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Abstract: Electrical utilities and system operators (SOs) are constantly looking for solutions to
problems in the management and control of the power network. For this purpose, SOs are exploring
new research fields, which might bring contributions to the power system environment. A clear
example is the field of computer science, within which artificial intelligence (AI) has been developed
and is being applied to many fields. In power systems, AI could support the fault prediction of cable
joints. Despite the availability of many legacy methods described in the literature, fault prediction is
still critical, and it needs new solutions. For this purpose, in this paper, the authors made a further
step in the evaluation of machine learning methods (ML) for cable joint health assessment. Six
ML algorithms have been compared and assessed on a consolidated test scenario. It simulates a
distributed measurement system which collects measurements from medium-voltage (MV) cable
joints. Typical metrics have been applied to compare the performance of the algorithms. The analysis
is then completed considering the actual in-field conditions and the SOs’ requirements. The results
demonstrate: (i) the pros and cons of each algorithm; (ii) the best-performing algorithm; (iii) the
possible benefits from the implementation of ML algorithms.

Keywords: algorithms; cable joints; fault diagnostic; distribution network; artificial intelligence;
predictive maintenance

1. Introduction

The recent social, economic, and environmental changes are affecting and challenging
the electric grid. Countries and system operators (SOs) need to enhance and adapt how the
grid is managed and controlled.

For example, there is an urgent need to find alternatives to fossil fuels for energy
production. However, it is well known that a significant percentage of renewables in the
production mix affect the healthy grid [1–3]. Therefore, researchers are: (i) creating new
and adapting models [4] to include different renewable-based scenarios; (ii) analyzing
the impact on the energy markets and the price level [5,6]; (iii) mitigating the effect of
renewables on the voltage stability [7]; etc.

At the same time, transport electrification is demanding grid flexibility to support the
introduction of new assets. Electric vehicles are not only changing the paradigms of trans-
portation and people’s mobility, but they are also affecting the other assets’ performance
and aging [8], the generation/load balance [9,10], and the energy costs [11].

The changes to the electric grid need to be addressed by SOs. For example, an
innovative generation of instrument transformers (ITs), the low-power ITs (LPITs), has
been recently introduced into the grid. They are standardized by the IEC 61869 series, in
which IEC 61869-10 and -11 describe the current and voltage (LPCT and LPVT) versions
of LPITs, respectively [12,13]. LPITs are gradually replacing legacy ITs because they are
smaller, lighter, and cheaper and have a wider bandwidth compared to them. Therefore,
studies relevant to their characterization [14], aging [15], use for protective purposes [16],
and design [17] are populating the literature.
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Another solution that SOs are exploring comes from computer science. Artificial
intelligence (AI) is considered one of the key tools that will help in dealing with incom-
ing challenges.

Its advent is bringing enhancements and benefits to a variety of fields. AI is applied
to medicine [18], education [19], economics [20], and even psychology [21]. Therefore,
it is very probable that power systems will benefit from its application as well. Some
examples are available in the literature. AI is used (i) in [22] for optimal reactive power
management; (ii) in [23] for the integration with MPPT techniques; (iii) in [24] to determine
which customers are connected to the grid; and (iv) in [25] to be applied to a variety of
power electronic fields.

In this paper, AI is applied in support of the detection of faults in medium-voltage
(MV) distribution network cable joints. The failure of a cable joint is the main cause of
faults in MV networks, and it results in huge economic losses in high-voltage (HV) ones.
Consequently, many works in the literature deal with the topic. A thermal model to
detect defects is described in [26], while [27] suggests the implementation of space charge
measurements. In [28], instead, partial discharge (PD) measurements are performed on
HVDC cables.

The idea of applying AI to the fault prediction of cable joints has been introduced
in [29]. Considering the promising results, this paper focuses on algorithm selection and
design. Six ML algorithms have been selected and compared in a realistic cable joint
scenario. Emphasis is given to the characteristics of a distributed measurement system
capable of measuring the required quantities. Furthermore, it is clarified that, to date, there
are no clear thresholds that indicate the imminent fault of a cable joint. Hence, ML-based
methods, such as the legacy ones, can only support the difficult decision to be made by
SOs. Overall, there are two main goals. One is to find the pros and cons of the selected
algorithms, highlighting the best-performing one/s. The second is the analysis of the
benefits of the ML algorithms applied to the fault prediction of cable joints.

The remainder of the paper is structured as follows. Section 2 describes some basic
concepts of artificial intelligence and computer science used in the following chapters. In
Section 3, the reader is introduced to cable joints and their characteristics. The case study
considered in this work is detailed in Section 4. Afterwards, Sections 5 and 6 contain the
tests and results performed and obtained according to the case study. Finally, Section 7
summarizes the achievements and concludes the work.

2. Artificial Intelligence Background
2.1. Overview

AI is a branch of computer science that studies the design of hardware systems and
software programs to simulate processes of human intelligence. The main addressed tasks
are reasoning, learning, adaptation, planning, and visual or space-time perception.

Depending on the development principle of AI technologies, this discipline is divided
into strong and weak AI. The strong AI is based on the idea that machines can develop a
self and autonomous conscience, while weak AI believes that machines can only carry out
required processes without a real awareness of their activities [30].

In general, AI systems work by analyzing a large quantity of data to find patterns and
correlations and use them to obtain forecasts or assessments of future statements.

Machine learning (ML) is a field of AI based on the ability of systems to automatically
learn from data. This skill is due to the ability of ML algorithms to modify their processes
in order to adapt them to the data, applying mathematical and computational strategies
without using predetermined equations or models. Therefore, algorithms can increase their
efficiency after completing a task, and their explicit programming is not needed.

The recent and sudden development of ML is fundamentally due to two enabling
aspects: the availability of large amounts of data and the wide computing capacity that is
provided by the tools available today.
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Deep learning is one of the main ML techniques and a subfield based on Artificial
Neural Networks (ANNs). ANNs are structures made of elementary units (called neurons
or nodes) organized in different layers that are specifically interconnected. These systems
have the aim of simulating the human brain architecture to automate parts of the data
processing, eliminating some of the actions required by standard ML algorithms. This
procedure of automatic optimization is achievable by the ability of ANNs to modify the
values of their parameters in function of the processed data.

In summary, AI is a computer science field which simulates human intelligence
processes. One of the ways to achieve this is by using ML techniques. These are divided
into supervised, unsupervised, and reinforcement learning algorithms, according to their
method of learning from data [31].

Supervised learning uses labeled input data, i.e., input–output pairs, to understand the
existing relationship and use it to provide outputs for unknown inputs. These algorithms
can be used in classification or regression problems: in the first case, the output values are
discrete, while in the second case, the values are continuous. Classification problems can
also be divided into binary or multi-class tasks, depending on the number of values that
the single output can take.

On the other hand, unsupervised learning uses unlabeled or unstructured data to find
the existing structure or pattern. An example of this learning method is clustering, which
provides groups of homogeneous elements starting from a heterogeneous set of data.

Considering supervised learning algorithms, their implementation involves two
phases: the first is the learning stage, in which part of the dataset (training/learning
set) is provided to the algorithm and used to find correlations and modeling. The second
phase is the testing stage, in which the remaining part of the dataset (test set) is used to
compare the outputs predicted by the algorithm and the correct ones.

2.2. Algorithms

This paper deals with binary classification problems. Some of the most popular algo-
rithms are Logistic Regression (LR), Support Vector Machine (SVM), K-Nearest Neighbors
(KNN), Decision Tree (DT), Random Forest (RF), and ANN. Generally, each algorithm has
its predisposition to specific application fields, different types of data and structures, and
the tendency to better perform increasing or reducing the learning samples.

The LR algorithm is a type of statistical model based on the use of the logistic (sigmoid)
function, which binds a generic input value to an output value between 0 and 1. The
algorithm works by finding a weight value used to calculate the input of the sigmoid
function, starting from the real input data [32].

The SVM algorithm is based on the construction of an optimal hyperplane which
correctly classifies the data [33]. In the binary classification case, this hyperplane is a
straight line which divides the two-dimensional plane into two parts, corresponding to the
two output classes. The optimal hyperplane is the one that maximizes the distance between
the closest elements (support vectors) of the two different classes.

The KNN algorithm classifies data due to their similarity to and/or distance from
the previous ones, supposing that close data have similar outputs [34]. This algorithm
works by searching, in the training set, for the most similar K instances (the neighbors)
and finding the output value with the highest frequency among these K elements. Such an
output is the one given to the new input data. The calculation of the distance between the
points can be carried out in several ways, e.g., the Euclidean one, the distance of Manhattan,
Minkowski, or Hamming, etc.

A decision tree is a structure made of nodes and leaves. Nodes represent the points
in which the data are separated, and the leaves represent the intermediate or final results
of such separation. Each node is a conditional function which verifies the existence of
a property for the evaluated data. The DT algorithm is based on this structure, and the
working process consists of a sequence of tests, starting from the top node and working
downwards [32]. The goal of the algorithm is to find the optimal split function that is
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capable of dividing data into two groups which are, internally, the most homogeneous pos-
sible (and, externally, the most heterogeneous possible) in order to minimize the difficulty
of classification.

The RF algorithm is obtained by aggregating more decision trees which are fed with
different training sets, randomly obtained from the original one [35]. The result is then
calculated by choosing the most frequent one among all the produced outputs by the
different Decision Tree algorithms that make up the forest.

As for ANNs, there are several types and variants of these algorithms [36]. In general,
each elementary unit is characterized by an activation function, which represents the
relationship between the input and the output signals of the neuron, and by a bias value,
which realizes a shift in the input value of the neuron. All neurons are organized in layers
and linked together in specific ways. Each connection is characterized by a weight value.
An ANN aims to model the relation between input and output data by varying the values
of its weights during the training stage through appropriate learning techniques.

3. The Cable Joint

This section provides an overview of cable joints. First, in Section 3.1, they are intro-
duced, and their role in the distribution network is explained. Then, Section 3.2 details
the types of cable joints, specifying their typical design. In Section 3.3, instead, the modes
of fault are introduced. Finally, Section 3.4 contains an overview of the main quanti-
ties/parameters measured/computed to diagnosticate faults in cable joints.

3.1. Introduction

Power cables are one of the two possible ways to extend the power network. They are
also the preferred solution in urban areas, where it is not always possible to build overhead
lines. To add new power cables, cable joints are used. They allow for overcoming the limits
fixed by the production process of power cable coils in terms of diameter, weight, and
transport possibilities. Cable joints are often installed every 500–800 m; consequently, their
number is considerable.

There are mainly two drawbacks resulting from the use of cable joints: a high failure
rate and the difficulty of replacement [37,38]. The former problem is due to the different
types of stress that affect cable joints, such as mechanical, thermal, electrical, and environ-
mental stress. Furthermore, they are typically buried several meters deep in the ground.
One of the current technological challenges is to increase their reliability in order to reduce
the number of faults in the distribution network. As a matter of fact, cable joints are
the main cause of faults in MV lines, and the most frequent failure mode is due to the
breakdown of the electrical insulation.

By comparing the average life of a power cable (30–40 years) with the one of a cable
joint (7–8 years), it can be concluded that they significantly affect the performance of
the overall network [37,38]. Furthermore, installation methods, laying conditions, and
characteristics of the surrounding environment (type of soil, humidity, temperature, etc.)
can drastically speed up the cable joint aging.

In the event of the failure of a cable joint, it is necessary to isolate the surrounding
portion of the network and proceed with the replacement. This process is costly and results
in a disservice to the users and penalties to be paid by the SO. It is then crucial to investigate
the fault causes of cable joints. The results would improve the reliability of the grid and the
savings of SOs.

3.2. Description

A cable joint is an electrical asset that joins two portions of the cable. The cable joint
ensures electrical continuity at the connection point, insulation continuity, mechanical
resistance, and physical protection from the external environment.

Depending on the function, the type of connection, the type of cable, and the construc-
tion materials, different types of joints are identified. As for the design, it is typically based
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on the current and voltage values to which they are subjected and on the conditions of the
environment in which they are installed.

There are two macro-categories of joints: heat-shrinkable and cold-shrinkable cable
joints. The heat-shrinkable joints are shown in Figure 1 and are typically made of a
polymeric material (rubber-plastic) that shrinks once heated up. In this way, once installed,
the heat source makes the cable joint adhere to the cable.
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Figure 1. An example of a heat-shrinkable cable joint during its installation.

The cold-shrinkable joint is shown in Figure 2. They are typically made of silicone
rubber, which is expanded onto a rigid spiral core. Once installed on the cable, the spiral is
pulled out, and the joint gradually adheres to the cable.
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Figure 2. An example of a cold-shrinkable cable joint before its installation.

As far as the constituent material is concerned, silicone rubber has excellent insulating
properties and a high elasticity, a characteristic that is absent in the polymer constituting
the heat-shrinking joints. Furthermore, the two types of joints differ in two additional
aspects. First, the cold-shrinkable joints are prefabricated through high-pressure and high-
temperature processes. Therefore, during the installation, removing the spiral is the only
action required (limiting the risks). On the other hand, the heat-shrinkable joints installation
process is more prone to risks due to the need for a heat source.

Second, according to their design, cold-shrinkable joints adapt perfectly to the cable,
limiting the formation of voids or water leakage. As for the heat-shrinkable ones, they
have limited elasticity, resulting in less resistance to mechanical stress and thermal cycles.
Overall, cold-shrinkable cable joints are the most used type of joint in distribution networks.

Their generic structure is depicted in Figure 3. From it, four layers are identified.
Starting from the outermost one, these are: cold-shrinkable insulation, metal shield, silicone
rubber insulating layer, semiconductive layers, and metal connector.
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Figure 3. The internal structure of a cold-shrinkable cable joint.

As mentioned above, cold-shrinkable insulation guarantees electrical insulation and
protection from mechanical stress.

The metal screen consists of thin conducting and intertwined wires that share the
earth’s potential between the two portions of the cable. The metal screen also limits
disturbances from the outside.

The silicone rubber insulating layer is preceded and followed by layers of semicon-
ductive material to uniformize the electric field.

The metal connector creates the mechanical connection between the two conductors
and contributes to the mechanical protection of the latter.

3.3. Modes of Fault

The most frequent failure mode for these accessories is the failure of the electrical
insulation, which is typically identified as the only failure mode following the wear and/or
aging of the insulation itself. However, this degradation is a very complex phenomenon
which may result from various causes and, in turn, may have various consequences.

Other failure modes are (i) the breakdown of the main insulation or the cable insulation,
(ii) thermal breakdown in the dielectric and failure in the connection point of the conductors,
and (iii) failure in the sheath and at the cable–joint interface. The main causes of these
failures are the establishment of partial discharges and the development of electrical or
water treeing. These phenomena are interconnected and are typically due to overvoltage,
overheating, excessive current, the presence of defects or gaps in the insulation, stresses
due to thermal cycling, mechanical stress, the ingress of water or humidity due to damage
to the cable sheath, thermal runaway, the relaxation or mechanical failure of components,
the breakage or short-circuiting of electrical conductors, and direct damage [37–39]. In
addition, a failure can be due to aging, poor manufacturing, the presence of manufacturing
defects, mechanical damage due to the poor mechanical strength of the external coating,
improper laying, or incorrect installation. Table 1 summarizes the different failure modes
and some of their causes.

3.4. Measured Parameters

To prevent the failure of cable joints, various parameters can be monitored. Some are
environmental factors, such as temperature, pressure, and humidity; others are electrical,
such as current, voltage, electric field, partial discharges, and tangent delta.

Partial discharges are measured and classified to distinguish the faults [40], locate their
source, identify the fault point [41], or estimate the aging state of the joint insulation [42,43].
Current measurements are exploited to detect a failure or defect in [39]. Pressure and
temperature [44] or electric field [45] measurements allow for evaluating the quality of the
dielectric by calculating its tan delta [46,47].

Another important aspect to consider in the evaluation of these parameters is that they
are all strongly interconnected. In the literature, many studies investigate the relationship
between electrical and non-electrical quantities. The goal that unites these studies is to cor-
relate the measured quantities to the processes that lead to a breakdown (hence, preventing
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them). In [48], the relationship between temperature and tan delta is investigated, and it is
observed how the latter quantity increases as the temperature decreases.

Table 1. Typical failure modes and causes of failure.

Failure Modes Causes of Failure

Electric breakdown of the main insulation

Electrical treeing
Water treeing
Overvoltage
Overheating

Breakdown at the interfaces

Electric breakdown of the cable insulation

Electrical treeing
Water treeing

Thermal cycles
Mechanical stress
Structural defects

Thermal breakdown

Overcurrent
Overheating
Water treeing

Soil conditions
Operational cycles

Fault at the conductors’ connection point

Wrong installation
Voids

Design errors
Overcurrent

The correlation between tan delta and pressure is also studied. In [49], three different
joints are tested to find the correlation between these two quantities.

Finally, an interesting correlation has been found between pressure and temperature.
In [50,51], through the stress of thermal cycle joints, it was found that an increase in
temperature leads to an increase in pressure. In [52], a correlation was demonstrated
between the failures and the ambient temperature.

As already expressed above, all the parameters are strongly interconnected, and their
relationships are extremely complex. A thorough understanding of these aspects is essential
to assessing the integrity of the joints and their constituent parts. In addition, the analysis
of the temporal evolution of the quantities of interest is crucial for the diagnosis and
prevention of cable joint faults.

4. Case Study

This section describes the case study in which the tests described in Section 5 are
performed. First, Section 4.1 lists the selected algorithms. Second, Section 4.2 introduces
the quantities related to the cable joint monitoring. Third, Section 4.3 provides the set of
metrics selected for the evaluation of the performed tests.

4.1. Considered Algorithms

A set of six algorithms has been selected for the sake of comparison and evaluation.
The set consists of LR, SVM, KNN, DT, RF, and ANN. They are the typical algorithms
implemented in the literature for binary classification tasks. For the implementation of the
selected algorithms, the Scikit Learn library [53] in Python language has been used. No
tuning has been applied to the algorithms. As described in Section 2, each algorithm has
advantages and disadvantages depending on its application. However, they are all suitable
for being assessed in the cable joint case study. As a matter of fact, no common or standard
practice is available for the application of AI to power systems.
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4.2. Considered Quantities
4.2.1. Overview

This section is critical to understanding the entire case study. Let us start with the
concept that the cable joint health diagnosis is made by assessing measures. Such measures,
which can be electrical or environmental quantities, are collected by distributed measure-
ment systems. They are typically installed on the cable joint or its premises. Therefore, each
measurement is representative of a local situation (in all kinds of networks). Note that a
distributed measurement system may collect one or more quantities, and there is no regula-
tion regarding the number nor regarding the way it is carried out. This case study, though,
simulates the collection of the quantities of interest from several distributed measurement
systems. The aim is to simulate an SO who periodically receives the measurement from
the field.

There are four considered quantities: temperature, tangent delta, current, and the age
of the cable joint. The temperature on the surface of the cable joint is precious information.
The tangent delta is considered one of the most reliable electrical parameters that are to be
monitored. The current is directly correlated with the temperature and the loading capacity
of the cable. Finally, even if it is not obtained from the measurement, the age of the cable
joint is certainly a diagnostic input.

Regarding the number of considered quantities, three (directly obtained from the joint)
is a realistic number for two main reasons. First, the installation of measurement systems
on cable joints is a complex and expensive operation; therefore, they are seldom deployed
to collect only one quantity. Second, for each measured quantity, the complexity of the
distributed measurement system sharply increases. Consequently, very few applications
involving more than three/four quantities can be found.

4.2.2. Testing Details

Considering that the quantities of interest are simulated, their range of variation
should be defined and motivated. For this purpose, Table 2 lists, for each quantity, the
relevant range of variation.

Table 2. Variation ranges of the quantities of interest.

Quantity of Interest Min Value Max Value

Current (A) 0 300
Tangent Delta (-) 10−5 10−1

Age (years) 0 30
Temperature (◦C) 5 45

The temperature and age limits are defined according to the commercial cables and
cable joints datasheets. Of course, the temperature may vary within different limits. How-
ever, the idea is to define one illustrative scenario, which can be customized for other
applications, to present the proposed approach. The tangent delta limits have been fixed,
including insulating materials with different performances. Lastly, the current limits reflect
the actual conditions of an in-field MV cable. Its operation may vary from no load condition
(0 A) to the cable ampacity. Therefore, a maximum realistic value of 300 A is considered.

Once the limits are fixed, the last choice is the probability distribution of the samples
to be generated during the tests. In this paper, the uniform and normal distributions have
been selected. To increase the comprehension, a flowchart of the algorithm is depicted
in Figure 4.

4.3. Metrics

The ML algorithm outputs are a set of predictions with a probabilistic nature, which
distinguish positive from negative results. Therefore, it is important to quantify the perfor-
mance of such algorithms to obtain the desired level of accuracy. To this purpose, several
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metrics can be used to quantify the accuracy of a model and its actual performance. For the
considered case study, the metrics of accuracy, precision, and recall have been selected.
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4.3.1. Accuracy

Accuracy is the ratio between the number of correct predictions and the total number
of predictions made by the algorithm or, equally, the number of samples in the test set.
Thus, it is a number between 0 and 1 and can also be expressed as a percentage.

This metric is the most adopted, as it provides a clear indication of the model perfor-
mance. However, this metric does not always reflect the effective efficiency [31]. It does not
consider the actual values of the model results but only how many of these are correct.

4.3.2. Confusion Matrix

The confusion matrix, unlike accuracy, considers both the predicted and the actual
values, providing an overall picture. Four categories of results are defined: True Positive
(TP), True Negative (TN), False Positive (FP), and False Negative (FN). A result is TP (or
TN) if it is labeled as positive (or negative) in the test set and comes correctly predicted by
the algorithm. Instead, an FP (or FN) is a positive (or negative) labeled outcome that is
incorrectly predicted by the algorithm [31].

A generic confusion matrix can be represented, as shown in Figure 5. The colors in the
figure help to distinguish between the correct and incorrect predictions.
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The total correct predictions are the sum of TN and TP, while the total incorrect ones are
the sum of FN and FP. Thus, the accuracy introduced in Section 4.3.1 can be calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

4.3.3. Precision

Precision is the ratio between the correctly predicted positive values and the overall
number of positive predictions [54]. Thus, while accuracy expresses the proximity of the
model to the actual results, precision quantifies the consistency of the results, ignoring the
achievement of the goal.

Precision =
TP

TP + FP
(2)

4.3.4. Recall

Recall is the ratio between the number of correctly predicted positive values and the
total number of actual positive results in the test set [54].

Recall =
TP

TP + FN
(3)

5. Description of the Tests

Each test in what follows is designed to stress a particular aspect that may become
critical in the final choice of the algorithm.

5.1. Number of Samples for the Learning Stage

The decision on the number of samples to be used in the learning stage is always
critical. However, once made, the algorithms work most efficiently. Therefore, the first
test aims to find, for each algorithm, the minimum number of samples that maximizes the
algorithm’s accuracy. Of course, there is no closed formula to assess the goodness of the
results. However, the choice is made by evaluating the results with a realistic perspective.

For this purpose, the six algorithms are tested using 100, 200, 500, 1000, 2000, 5000,
and 10,000 samples for the learning stage and 100,000 for the testing stage.

5.2. Repeatability

As in the case of measurements, the repeatability of AI algorithms must be verified.
Therefore, the algorithms were run 500 times with a specific set of conditions: 1000 learning
samples, 100,000 testing samples, and a uniform distribution.

5.3. Data Distribution

The guide to the expression of uncertainty in measurements (GUM) [55] states that, in
a case of a lack of information, one may assume a uniform distribution for the data (worst
case). This is the reason for choosing it as one of the tested distributions. However, in
some cases, one may have further information (or experience) to adopt other distributions.
Therefore, starting from the conclusion of [29], for each algorithm, the results obtained with
the normal distributions have been compared with those obtained from the uniform one.
The test involved all the learning samples used for the previous tests and the same number
of samples for the testing stage.

Regarding the parameters of the normal distribution, the mean has been set to be equal
to the mean value of the various ranges shown in Table 2, while the standard deviation has
been calculated considering the upper and lower limits of these intervals as 3-sigma limits.

5.4. Uncertainty

Every time a measurement is performed, an uncertainty is computed and attributed to
the measurement to quantify its “goodness”. In a realistic scenario, the quantities collected
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by the distributed measurement system are already affected by the uncertainty of the
measurement chain. Therefore, algorithms consequently deal with non-ideal measures. For
this purpose, this test aims to make a first step towards the integration of uncertainty with
the results of an AI algorithm. For each test, a 10% uncertainty value has been applied to the
data generation. Such a percentage roughly includes all the uncertainty contributions that
may rise from the field and affect the goodness of the generated samples. From the results,
the impact of considering or not considering an important concept such as uncertainty
should emerge.

Note that, for the tests described in Sections 5.1–5.3, the 10% uncertainty value was applied.

5.5. Percentage of Faults

Considering how the algorithms have been designed, a specific ratio of faults over the
total number of simulated cases is obtained. Therefore, to better assess the efficiency of the
algorithms, this test forces the number of fault cases. The synthetic generation stops when
5%, 10%, 25%, and 50% of the generated cases are faults. For this test, the 10% uncertainty
was not considered to avoid changes in the selected percentages and to focus only on the
obtained variations.

5.6. Computational Burden

Another important aspect of the application of an algorithm is its computational
burden. SO control rooms are suffocated by tons of data coming from all kinds of devices.
Therefore, an algorithm should not compromise the control room operation, limiting its
working time and freeing some space in the memory.

The test consists of measuring the computational time required in the case of 1000
learning samples, 100,000 testing samples, a uniform distribution, and the application of a
10% uncertainty contribution.

6. Results

To increase the readability of the results, this section is structured like Section 5.

6.1. Number of Samples for the Learning Stage

Figures 6–8, respectively, graph the metrics of the accuracy, precision, and recall of
the ML algorithms versus the number of samples used in the learning stage. One color
has been assigned to each algorithm for the sake of the readability and comprehension
of the graphs. By looking at Figure 6, three different behaviors are found. For example,
algorithms such as LR and SVM are almost independent of the number of samples used.
Their absolute accuracy is also lower compared to that of the other algorithms. In a second
category, ANN and KNN are included, because their accuracy increases with the number
of samples used for the learning stage. Lastly, DT and RF share a third behavior, which
consists of a sort of exponential which stops increasing after a specific number of samples.
Overall, this last category has the higher accuracy among the three.

Another important conclusion from Figure 6 is that there is no need to use a massive
number of samples for the learning stage. In the plotted case, already at 1000 samples,
almost all the algorithms reach their maximum accuracy.

Regarding the precision graph depicted in Figure 7, some similar comments are made.
In terms of absolute value, the RF and ANN are still the best ones, even if the gap with
KNN and DT is reduced compared to the accuracy case. Focusing on the performance of
the LR algorithm, it fluctuates as the number of input samples changes. This is because the
algorithm performance, in addition to the overall number of learning samples, also depends
on the percentage of faulty cases among them. Thus, if the total number of input samples is
increased, it is not obvious that the performance will also have the same behavior. Finally,
the SVM is clearly the worst-performing algorithm. Comparing accuracy and precision, it
can be observed that the first metric is not null, since the algorithm can correctly identify
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all the TN cases of the test set (a percentage equal to the value of accuracy). On the other
hand, the precision is null because there are zero TP cases identified by the SVM.

Note that the comment on the tradeoff between precision and the number of samples
is analogous to the accuracy case, demonstrating that the use of 1000 samples is still a
valid option.

In Figure 8, the recall metric is plotted. No additional comments are needed for the
algorithms KNN, ANN, DT, and RF. The only observation to add is that their recall tends
to the same value as the number of samples increases. Regarding the LR and SVM, these
algorithms are still the worst ones.

Energies 2023, 16, x FOR PEER REVIEW 12 of 21 
 

 

6.1. Number of Samples for the Learning Stage 
Figures 6–8, respectively, graph the metrics of the accuracy, precision, and recall of 

the ML algorithms versus the number of samples used in the learning stage. One color 
has been assigned to each algorithm for the sake of the readability and comprehension of 
the graphs. By looking at Figure 6, three different behaviors are found. For example, algo-
rithms such as LR and SVM are almost independent of the number of samples used. Their 
absolute accuracy is also lower compared to that of the other algorithms. In a second cat-
egory, ANN and KNN are included, because their accuracy increases with the number of 
samples used for the learning stage. Lastly, DT and RF share a third behavior, which con-
sists of a sort of exponential which stops increasing after a specific number of samples. 
Overall, this last category has the higher accuracy among the three. 

Another important conclusion from Figure 6 is that there is no need to use a massive 
number of samples for the learning stage. In the plotted case, already at 1000 samples, 
almost all the algorithms reach their maximum accuracy. 

 
Figure 6. Algorithm accuracy vs. the number of learning samples using uniform distributed in-
puts. 

Regarding the precision graph depicted in Figure 7, some similar comments are 
made. In terms of absolute value, the RF and ANN are still the best ones, even if the gap 
with KNN and DT is reduced compared to the accuracy case. Focusing on the perfor-
mance of the LR algorithm, it fluctuates as the number of input samples changes. This is 
because the algorithm performance, in addition to the overall number of learning samples, 
also depends on the percentage of faulty cases among them. Thus, if the total number of input 
samples is increased, it is not obvious that the performance will also have the same behavior. 
Finally, the SVM is clearly the worst-performing algorithm. Comparing accuracy and preci-
sion, it can be observed that the first metric is not null, since the algorithm can correctly iden-
tify all the TN cases of the test set (a percentage equal to the value of accuracy). On the other 
hand, the precision is null because there are zero TP cases identified by the SVM. 

Note that the comment on the tradeoff between precision and the number of samples is 
analogous to the accuracy case, demonstrating that the use of 1000 samples is still a valid op-
tion. 

Figure 6. Algorithm accuracy vs. the number of learning samples using uniform distributed inputs.

Energies 2023, 16, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 7. Algorithm precision vs. the number of learning samples using uniform distributed in-
puts. 

In Figure 8, the recall metric is plotted. No additional comments are needed for the 
algorithms KNN, ANN, DT, and RF. The only observation to add is that their recall tends 
to the same value as the number of samples increases. Regarding the LR and SVM, these 
algorithms are still the worst ones. 

 
Figure 8. Algorithm recall vs. the number of learning samples using uniform distributed inputs. 

By relating precision and recall, it can be generally observed that, if the precision is 
zero, the recall must also be zero. Conversely, if the precision is not null, neither is the 
recall. Regarding the LR algorithm, when it has acceptable precision values, it has recall 
values close to zero. The explanation for this behavior is that the metric of precision has, 
in the denominator, the number of FP cases (a small number, since this algorithm almost 
always returns 0 as an output), while the metric of recall has the number of FN cases (a 
large number, for the same reason mentioned before). 

Evaluating the recall trend of the SVM, this is instead always null because the preci-
sion of the algorithm has the same trend. 

Figure 7. Algorithm precision vs. the number of learning samples using uniform distributed inputs.



Energies 2023, 16, 470 13 of 20

Energies 2023, 16, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 7. Algorithm precision vs. the number of learning samples using uniform distributed in-
puts. 

In Figure 8, the recall metric is plotted. No additional comments are needed for the 
algorithms KNN, ANN, DT, and RF. The only observation to add is that their recall tends 
to the same value as the number of samples increases. Regarding the LR and SVM, these 
algorithms are still the worst ones. 

 
Figure 8. Algorithm recall vs. the number of learning samples using uniform distributed inputs. 

By relating precision and recall, it can be generally observed that, if the precision is 
zero, the recall must also be zero. Conversely, if the precision is not null, neither is the 
recall. Regarding the LR algorithm, when it has acceptable precision values, it has recall 
values close to zero. The explanation for this behavior is that the metric of precision has, 
in the denominator, the number of FP cases (a small number, since this algorithm almost 
always returns 0 as an output), while the metric of recall has the number of FN cases (a 
large number, for the same reason mentioned before). 

Evaluating the recall trend of the SVM, this is instead always null because the preci-
sion of the algorithm has the same trend. 

Figure 8. Algorithm recall vs. the number of learning samples using uniform distributed inputs.

By relating precision and recall, it can be generally observed that, if the precision is
zero, the recall must also be zero. Conversely, if the precision is not null, neither is the recall.
Regarding the LR algorithm, when it has acceptable precision values, it has recall values
close to zero. The explanation for this behavior is that the metric of precision has, in the
denominator, the number of FP cases (a small number, since this algorithm almost always
returns 0 as an output), while the metric of recall has the number of FN cases (a large
number, for the same reason mentioned before).

Evaluating the recall trend of the SVM, this is instead always null because the precision
of the algorithm has the same trend.

Overall, considering the contributions provided in the previous three figures, it can be
concluded that using 1000 samples for the learning stage is the best option. Furthermore, a
limited number of samples (i) reduces the time required for the learning stage; (ii) allows
the SOs to minimize the data to be used in that stage, focusing only on the testing one; and
(iii) reduces the computational burden.

In light of the choice to adopt 1000 samples, Figure 9 collects the metrics of the accuracy,
precision, and recall of all ML algorithms, tested with 1000 samples. This allows for a direct
comparison of the performance of the algorithms.
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6.2. Repeatability

In Table 3, the results of the repeatability test are listed. For each algorithm, the mean
value of the accuracy obtained with 500 repetitions and the associated standard deviation
are given. Note that the tests have been run with 1000 samples for the learning stage and
considering uniformly distributed data. From the results, the almost negligible variations
confirm the repeatability of the algorithms.

Table 3. Mean and standard deviation values of algorithms executed 500 times.

Algorithm Mean (p.u.) Standard Deviation (p.u.)

LR 0.62 0.01
KNN 0.730 0.007
SVM 0.616 0.002
ANN 0.75 0.02

DT 0.80 0.01
RF 0.886 0.004

6.3. Data Distribution

The results in this section assess the usage of normally distributed input data. Analo-
gously to Section 6.1, Figures 10–12, respectively, graph the algorithm metrics of accuracy,
precision, and recall versus the number of learning samples.
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In Figure 10, accuracy can be observed. Its behavior is almost identical to the one
obtained from uniformly distributed samples. The algorithms, though, can be considered
independent, in terms of accuracy, of the distribution assumed by the input data.

The same comments can be extended to the precision and recall in Figures 11 and 12.
The two metrics are not affected by the change in the adopted distribution. A further
comment can be made on the accuracy resulting from tests performed with a limited
number of samples. From the graphs, a generally improved behavior of the metrics,
compared to the uniform distribution case, between 100 and 500 samples emerges.

Considering that no significant variations have been obtained from the implementation
of normally distributed samples, the 1000 sample choice is still valid. Therefore, Figure 13
shows the value of the three metrics of each algorithm tested with 1000 samples in the
learning stage.
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6.4. Uncertainty

To evaluate the influence of uncertainty on the performance of the algorithms, the
histogram graphed in Figure 14 shows the metrics obtained with and without the appli-
cation of the 10% uncertainty contribution. Each test has been executed with uniformly
distributed input data and 1000 samples for the learning stage.
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From the graph, it can be concluded that, as expected, the uncertainty contribution
affects all the evaluated metrics. Hence, the reliability of the input data is a critical aspect
to consider, and it is worth further studying.

6.5. Percentage of Faults

Each SO might have different fault rates depending on the various conditions of their
network. Therefore, it is useful to test the efficiency of the ML algorithms, varying the
number of faults in the learning stage. The testing results are collected in Table 4. It includes,
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for each algorithm, the accuracy (A), the precision (P), and the recall (R) obtained with 5%,
10%, 25%, and 50% of faults. Three colors have been used to better distinguish between A,
P, and R.

Table 4. Metrics vs. percentage of the faults in the learning set.

Algorithm
5% 10% 25% 50%

A P R A P R A P R A P R

LR 0.649 0 0 0.645 0 0 0.646 0 0 0.517 0.369 0.507
KNN 0.654 0.973 0.015 0.669 0.899 0.074 0.769 0.853 0.421 0.818 0.712 0.818
SVM 0.649 0 0 0.645 0 0 0.646 0 0 0.419 0.355 0.531
ANN 0.731 0.982 0.238 0.767 0.97 0.355 0.779 0.971 0.386 0.843 0.756 0.822

DT 0.982 0.999 0.95 0.982 0.999 0.959 0.991 0.98 0.994 0.992 0.98 0.97
RF 0.972 0.995 0.924 0.985 0.992 0.964 0.991 0.975 0.999 0.991 0.997 0.999

According to the results, some algorithms, such as DT and RF, are not affected by
variations in the number of faults in the learning test. These two algorithms perform well
in all conditions, and it is reflected in the three metrics. As for ANN and KNN, their
performance slightly increases with the increase in the percentage, providing the best
results with 50% of faulty cases. Finally, LR and SVM do not perform well in any of the
cases, showing better results only for precision and recall in the 50% case. However, this
result was expected considering the underfitting problems highlighted in the previous tests.

6.6. Computational Burden

As mentioned before, another critical parameter for the evaluation of an algorithm
is the computational burden. It is assessed in terms of the time required by the algorithm
to complete the analysis. For this purpose, the execution times of the algorithms are
reported in Table 5. In addition to the times in the table, 0.978 s are needed to generate the
synthetic dataset consisting of 1000 and 100,000 samples for the learning and the testing
stage, respectively.

Table 5. Algorithm execution times.

Algorithm Time (s)

LR 0.293
KNN 2.031
SVM 6.942
ANN 0.624

DT 0.357
RF 2.147

The table highlights significant discrepancies among the algorithms. There are more
than 6 s of difference between the LR and SVM algorithms. However, the most promising
algorithms tested in this paper do not exceed 2 s. Such a value is acceptable considering
the fault prediction for the cable joint scenario.

6.7. Final Considerations

After detailing all the results, it is necessary to summarize the achievements and
comment on them.

First, the goal of this work is to assess (and stress) several ML algorithms to understand
their applicability to the fault prediction of MV cable joints. The idea is that AI can provide
precious information on the health status of the cable joint. Therefore, algorithms have
been compared not only from the perspective of their performance but also considering the
SO’s perspective. In this way, SOs may easily implement the algorithm(s) in their control
rooms to collect and compute the measures collected from the field.
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For this purpose, the case study simulates an actual distributed measurement system
that allows for the collection of several quantities from the cable joint. Afterwards, the
measures are processed by the ML algorithms. Note that the critical aspect is associating
a “fault risk” with a set of measured parameters (the definition of thresholds). To date,
there is no standard literature or common agreement about the exact conditions and
parameter combinations that lead to a fault in an MV cable joint. Furthermore, every SO
will collect measures from the field before a fault, reflecting different conditions. Therefore,
the algorithms and the simulated thresholds used in this work are based on the authors’
expertise and experience.

Looking at the results, it is possible to conclude that:

• The application of ML algorithms to the fault prediction of MV cable joints is promising.
• Each algorithm has specific peculiarities; hence, they are not all suitable for the considered

application. However, DT and RF can be considered the top-performing algorithms.
• The selection of the algorithm highly depends on the computational burden that is

sustainable by the SO. From another perspective, it depends on the extension of the
considered grid or the number of deployed sensors.

• The success of the algorithm, once selected, strongly depends on the input data and
the choices made from experience.

• The uncertainty of the input data, more than the uncertainty of the algorithm results,
affects the validity of the results.

Overall, there is no need to select the perfect algorithm. It is more significant to
highlight each of their peculiarities, allowing the final users to make the best decision
depending on their requirements.

7. Conclusions

This work aims to provide a complete study, even if the topic is emerging, on the
selection of ML algorithms. It has been necessary to fill in a gap in the literature, providing
the correct tools to the final users. For this purpose, a realistic case study, based on
the simulation of distributed measurement systems, has been designed. The simulated
measurement results were then used to compare the performance of six ML algorithms.
The aim of the comparison is the algorithms’ applicability to the fault prediction of the MV
cable joints. In detail, AI can provide precious information on the health status of cable
joints. Different aspects have been tested, not only the simple algorithm accuracy. The
results provide information on the algorithm performance, the number of samples to be
used, and the computational burden of the algorithms. Finally, the quality of the results
triggers several further studies that will be completed in the future.
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