al. [29].
All of the features presented below have been normalised using min–max normalisation
(see Equation (24)) before implementing any data analysis techniques. The result is that the
values of the normalised features are between zero and one:

xi
new =

xi − xmin
xmax − xmin

(24)

where xi and xi
new are the original and normalised features, respectively, and xmin and xmax

are the minimum and maximum values of each feature, respectively.
Table 1 includes the shortened names of all features, which will be used as labels in

the following figures. The features presented in Table 1 are stored as the average, standard
deviation, and maximum and minimum values in 10 min intervals, apart from gust wind
speed, which contains a single value. At the end of the process, the names of these features,
as presented in the figures that follow, will include extensions {‘_mean’, ‘_stdev’, ‘_max’,
‘_min’}, depending on the measured statistical quantity. For instance, if the average value of
the rotor speed is mentioned, the shortened name will be ‘RS_mean’. In total, the original
input space contains 49 dimensions.

Table 1. SCADA feature names and symbols used in this study.

Name Description Blade

RS Rotor speed -
BAA Blade angle A A
BAB Blade angle B B
BAC Blade angle C C
WS Wind speed -
PO Power output -

Gust_WS Gust wind speed -
HPrA Hub pressure A A
HPrB Hub pressure B B
HPrC Hub pressure C C
HydP Hydraulic pressure -
AmbT Ambient temp. -
HubT Hub temp. -

Energies 2022, 15, 9279 9 of 17

The current paper focuses on a part of the dataset that includes nine pitch events, each
one representing a different fault or component of the hydraulic pitch system. During
these specific events, the periods before and after those events were gathered and labelled
accordingly so as to have normal data points (label = 0) and faulty data points (label = 1).
These periods, before and after the failures, are not fixed. They deviate from each other de-
pending on whether a failure in another subsystem occurred quite close to the studied one.
Typically, these periods are between 1.5 months and 20 days. Table 2 summarises the types
of events involved in the present research. For example, components that present relatively
frequent faults are valves and hydraulic cylinders, as well as common maintenance tasks,
such as defects in hydraulic hoses and oils. The text within parentheses in Table 2 refers
to the number of wind turbines, out of five, that are included in this study. However, no
additional information is presented in this paper due to confidentiality reasons.

Table 2. Event list.

No. Pitch Event

1 Hydraulic hoses and oil replacement (WT No1)
2 Hub oil leakage + Hyd. Oil replacement + Bl. valve 6 replacement (WT No4)
3 Block replacement at blade B (WT No3)
4 Block leakage in blade B (WT No1)
5 Replacement of A-blade valve 102 (WT No3)
6 Replacement of A-, B-, C-blade valve 116 (WT No3)
7 Nitrogen accumulator (No4) replacement of Blade A (WT No5)
8 Blade tracking error during stop/operation of Blade A (WT No1)
9 Replacement of hyd. cylinder (WT No2)

5. Model Training and Evaluation Process

The investigated models consisted of a feature extractor to unveil the latent information
and an SVM classifier to perform the fault detection task. The best feature extractor among
PCA, KPCA and deep autoencoder architectures was determined based on the performance
of the SVM classifier, which had the task of using as inputs the new feature set to correctly
predict the status of the wind turbine pitch system, that is, normal or faulty. Several other
machine learning techniques were tested before using SVMs; these were rejected because
of poor performance. More particularly, the rejected classifiers included logistic regression,
linear discriminant analysis, k-nearest neighbours and random forests.

To optimise the classifier and prevent overfitting, the hyperparameters ‘C’ and ‘γ’ were
tuned through the three-fold cross-validation of a grid search. In addition, optimisation
involved the type of SVM kernel, i.e., RBF kernel SVM or linear SVM. The typical values
of hyperparameter ‘C’ were {0.01, 0.1, 1, 10, 100, 1000} for both types of SVM classifiers.
The ‘γ’ values in the list {0.1, 1, 10, 50, 100, 500} were tested for the case of the RBF SVM
classifier. The best performance for all cases was attained using C = 1000 and γ = 10 for an
RBF SVM.

After randomly shuffling the dataset, the training of SVM was performed in 80%
of the total dataset, while 20% was used to evaluate the SVM performance [11]. The
SVM performance was evaluated based on the F1-score, whose expression is given by
Equation (25):

F1 =
2·TP

2·TP + FP + FN
(25)

where TP is the true positive, implying that the faulty points (label ‘1’) were diagnosed
correctly, and FP (false positive) and FN (false negative) are when the normal points and
faulty points, respectively, were not predicted correctly.

Other performance metrics, including accuracy, precision and recall, were assumed to
provide a limited representation of the performance of this fault detection task. Accuracy
was significantly influenced by the large number of normal points compared with the lower
number of abnormal points. Thus, missed faulty points were classified as normal, with the

Energies 2022, 15, 9279 10 of 17

accuracy still being high. Precision and recall, which are the fraction of correct detections
reported by the model and the fraction of true events that were detected, respectively, could
be good evaluation metrics. However, the F1-score was used because it combines the effects
of these two scores. Therefore, the goal was to obtain as high an F1-score as possible. A
high F1-score indicates that most of the points in the test dataset were predicted correctly.

6. Results and Discussion
6.1. Feature Extractors and SVM Performance

The first feature extraction technique that was utilised was PCA, which is based
on a linear transformation of the input space. The first two PCs accounted for 83.2% of
the cumulative explained variance, but when using only the first two PCs, the normal
and faulty points were not clearly separated into two clusters. Consequently, nonlinear
relationships existed, and more PCs were needed. Therefore, the selection of the number of
PCs was based on a threshold regarding the cumulative explained variance, which was
set arbitrarily. In the current study, a 95% threshold was used, which is a common value
for scientists.

Figure 2 demonstrates the cumulative explained variance after increasing the number
of PCs each time. In general, PCA produces as many PCs as the number of original
input spaces. Because 49 features were available, 49 PCs were extracted, ending up at
100% cumulative explained variance if all of these were taken into consideration. However,
95% of the cumulative explained variance corresponded to the selection of the first seven
PCs. Thus, the reduced 7D output space was assumed to be the one accounting for most of
the structure in the data after PCA.

Energies 2022, 15, x FOR PEER REVIEW 10 of 18

normal, with the accuracy still being high. Precision and recall, which are the fraction of

correct detections reported by the model and the fraction of true events that were detected,

respectively, could be good evaluation metrics. However, the F1-score was used because

it combines the effects of these two scores. Therefore, the goal was to obtain as high an F1-

score as possible. A high F1-score indicates that most of the points in the test dataset were

predicted correctly.

6. Results and Discussion

6.1. Feature Extractors and SVM Performance

The first feature extraction technique that was utilised was PCA, which is based on a

linear transformation of the input space. The first two PCs accounted for 83.2% of the cu-

mulative explained variance, but when using only the first two PCs, the normal and faulty

points were not clearly separated into two clusters. Consequently, nonlinear relationships

existed, and more PCs were needed. Therefore, the selection of the number of PCs was

based on a threshold regarding the cumulative explained variance, which was set arbi-

trarily. In the current study, a 95% threshold was used, which is a common value for sci-

entists.

Figure 2 demonstrates the cumulative explained variance after increasing the num-

ber of PCs each time. In general, PCA produces as many PCs as the number of original

input spaces. Because 49 features were available, 49 PCs were extracted, ending up at

100% cumulative explained variance if all of these were taken into consideration. How-

ever, 95% of the cumulative explained variance corresponded to the selection of the first

seven PCs. Thus, the reduced 7D output space was assumed to be the one accounting for

most of the structure in the data after PCA.

Figure 2. Cumulative explained variance against number of principal components.

Figure 3 visualises the 2D subplots of each PC against a different PC when referring

only to the first seven PCs. The axes labels in Figure 3 include the explained variance of

the visualised PC in brackets, in addition to the number of the particular PC. The blank

subplots refer to ones in which the input variable is plotted against itself, which would

not make sense to visualise. Figure 3 shows that no single 2D representation presented an

obvious separation between normal and faulty classes. Moreover, their dependence was

nonlinear. Therefore, a more sophisticated feature extraction based on nonlinear relation-

ships needed to be investigated.

Figure 2. Cumulative explained variance against number of principal components.

Figure 3 visualises the 2D subplots of each PC against a different PC when referring
only to the first seven PCs. The axes labels in Figure 3 include the explained variance of the
visualised PC in brackets, in addition to the number of the particular PC. The blank subplots
refer to ones in which the input variable is plotted against itself, which would not make
sense to visualise. Figure 3 shows that no single 2D representation presented an obvious
separation between normal and faulty classes. Moreover, their dependence was nonlinear.
Therefore, a more sophisticated feature extraction based on nonlinear relationships needed
to be investigated.

The second feature extraction technique is similar to PCA, but the kernel trick was
used to implement a nonlinear transformation of the original input space. More specifically,
in the present study, an RBF kernel, also known as Gaussian, was used that is based on
standard normal density. The Gaussian kernel was selected because it tends to give good
performance under general smoothness assumptions [43]. The representation of the first
two principal components, as derived by the RBF kernel PCA, demonstrated the poor
separation of the two classes in the space of the first principal components. Therefore, more
principal components were needed, as in the PCA case. For this reason, the first seven
principal components, as given by the RBF kernel PCA, were used for further investigation

Energies 2022, 15, 9279 11 of 17

as the new input space, as in PCA. In addition, the hyperparameter γ = 1.0 was chosen
based on the cross-validation of the SVM performance.

Energies 2022, 15, x FOR PEER REVIEW 11 of 18

Figure 3. Two-dimensional visualisations of the first seven principal components (green: normal;

red: faulty).

The second feature extraction technique is similar to PCA, but the kernel trick was

used to implement a nonlinear transformation of the original input space. More specifi-

cally, in the present study, an RBF kernel, also known as Gaussian, was used that is based

on standard normal density. The Gaussian kernel was selected because it tends to give

good performance under general smoothness assumptions [43]. The representation of the

first two principal components, as derived by the RBF kernel PCA, demonstrated the poor

separation of the two classes in the space of the first principal components. Therefore,

more principal components were needed, as in the PCA case. For this reason, the first

seven principal components, as given by the RBF kernel PCA, were used for further in-

vestigation as the new input space, as in PCA. In addition, the hyperparameter γ = 1.0 was

chosen based on the cross-validation of the SVM performance.

The third approach belongs to the deep learning field and is called an autoencoder.

An autoencoder is a type of neural network that attempts to reconstruct the original input

space with as little information leakage as possible; it deploys a nonlinear transformation

using nonlinear activation functions between layers. The current study investigated mul-

tiple architectures of an autoencoder, whose architectures and results are presented

briefly in Table 3. If n is the number of input spaces, n = 49 in the current study. Almost

all of the investigated architectures had an 8D code layer, except for the one with a 2D

code layer. As for the activation functions, sigmoid and ReLU were investigated. The ex-

amined architectures were trained for 10,000 epochs with a batch size of 64. The loss func-

tion was the mean squared error (MSE), and the Adam algorithm was also used as an

optimisation algorithm. The selection of the architecture was based on the performance of

an SVM classifier, whose training process is described in detail in Section 5.

Figure 3. Two-dimensional visualisations of the first seven principal components (green: normal;
red: faulty).

The third approach belongs to the deep learning field and is called an autoencoder. An
autoencoder is a type of neural network that attempts to reconstruct the original input space
with as little information leakage as possible; it deploys a nonlinear transformation using
nonlinear activation functions between layers. The current study investigated multiple
architectures of an autoencoder, whose architectures and results are presented briefly in
Table 3. If n is the number of input spaces, n = 49 in the current study. Almost all of
the investigated architectures had an 8D code layer, except for the one with a 2D code
layer. As for the activation functions, sigmoid and ReLU were investigated. The examined
architectures were trained for 10,000 epochs with a batch size of 64. The loss function was
the mean squared error (MSE), and the Adam algorithm was also used as an optimisation
algorithm. The selection of the architecture was based on the performance of an SVM
classifier, whose training process is described in detail in Section 5.

Table 3 summarises the F1-scores of the SVM using either the original feature set or
the new features extracted by the PCA, kernel PCA using RBF and deep autoencoder. More
specifically, it includes the dimensions of the new feature sets for each case, the type of
kernel for the SVM classifier and the activation function of the deep autoencoders. The
deep autoencoders are accompanied by their architectures, i.e., the number of neurons
for each layer. The results clearly show that the deep autoencoder [n,32,8,32,n], which is
shown in Figure 4 and has eight dimensions in the latent space while using a sigmoid
function as the activation function, was the best compared with the other four autoencoder
architectures, PCA and kernel PCA. More specifically, it attained almost a 95.5% F1-score
and proved that fault detection using a feature extracted by a nonlinear dimensionality
reduction technique can perform better than using only the original feature set. In fact, the
developed architecture of the aforementioned deep autoencoder increased the performance
of the SVM by a notable amount of 11.8%. Other architectures using either the same number

Energies 2022, 15, 9279 12 of 17

of hidden layers and units or more did not perform better than using the original feature
set. This situation is expected because if the encoder and decoder are given too much
capacity, the undercomplete autoencoder fails to learn anything useful [11].

Table 3. F1-scores of fault detection using SVM for different extracted feature sets.

Feature Extractor Dimension of New
Feature Set SVM Kernel Activation

Function F1-Score

Original feature set - RBF - 0.8538
2D PCA 2 RBF - 0.7195
7D PCA 7 RBF - 0.7713

2D RBF PCA 2 RBF - 0.7388
7D RBF PCA 7 RBF - 0.8519

Deep Autoencoder [n,32,16,8,2,8,16,32,n] 2 RBF ReLU 0.4353
Deep Autoencoder [n,32,16,8,8,8,16,32,n] 8 RBF ReLU 0.7679
Deep Autoencoder [n,32,16,8,8,8,16,32,n] 8 RBF Sigmoid 0.5979

Deep Autoencoder [n,32,8,32,n] 8 RBF ReLU 0.7845
Deep Autoencoder [n,32,8,32,n] 8 RBF Sigmoid 0.9548

Energies 2022, 15, x FOR PEER REVIEW 13 of 18

Figure 4. Deep autoencoder [n,32,8,32,n] architecture.

Regarding PCA and its kernel version, linearly transformed features using PCA

showed that by increasing the number of components, that is, from two to seven dimen-

sions, which accounted for 95% of the cumulative explained variance, a better F1-score

was obtained, but it was not sufficient to justify the usefulness of feature extraction for

fault detection. Using seven PCs rather than two demonstrated a 7.2% increase in the F1-

score. Similar results were presented for the case of a kernel PCA but without providing

much better performance for the SVM.

The F1-score of 95.5% performance of the developed model, here using the latent

dimensions of the deep autoencoder [n,32,8,32,n], outperformed the performance of the

ANFIS presented in Korkos et al. [29]. Other approaches in the literature do not allow us

to directly compare their results with those of the present study because of dataset varia-

bility. However, in a relevant study by Leahy et al. [33], the fault detection task attained a

65% F1-score, without showing more details about the faults. Furthermore, Hu et al. [34]

managed to test their model and achieved a 90% F1-score when enhancing the feature set.

Finally, Chen et al. [27] evaluated their trained ANFIS model by achieving a 50% F1-score

for fixed-speed wind turbines using some pitch faults but provided no information about

them. Consequently, the attained F1-score using autoencoder-extracted features led to the

conclusion that autoencoders can extract useful information from the dataset while

providing more distinguishable patterns of system faults.

6.2. Physical Interpretation of Autoencoder-Extracted Features

In this subsection, the features extracted by the deep autoencoder [n,32,8,32,n] are

interpreted physically to show the usefulness of this approach and its practical outcome.

This analysis is based on the mutual information between the original features, which

were stored in SCADA, and the new features that have been extracted by the deep auto-

encoder [n,32,8,32,n]. Mutual information [41] is a measure of the dependence between

two random variables and has been used in the current study to demonstrate that each

new extracted feature is mostly affected by a different combination of the original features.

In other words, mutual information can unveil how these new extracted features can cap-

ture the differences between different faulty signals regarding the nature of each fault,

which, here, is a fault either in the hydraulic cylinder or in a valve. The mutual information

between two random variables X and Y is given by Equation (26):

𝐼(𝑋, 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
𝑥𝜖𝑋𝑦𝜖𝑌

 (26)

where p(x) and p(y) are the marginal density functions of X and Y, respectively, and p(x,y)

is the joint probability density function of X and Y. I is also called the Kullback–Leibler

Figure 4. Deep autoencoder [n,32,8,32,n] architecture.

Regarding PCA and its kernel version, linearly transformed features using PCA
showed that by increasing the number of components, that is, from two to seven dimensions,
which accounted for 95% of the cumulative explained variance, a better F1-score was
obtained, but it was not sufficient to justify the usefulness of feature extraction for fault
detection. Using seven PCs rather than two demonstrated a 7.2% increase in the F1-score.
Similar results were presented for the case of a kernel PCA but without providing much
better performance for the SVM.

The F1-score of 95.5% performance of the developed model, here using the latent
dimensions of the deep autoencoder [n,32,8,32,n], outperformed the performance of the
ANFIS presented in Korkos et al. [29]. Other approaches in the literature do not allow us to
directly compare their results with those of the present study because of dataset variability.
However, in a relevant study by Leahy et al. [33], the fault detection task attained a 65% F1-
score, without showing more details about the faults. Furthermore, Hu et al. [34] managed
to test their model and achieved a 90% F1-score when enhancing the feature set. Finally,
Chen et al. [27] evaluated their trained ANFIS model by achieving a 50% F1-score for
fixed-speed wind turbines using some pitch faults but provided no information about
them. Consequently, the attained F1-score using autoencoder-extracted features led to
the conclusion that autoencoders can extract useful information from the dataset while
providing more distinguishable patterns of system faults.

Energies 2022, 15, 9279 13 of 17

6.2. Physical Interpretation of Autoencoder-Extracted Features

In this subsection, the features extracted by the deep autoencoder [n,32,8,32,n] are
interpreted physically to show the usefulness of this approach and its practical outcome.
This analysis is based on the mutual information between the original features, which were
stored in SCADA, and the new features that have been extracted by the deep autoencoder
[n,32,8,32,n]. Mutual information [41] is a measure of the dependence between two random
variables and has been used in the current study to demonstrate that each new extracted
feature is mostly affected by a different combination of the original features. In other words,
mutual information can unveil how these new extracted features can capture the differences
between different faulty signals regarding the nature of each fault, which, here, is a fault
either in the hydraulic cylinder or in a valve. The mutual information between two random
variables X and Y is given by Equation (26):

I(X, Y) = ∑
yεY

∑
xεX

p(x, y)log
p(x, y)

p(x)p(y)
(26)

where p(x) and p(y) are the marginal density functions of X and Y, respectively, and p(x,y)
is the joint probability density function of X and Y. I is also called the Kullback–Leibler
divergence between the joint distribution and the product of the marginals [10]. I(X,Y) is
always non-negative, and if X and Y are independent, then I(X,Y) is zero. As a result, the
dependence between the two random variables is revealed by as much mutual information
as possible.

Figure 5 shows the mutual information map between each original feature (horizontal
axis) and each dimension of the latent space (vertical axis) of the developed model (au-
toencoder [n,32,8,32,n]). This map provides details about the dependencies between the
original and extracted features. The strongest effect is marked with red colour, whereas
the weakest effect is marked with violet colour, as shown in the colour bars of Figure 5.
Therefore, for features that have the highest mutual information scores, this implies that
those features had the largest effect on the new extracted features.

For instance, the average hub temperature had the highest dependency on the fourth
latent dimension. The average rotor speed had the highest impact on the first, third, sixth
and seventh latent dimensions, whereas the gust wind speed and minimum wind speed
had the largest effect on the second and eighth dimensions, respectively. Latent dimension
5 was mostly influenced by the average power output. The top six features that had the
greatest influence on each latent dimension are presented in Figure 6. These figures make it
more obvious that almost all of the new extracted features depend mostly on the critical
characteristic features (CCFs) [27,29], namely, power output, wind speed, the three blade
angles and the rotor speed, save for the fourth latent dimension.

In general, hydraulic pressures on either the hub or pump station seemed to have
the lowest influence among all of the new extracted features. In the same group, the least
influential features were also the standard deviation of the ambient temperature and hub
temperature. This is why the blue colour is observed throughout all latent dimensions in
Figure 5. On the contrary, all of the new extracted features had a clear dependency with the
rest of the 49 features, except for the case of the 4th latent dimension. Regarding the fourth
latent dimension, it mostly depended on the gust wind speed, hub temperature, including
the average, minimum and standard deviation, and ambient temperature, including the
average, minimum and standard deviation.

Multiple latent dimensions, particularly the first, third, fifth, sixth and seventh ex-
tracted features, demonstrated strong dependency with most of the original features,
proving that the information contained in these signals was encoded in multiple dimen-
sions of the new extracted feature set. Fault detection and identification saw a benefit due
to this because the impact of faults was encoded in multiple latent dimensions, allowing
for more distinguishable patterns of specific faults.

Energies 2022, 15, 9279 14 of 17

Energies 2022, 15, x FOR PEER REVIEW 14 of 18

divergence between the joint distribution and the product of the marginals [10]. I(X,Y) is

always non-negative, and if X and Y are independent, then I(X,Y) is zero. As a result, the

dependence between the two random variables is revealed by as much mutual infor-

mation as possible.

Figure 5 shows the mutual information map between each original feature (horizon-

tal axis) and each dimension of the latent space (vertical axis) of the developed model

(autoencoder [n,32,8,32,n]). This map provides details about the dependencies between

the original and extracted features. The strongest effect is marked with red colour,

whereas the weakest effect is marked with violet colour, as shown in the colour bars of

Figure 5. Therefore, for features that have the highest mutual information scores, this im-

plies that those features had the largest effect on the new extracted features.

Figure 5. Mutual information map between the original input space (horizontal axis) and latent

space (vertical axis), as extracted by the autoencoder [n,32,8,32,n].

For instance, the average hub temperature had the highest dependency on the fourth

latent dimension. The average rotor speed had the highest impact on the first, third, sixth

and seventh latent dimensions, whereas the gust wind speed and minimum wind speed

had the largest effect on the second and eighth dimensions, respectively. Latent dimension

5 was mostly influenced by the average power output. The top six features that had the

greatest influence on each latent dimension are presented in Figure 6. These figures make

it more obvious that almost all of the new extracted features depend mostly on the critical

Figure 5. Mutual information map between the original input space (horizontal axis) and latent space
(vertical axis), as extracted by the autoencoder [n,32,8,32,n].

Energies 2022, 15, x FOR PEER REVIEW 15 of 18

characteristic features (CCFs) [27,29], namely, power output, wind speed, the three blade

angles and the rotor speed, save for the fourth latent dimension.

Figure 6. Top 6 original features with the highest influence on each latent dimension in descending

order.

In general, hydraulic pressures on either the hub or pump station seemed to have the

lowest influence among all of the new extracted features. In the same group, the least

influential features were also the standard deviation of the ambient temperature and hub

temperature. This is why the blue colour is observed throughout all latent dimensions in

Figure 5. On the contrary, all of the new extracted features had a clear dependency with

the rest of the 49 features, except for the case of the 4th latent dimension. Regarding the

fourth latent dimension, it mostly depended on the gust wind speed, hub temperature,

including the average, minimum and standard deviation, and ambient temperature, in-

cluding the average, minimum and standard deviation.

Multiple latent dimensions, particularly the first, third, fifth, sixth and seventh ex-

tracted features, demonstrated strong dependency with most of the original features,

proving that the information contained in these signals was encoded in multiple dimen-

sions of the new extracted feature set. Fault detection and identification saw a benefit due

to this because the impact of faults was encoded in multiple latent dimensions, allowing

for more distinguishable patterns of specific faults.

7. Conclusions

In the current work, PCA, kernel PCA and autoencoder were applied for feature ex-

traction to test their performance on the fault detection of a wind turbine hydraulic pitch

system. SVMs were used as classifiers to compare their impacts. The main objective was

to test whether the final configurations of the above-mentioned techniques can attain bet-

ter SVM performance than using the original feature set. In the present paper, the availa-

ble feature set contained 49 dimensions, ranging from the power output and rotor speed

to several pressures and temperatures in the hydraulic pitch system of wind turbines. Lin-

ear transformations of the original input space were represented by PCA, and nonlinear

transformations were represented by kernel PCA and an autoencoder. The dataset

Figure 6. Top 6 original features with the highest influence on each latent dimension in descend-
ing order.

Energies 2022, 15, 9279 15 of 17

7. Conclusions

In the current work, PCA, kernel PCA and autoencoder were applied for feature
extraction to test their performance on the fault detection of a wind turbine hydraulic
pitch system. SVMs were used as classifiers to compare their impacts. The main objective
was to test whether the final configurations of the above-mentioned techniques can attain
better SVM performance than using the original feature set. In the present paper, the
available feature set contained 49 dimensions, ranging from the power output and rotor
speed to several pressures and temperatures in the hydraulic pitch system of wind turbines.
Linear transformations of the original input space were represented by PCA, and nonlinear
transformations were represented by kernel PCA and an autoencoder. The dataset included
nine pitch events, each one representing a different pitch fault, such as a valve fault and a
hydraulic cylinder fault. SVM was trained on 80% of the dataset, and 20% was used for
testing. Hyperparameter tuning was performed using three-fold cross-validation.

The results show that the features extracted by the deep autoencoder with one R32

hidden layer for the encoder and decoder and one R8 as the code dimension not only
outperformed the traditional PCA and kernel PCA but also performed better than using
only the original features. The achieved F1-score using autoencoder-extracted features
was almost 95.5%, which was 11.8% larger than using only the original feature set. This
conclusion proves the power of an undercomplete autoencoder in extracting information
under the assumption that data would be concentrated around a low-dimensional manifold
or a small set of such manifolds. In addition, the final architecture of the undercomplete
autoencoder seemed to conform to the general rule that if the encoder and decoder are
given too much capacity, they will fail to learn anything useful.

Although autoencoder-extracted features significantly outperformed the original ones
in the context of fault detection (binary classification task) when using an SVM, regularised
autoencoders may be investigated in the future because they can allow for more capacity.
Regularised autoencoders include sparse autoencoders and denoising autoencoders, which
are suitable for the fault detection task. In particular, regularised ones fix the problem
of depth by using a loss function that allows the model to have properties other than
copying the input to its output. Furthermore, possible future research includes the use of a
different classifier from the deep learning area, such as a 1D convolutional neural network
or long short-term memory network (LSTM), which will be trained based on the same
autoencoder-extracted features.

Author Contributions: Conceptualisation, P.K., J.K., M.L. and A.L.; methodology, P.K.; software,
P.K.; formal analysis, P.K.; investigation, P.K.; resources, J.K.; data curation, P.K.; writing—original
draft preparation, P.K.; writing—review and editing, P.K., J.K., M.L. and A.L.; visualisation, P.K.;
supervision, J.K., M.L. and A.L.; project administration, A.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Doctoral School of Industry Innovations (DSII) of Tampere
University and Suomen Hyötytuuli Oy.

Data Availability Statement: The data are owned by Suomen Hyötytuuli Oy and are not publicly
available for confidentiality reasons.

Acknowledgments: We would like to thank Juha Niemi from Suomen Hyötytuuli Oy for his com-
ments about this research and this manuscript and Mikko Hokka for his comments.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AE Autoencoder
ANFIS Adaptive neuro-fuzzy inference system
AVAE_SDL Sparse-dictionary-learning-based adversarial variational autoencoders

Energies 2022, 15, 9279 16 of 17

CCF Critical characteristic feature
FN False negative
FP False positive
JVAE Deep joint variational autoencoder
KPCA Kernel principal component analysis
LSTM Long short-term memory network
MSE Mean squared error
MW-SMDAE Moving-window-stacked multilevel denoising autoencoder
PC Principal component
PCA Principal component analysis
RBF Radial basis function
ReLU Rectified linear unit
SCADA Supervisory Control and Data Acquisition
SVM Support vector machine
TP True positive
WT Wind turbine

References
1. Hevia-Koch, P.; Klinge Jacobsen, H. Comparing Offshore and Onshore Wind Development Considering Acceptance Costs. Energy

Policy 2019, 125, 9–19. [CrossRef]
2. Energinet. Analyse: Nedtagning Af Gamle Landmøller Baggrund Forventet Udvikling i Fremskrivninger; Energinet: Fredericia,

Denmark, 2016.
3. Kost, C.; Shammugam, S.; Fluri, V.; Peper, D.; Memar, A.D.; Schlegl, T. Levelized Cost of Electricity-Renewable Energy Technologies;

ISE Fraunhofer: Freiburg, Germany, 2021.
4. Zaher, A.; McArthur, S.D.J.; Infield, D.G.; Patel, Y. Online Wind Turbine Fault Detection through Automated SCADA Data

Analysis. Wind Energy 2009, 12, 574–593. [CrossRef]
5. Chen, B.; Zappala, D.; Crabtree, C.J.; Tavner, P.J. Survey of Commercially Available SCADA Data Analysis Tools for Wind Turbine Health

Monitoring; Durham University School of Engineering and Computing Sciences: Durham, UK, 2014.
6. Tautz-Weinert, J.; Watson, S.J. Using SCADA Data for Wind Turbine Condition Monitoring—A Review. IET Renew. Power Gener.

2017, 11, 382–394. [CrossRef]
7. Yang, W.; Court, R.; Jiang, J. Wind Turbine Condition Monitoring by the Approach of SCADA Data Analysis. Renew. Energy 2013,

53, 365–376. [CrossRef]
8. Stetco, A.; Dinmohammadi, F.; Zhao, X.; Robu, V.; Flynn, D.; Barnes, M.; Keane, J.; Nenadic, G. Machine Learning Methods for

Wind Turbine Condition Monitoring: A Review. Renew. Energy 2019, 133, 620–635. [CrossRef]
9. Helbing, G.; Ritter, M. Deep Learning for Fault Detection in Wind Turbines. Renew. Sustain. Energy Rev. 2018, 98, 189–198.

[CrossRef]
10. Bishop, C.M. Pattern Recognition and Machine Learning; Springer Science+Business Media, LLC: New York, NY, USA, 2006;

ISBN 9780387310732.
11. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
12. Fink, O.; Wang, Q.; Svensén, M.; Dersin, P.; Lee, W.J.; Ducoffe, M. Potential, Challenges and Future Directions for Deep Learning

in Prognostics and Health Management Applications. Eng. Appl. Artif. Intel. 2020, 92, 103678. [CrossRef]
13. Mazidi, P.; Tjernberg, L.B.; Sanz Bobi, M.A. Wind Turbine Prognostics and Maintenance Management Based on a Hybrid

Approach of Neural Networks and a Proportional Hazards Model. Proc. Inst. Mech. Eng. Part O J Risk Reliab. 2017, 231, 121–129.
[CrossRef]

14. Pozo, F.; Vidal, Y.; Salgado, O. Wind Turbine Condition Monitoring Strategy through Multiway PCA and Multivariate Inference.
Energies 2018, 11, 749. [CrossRef]

15. Wang, Y.; Ma, X.; Joyce, M.J. Reducing Sensor Complexity for Monitoring Wind Turbine Performance Using Principal Component
Analysis. Renew. Energy 2016, 97, 444–456. [CrossRef]

16. Rezamand, M.; Kordestani, M.; Carriveau, R.; Ting, D.S.-K.; Saif, M. A New Hybrid Fault Detection Method for Wind Turbine
Blades Using Recursive PCA and Wavelet-Based PDF. IEEE Sens. J. 2020, 20, 2023–2033. [CrossRef]

17. Liu, Y.; Cheng, H.; Kong, X.; Wang, Q.; Cui, H. Intelligent Wind Turbine Blade Icing Detection Using Supervisory Control and
Data Acquisition Data and Ensemble Deep Learning. Energy Sci. Eng. 2019, 7, 2633–2645. [CrossRef]

18. Wu, X.; Jiang, G.; Wang, X.; Xie, P.; Li, X. A Multi-Level-Denoising Autoencoder Approach for Wind Turbine Fault Detection.
IEEE Access 2019, 7, 59376–59387. [CrossRef]

19. Lutz, M.-A.; Vogt, S.; Berkhout, V.; Faulstich, S.; Dienst, S.; Steinmetz, U.; Gück, C.; Ortega, A. Evaluation of Anomaly Detection
of an Autoencoder Based on Maintenace Information and Scada-Data. Energies 2020, 13, 1063. [CrossRef]

20. Renström, N.; Bangalore, P.; Highcock, E. System-Wide Anomaly Detection in Wind Turbines Using Deep Autoencoders. Renew.
Energy 2020, 157, 647–659. [CrossRef]

http://doi.org/10.1016/j.enpol.2018.10.019
http://doi.org/10.1002/we.319
http://doi.org/10.1049/iet-rpg.2016.0248
http://doi.org/10.1016/j.renene.2012.11.030
http://doi.org/10.1016/j.renene.2018.10.047
http://doi.org/10.1016/j.rser.2018.09.012
http://doi.org/10.1016/j.engappai.2020.103678
http://doi.org/10.1177/1748006X16686899
http://doi.org/10.3390/en11040749
http://doi.org/10.1016/j.renene.2016.06.006
http://doi.org/10.1109/JSEN.2019.2948997
http://doi.org/10.1002/ese3.449
http://doi.org/10.1109/ACCESS.2019.2914731
http://doi.org/10.3390/en13051063
http://doi.org/10.1016/j.renene.2020.04.148

Energies 2022, 15, 9279 17 of 17

21. Yang, L.; Zhang, Z. Wind Turbine Gearbox Failure Detection Based on SCADA Data: A Deep Learning-Based Approach. IEEE
Trans. Instrum. Meas. 2021, 70, 3507911. [CrossRef]

22. Chen, J.; Li, J.; Chen, W.; Wang, Y.; Jiang, T. Anomaly Detection for Wind Turbines Based on the Reconstruction of Condition
Parameters Using Stacked Denoising Autoencoders. Renew. Energy 2020, 147, 1469–1480. [CrossRef]

23. Liu, X.; Teng, W.; Wu, S.; Wu, X.; Liu, Y.; Ma, Z. Sparse Dictionary Learning Based Adversarial Variational Auto-Encoders for
Fault Identification of Wind Turbines. Measurement 2021, 183, 109810. [CrossRef]

24. Wilkinson, M.; Hendriks, B.; Spinato, F.; Harman, K.; Gomez, E.; Bulacio, H.; Roca, J.; Tavner, P.; Feng, Y.; Long, H. Methodology
and Results of the Reliawind Reliability Field Study. In Proceedings of the European Wind Energy Conference and Exhibition,
EWEC, Warsaw, Poland, 20–23 April 2010.

25. Carroll, J.; McDonald, A.; McMillan, D. Failure Rate, Repair Time and Unscheduled O & M Cost Analysis of Offshore Wind
Turbines. Wind Energy 2016, 19, 1107–1119. [CrossRef]

26. Ribrant, J.; Bertling, L.M. Survey of Failures in Wind Power Systems with Focus on Swedish Wind Power Plants during 1997–2005.
IEEE Trans. Energy Convers. 2007, 22, 167–173. [CrossRef]

27. Chen, B.; Matthews, P.C.; Tavner, P.J. Automated On-Line Fault Prognosis for Wind Turbine Pitch Systems Using Supervisory
Control and Data Acquisition. IET Renew. Power Gener. 2015, 9, 503–513. [CrossRef]

28. Chen, B.; Matthews, P.C.; Tavner, P.J. Wind Turbine Pitch Faults Prognosis Using A-Priori Knowledge-Based ANFIS. Expert Syst.
Appl. 2013, 40, 6863–6876. [CrossRef]

29. Korkos, P.; Linjama, M.; Kleemola, J.; Lehtovaara, A. Data Annotation and Feature Extraction in Fault Detection in a Wind Turbine
Hydraulic Pitch System. Renew. Energy 2022, 185, 692–703. [CrossRef]

30. Schlechtingen, M.; Santos, I.F.; Achiche, S. Wind Turbine Condition Monitoring Based on SCADA Data Using Normal Behavior
Models. Part 1: System Description. Appl. Soft Comput. 2013, 13, 259–270. [CrossRef]

31. Schlechtingen, M.; Santos, I.F. Wind Turbine Condition Monitoring Based on SCADA Data Using Normal Behavior Models. Part
2: Application Examples. Appl. Soft Comput. 2014, 14, 447–460. [CrossRef]

32. Leahy, K.; Hu, R.L.; Konstantakopoulos, I.C.; Spanos, C.J.; Agogino, A.M.; O’Sullivan, D.T.J. Diagnosing and Predicting Wind
Turbine Faults from SCADA Data Using Support Vector Machines. Int. J. Progn. Health Manag. 2018, 9, 1–11. [CrossRef]

33. Leahy, K.; Hu, R.L.; Konstantakopoulos, I.C.; Spanos, C.J.; Agogino, A.M. Diagnosing Wind Turbine Faults Using Machine
Learning Techniques Applied to Operational Data. In Proceedings of the 2016 IEEE International Conference on Prognostics and
Health Management (ICPHM), Ottawa, ON, Canada, 20–22 June 2016; pp. 1–8. [CrossRef]

34. Hu, R.L.; Leahy, K.; Konstantakopoulos, I.C.; Auslander, D.M.; Spanos, C.J.; Agogino, A.M. Using Domain Knowledge Features for
Wind Turbine Diagnostics. In Proceedings of the 2016 15th IEEE International Conference on Machine Learning and Applications
(ICMLA), Anaheim, CA, USA, 18–20 December 2016; pp. 300–305. [CrossRef]

35. Pandit, R.K.; Infield, D. Comparative Assessments of Binned and Support Vector Regression-Based Blade Pitch Curve of a Wind
Turbine for the Purpose of Condition Monitoring. Int. J. Energy Environ. Eng. 2019, 10, 181–188. [CrossRef]

36. Wu, X.; Su, R.; Lu, C.; Rui, X. Internal Leakage Detection for Wind Turbine Hydraulic Pitching System with Computationally
Efficient Adaptive Asymmetric SVM. In Proceedings of the 2015 34th Chinese Control Conference (CCC), Hangzhou, China,
28–30 July 2015; pp. 6126–6130. [CrossRef]

37. Pandit, R.; Infield, D. Gaussian Process Operational Curves for Wind Turbine Condition Monitoring. Energies 2018, 11, 1631.
[CrossRef]

38. Guo, P.; Infield, D. Wind Turbine Power Curve Modeling and Monitoring with Gaussian Process and SPRT. IEEE Trans. Sustain.
Energy 2020, 11, 107–115. [CrossRef]

39. Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer: New York, NY, USA, 2002; ISBN 0-387-95442-2.
40. Härdle, W.K.; Simar, L. Applied Multivariate Statistical Analysis, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2015;

ISBN 978-3-662-45170-0.
41. Murphy, K.P. Probabilistic Machine Learning: An Introduction; The MIT Press: Cambridge, MA, USA, 2022; ISBN 9780262046824.
42. Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
43. Smola, A.J. Learning with Kernels; Technische Universität Berlin: Berlin, Germany, 1998.

http://doi.org/10.1109/TIM.2020.3045800
http://doi.org/10.1016/j.renene.2019.09.041
http://doi.org/10.1016/j.measurement.2021.109810
http://doi.org/10.1002/we.1887
http://doi.org/10.1109/TEC.2006.889614
http://doi.org/10.1049/iet-rpg.2014.0181
http://doi.org/10.1016/j.eswa.2013.06.018
http://doi.org/10.1016/j.renene.2021.12.047
http://doi.org/10.1016/j.asoc.2012.08.033
http://doi.org/10.1016/j.asoc.2013.09.016
http://doi.org/10.36001/ijphm.2018.v9i1.2692
http://doi.org/10.1109/ICPHM.2016.7542860
http://doi.org/10.1109/ICMLA.2016.172
http://doi.org/10.1007/s40095-018-0287-3
http://doi.org/10.1109/ChiCC.2015.7260599
http://doi.org/10.3390/en11071631
http://doi.org/10.1109/TSTE.2018.2884699
http://doi.org/10.1007/BF00994018

	Introduction
	Feature Extraction Methods
	Principal Component Analysis (PCA)
	Kernel PCA
	Autoencoder

	Support Vector Machine (SVM) for Classification
	Data Description
	Model Training and Evaluation Process
	Results and Discussion
	Feature Extractors and SVM Performance
	Physical Interpretation of Autoencoder-Extracted Features

	Conclusions
	References

