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Abstract: Accurately evaluating the fault type and location is important for ensuring the reliability
of the power distribution network. A mushrooming number of distributed generations (DGs)
connected to the distribution system brings challenges to traditional fault classification and location
methods. Novel AI-based methods are mostly based on wide area measurement with the assistance
of intelligent devices, whose economic cost is somewhat high. This paper develops a super-resolution
(SR) and graph neural network (GNN) based method for fault classification and location in the
power distribution network. It can accurately evaluate the fault type and location only by obtaining
the measurements of some key buses in the distribution network, which reduces the construction
cost of the distribution system. The IEEE 37 Bus system is used for testing the proposed method
and verifying its effectiveness. In addition, further experiments show that the proposed method
has a certain anti-noise capability and is robust to fault resistance change, distribution network
reconfiguration, and distributed power access.

Keywords: fault classification; fault location; distribution systems; super-resolution; graph neural network

1. Introduction

The reliability of the power distribution network is crucial for ensuring the safety and
stability of electricity delivered to customers [1]. To enhance the reliability of distribution
networks, power system operators must deal with faults in good time. Thus, accurately
locating and quickly clearing faults after the occurrence is of great concern [2]. In addition,
to enable operators to properly clear the faults, accurately classifying the type of faults is
also important.

There have been many pieces of research on fault classification. Threshold values
and logical relationships are the main means of traditional fault-type identification. For
example, [3] proposed an overcurrent protection-based fault classification method, which
achieved a great identification effect at that time. However, pre-calibration for threshold is
required in most of these methods, which accounts for 30% of the total cost of the workforce
on setting relay thresholds [4]. Recently, artificial intelligence (AI) technology has been
widely used in this field. The main methods include neural network [5], fuzzy neural
network [6], Petri net [7], and so on. The fuzzy neural network, especially, has been widely
adopted because of its great generalization ability and performance. In [8], a combined
fuzzy-logic wavelet-based fault classification method was proposed, which achieved better
performance and faster speed compared to other methods at that time. The application of
AI methods has brought new developments and breakthroughs to fault-type classification.

Existing fault location methods can be divided into several categories. Impedance-
based methods use voltage and current measurements to estimate fault impedance and
location. Specifically, [9] developed an impedance-based fault-locating algorithm with
current data as the only input, and demonstrated its efficacy with simulated and actual field
data. Voltage drop-based methods analyze the voltage measurements at different buses
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to identify the fault location when a fault occurs. For example, in [10], a method based
on matching calculated voltage sag data was proposed, which can pinpoint fault location
precisely. Travelling wave-based methods adopt the reflection of high-frequency wave and
time of propagation to evaluate the position of the fault [11]. Studies such as [12] used
the traveling wave generated by the circuit breaker reclosing to locate faults for feeders
in the power distribution network. These methods require high-time synchronization
between communication devices. Recently, AI methods have been leveraged in distribution
system fault locations extensively. In [13], 1-D convolutional neural network and waveform
concatenation were adopted to locate the faults in resonant grounding distribution systems.
The authors of [2] proposed a fault location strategy based on graph convolutional networks
and measurement of buses in the distribution system, which achieved good robustness
and performance.

Whether applied in fault classification or fault location, most AI methods need to utilize
wide area measurements gathered from intelligent devices to locate the fault. Even if these
methods crippled the influence of load change and avoided the injection of high-frequency
signals, high reliance on the number of intelligent measuring devices seriously increases
the construction cost. Insufficient investment would certainly increase the difficulty and
time of troubleshooting. Several researchers have recently offered successful examples of
how they have solved this problem. In [14], fault estimations were achieved by relating
the voltage deviation measured on a small number of buses to the fault current calculated
based on the bus impedance matrix, considering the fault in different points. Aiming at
asymmetrical faults in distribution networks, [15] proposes a sparse measurement-based
fault section location method, which can narrow the location to two adjacent nodes by few
intelligent electronic devices (IEDs).

This paper proposes an SR-GNN method to solve the above problem for fault diag-
nosis for medium/high-voltage distribution networks. Measurements on a few critical
buses are gathered by µPMU (Micro-PMU) [16] in the distribution system, which are used
to reconstruct the measurements of the whole distribution network buses through the SR
technology based on a graph convolutional network (GCN) [17]. The reconstructed mea-
surements are utilized to evaluate the fault classification and location based on the graph
attention network (GAT) [18]. The proposed method is tested in the IEEE 37 bus distribu-
tion system built in OpenDSS software [19]. Experimental results show that the proposed
method has good adaptation and robustness to noise and fault resistance. Furthermore, the
influence of DGs access, µPMUs allocation, and distribution network reconfiguration are
also discussed.

The main contributions of this paper are summarized as follows.

1. Due to the use of SR technology, the proposed method is able to evaluate the fault
classification and location using measurements obtained from a small number of
µPMUs, which reduce the construction cost of the distribution system;

2. A GAT-based model is adopted in this method to obtain the classification and location
of faults, which demonstrates improved robustness and applicability, especially for
distribution network reconfiguration cases.

The organization of the rest of the paper is as follows: in Section 2, the proposed
method for fault classification and location is described in detail. In Section 3, the exper-
iment results in the IEEE 37 bus of the proposed method are first described. Moreover,
the influence of noise, fault resistance, µPMUs allocation, DGs access, and distribution
network reconfiguration on the locating performance of this method are also discussed.
Finally, Section 4 concludes the paper.

2. SR-GNN Based Fault Classification and Location Method

In this section, the distribution network feature reconstruction via SR and fault classifi-
cation and location via GNN are introduced in detail.
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2.1. Distribution Network Feature Reconstruction Via SR

To save the construction cost of the distribution system, we assume that µPMUs
are installed only on some key buses in the distribution network. In this paper, in the
distribution network, buses directly connected to the external grid and DGs or con-
nected to at least three other buses are defined as key buses. That is, we can have
access to three-phase voltage and current phasors, active power, and reactive power
(V1, θV

1 , V2, θV
2 , V3, θV

3 , I1, θ I
1, I2, θ I

2, I3, θ I
3, P, Q) ∈ R14 only for these key buses. However, it is

difficult to evaluate fault classification and location directly from the measurements of these
key buses. We need the measurement estimate of the whole distribution network buses.

In this part, we proposed an SR model based on GCN to solve the above problem. As
shown in Figure 1, the fault data simulated by OpenDSS software is utilized for model
training. The model consists of two graph convolution layers and one full connection layer.
The inputs of the model are the whole distribution network buses’ feature data, generated
based on the key buses‘ measurements. In addition, the outputs are estimates of the true bus
measurement values for the entire distribution network. For each type of feature described
in the previous paragraph, a separate SR model was used for feature reconstruction.
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2.1.1. Training Set

The training set of the GCN-based SR model comprises three parts: feature input
matrix Xi, adjacent matrix A, and label matrix Yi, where i (i ≤ 14, i ∈ N) is the number
of features.

Each feature has its separate input matrix. The i-th input feature is expressed in a N× 1
matrix Xi, where N represents the number of buses in the distribution network. As shown
in the following equation, for key buses, their values in Xi are their real measurements. In
addition, for buses that cannot be measured (no µPMU installed), their values in Xi are
initialized using the adjacent key bus measurement and the KVL rule.

Xi =
[
x1

i x2
i · · · xN

i
]T (1)

The topology of a distribution network with N buses is expressed in an N × N adja-
cency matrix A, which indicates the connection relation between buses. As shown in the
following equation, if aj

i is 1, it indicates that bus i and j are directly connected, while aj
i is 0

means they are not.

A =



a1
1 a2

1 · · · aj
1 · · · aN

1
a1

2 a2
2 · · · aj

2 · · · aN
2

...
...

...
...

...
...

a1
i a2

i · · · aj
i · · · aN

i
...

...
...

...
...

...
a1

N a2
N · · · aj

N · · · aN
N


(2)
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As shown in the following equation, the label matrix Yi corresponds to the input
matrix Xi, which represents the real measurements of the i-th feature on the buses of the
distribution network.

Yi =
[
y1

i y2
i · · · yN

i
]T (3)

2.1.2. Structure Design

As a powerful deep-learning algorithm based on graph topology, the GCN has a
strong nonlinear fitting ability for grid data. As shown in Figure 1, two graph convolution
layers and one full connection layer comprise the SR model. The LeakyReLU function is
selected as the activation function for graph convolution layers, as follows:

σ(x) = LeakyReLU(x, β) = max(0, x) + β×min(0, x) (4)

Based on the spectral graph theory, the output of the graph convolution layer can be
formulated as follows [17]:

H(l+1) = f (H(l), A) = σ
(

D̃−
1
2 ÃD̃−

1
2 H(l)W(l)

)
(5)

where H(l+1) and Hl represent the output of the l + 1-th and l-th graph convolution
layers. W(l) ∈ R1×Fh is the weight matrix, where Fh is the output dimension of the graph
convolution layer. A is the adjacency matrix of distribution network topology. Ã = A + I
is the adjacency matrix with added self-connections, where I is the identity matrix. D̃ is the
diagonal degree matrix of Ã. σ(.) is the activation function.

First, define Â = D̃−
1
2 ÃD̃−

1
2 , which describes the convolution process of the spectral

graph. Then the output of the proposed GCN-based SR model can be formulated as follows:

Zi = W f σ(Âσ(ÂXiW(1))W(2)) + b f (6)

where W f ∈ RN and b f ∈ RN are the weight matrix and bias matrix of the full
connection layer.

The SR model is trained in a supervised manner, and the loss function consists of
mean-square error (MSE) and Kullback–Leibler divergence loss (KLDivLoss) as follows:

L =
1
N

N

∑
i=1

(yi − zi)
2 +

1
N

N

∑
i=1

yi log(yi − zi) (7)

2.2. Fault Classification and Location Via GNN

Since the distribution network topology is highly consistent with graph topology,
GNN is very suitable for solving the problems in the distribution network. In this part,
a special kind of GNN named GAT is adopted for fault classification and location tasks.
As shown in Figure 2, the inputs of the model are feature estimates of all distribution
network buses obtained by the SR model in the previous step. The inputs are first passed
along to a fault classification model to obtain the fault type. Since most of the faults in the
distribution network are single-phase faults, and since three-phase faults rarely occur [20],
only single line-to-ground faults (SLG), line-line faults (LL), and double line to ground
faults (LLG) are considered in this paper. In addition, it is set that the fault occurs on the
buses, not the branches, because the data collected is the electrical features of the buses,
which is determined by the installation position of µPMUs and can better reflect the fault
information of the buses. Then, based on the fault type, inputs are passed along to the
corresponding fault location model to obtain the label of the fault bus. In addition, the
universal model for fault classification and location is illustrated in Figure 3, which consists
of two graph attention layers and one full connection layer. Different color topologies in
each layer represent different feature types.
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2.2.1. Training Set

The training set of the proposed fault classification and location model comprises
three parts: input matrix X, adjacent matrix A and label y.

The input of the proposed fault classification and location model is the estimated
values of all features of all distribution network buses obtained by the SR model in the
previous step. It is expressed in an F × N matrix X as follows, where N represents the
number of buses and F represents the number of features.

X = {
→
X1,

→
X2, . . . ,

→
XN} =



x1
1 x2

1 · · · xj
1 · · · xN

1
x1

2 x2
2 · · · xj

2 · · · xN
2

...
...

...
...

...
...

x1
i x2

i · · · xj
i · · · xN

i
...

...
...

...
...

...
x1

F x2
F · · · xj

F · · · xN
F


(8)
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The adjacent matrix A is the same as in the SR model in the previous step.
The label consists of two parts: fault classification label yc and fault location label yl.

They are converted to one-hot vectors when calculating losses.

yc = Nc (Nc ≤ n, n ∈ N) (9)

yl = Nl (Nl ≤ m, m ∈ N) (10)

where n represents the number of fault types, which is 3 in this paper, and m represents the
number of distribution network buses.

2.2.2. Structure Design

Define the input to graph attention layer as a set of bus features h = {
→
h 1,
→
h 2, . . . ,

→
h N},

→
h i ∈ RF, where N represents the number of buses and F represents the number of fea-
tures. The output of this layer is a new set of bus features whose feature dimension is F′,

h′ = {
→
h
′
1,
→
h
′
2, . . . ,

→
h
′
N},

→
h
′
i ∈ RF′ . An illustration of three-head attention (K = 3) by bus

1 on its adjacent bus is shown in Figure 4. Each attention computation is represented by

a separate color. In addition,
→
h
′
1 is obtained by averaging the aggregated features from

each head. Then the output of the graph attention layer based on the multi-head attention
mechanism can be expressed as [18]:

h′ =
N
||

i=1

→
h
′
i =

N
||

i=1
σ

(
1
K

K

∑
k=1

∑
j∈Ni

αk
ijW

k
→
h j

)
(11)

where || is the concatenation operator. σ(.) is the activation function LeakyReLU in (4). K
is the number of heads of the attention mechanism. Ni is some neighborhood of bus i in the
graph. αk

ij are normalized attention coefficients computed by the k-th attention mechanism,

and Wk ∈ RF′×F is the corresponding weight matrix.
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In this paper, as shown in Figure 5, a single-layer feedforward neural network with
weight vector

→
a as parameters constitutes the attention mechanism a. Then the normalized

attention coefficient αij can be computed by the attention mechanism as follows [18]:

αij = softmax
(

σ

(
→
a

T
[

W
→
h i‖W

→
h j

]))
=

exp
(

σ

(
→
a

T
[

W
→
h i‖W

→
h j

]))
∑

j∈Ni

exp
(

σ

(
→
a

T
[

W
→
h i‖W

→
h j

])) (12)
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where W ∈ RF′×F is the weight matrix.
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ij Wk1

→
X j

)
(13)

→
h
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h

1

i
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Z =
1
N
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h2
i + b f (15)

where
→
h

j

i is the output of the i-th bus of the j-th graph attention layer. Wk1 ∈ RFh×F and
Wk2 ∈ RFh×Fh are weight matrixes, where Fh is the output dimension of the graph attention
layer. Z is the output of the full connection layer. W f ∈ RNo×F′ and b f ∈ RNo×F′ are
the weight matrix and bias matrix of the full connection layer, where No is the output
dimension of the full connection layer.

The model is trained in a supervised manner, and the loss function is cross-entropy
loss as follows:

L = −
No

∑
i=1

onehot(yi) ln(softmax(zi)) = −
No

∑
i=1

onehot(yi) ln
exp(zi)

No
∑

j=1
exp(zj)

(16)

where onehot (.) is the one-hot function.

3. Experiment and Discussion

In this section, we first test the performance of the proposed fault classification and
location method in the IEEE 37 bus system. Then, the influence of noise, fault resistance,
µPMUs allocation, DGs access, and network reconfiguration on the locating performance
of this method are discussed.

3.1. IEEE 37 Bus Test Case

The IEEE 37 bus system, as shown in Figure 6, is utilized here for both simulation and
experimental tests to validate the proposed method. Based on the definition of the key bus
in Section 2.1, measurements are obtained from µPMUs installed at buses 702, 703, 704, 705,
707, 708, 709, 710, 711, 720, 734, 744, 799.
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Figure 6. IEEE 37 bus system for test.

Faults are simulated for all buses in the system based on OpenDSS software (Version
9.3.0.2). The default fault resistance is 10 Ω. The load level is randomly selected between 0.3
and 1. The voltage, current phasors, and powers are measured during the fault. We obtain
the training and test datasets used for feature reconstruction and fault classification and
location. A total of 50 data samples are generated for each fault type at each bus. As a result,
the entire dataset contains 7400 data samples, which were divided into 80% training set
and 20% test set.

Some feature reconstruction results based on the proposed SR method are shown in
Figure 7. Table 1 evaluates the reconfiguration performance of each feature using Mean
Absolute Percentage Error (MAPE) and coefficient of determination R2. It is shown that the
proposed method has a good capability for distribution network feature reconstruction.
Note that the R2 of voltage is not very high because of its large cardinal number. There is
an overall offset between the reconstructed value and the real value, which does not affect
the subsequent training. In addition, the average relative errors of the training set and test
set are all less than 10% in experiments.
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Table 1. Reconfiguration performance of each feature.

Feature MAPE R2 Feature MAPE R2

V1 2.6% 0.27 θV
1 5.1% 0.76

V2 3.4% 0.25 θV
2 7.2% 0.74

V3 3.1% 0.32 θV
3 4.7% 0.77

I1 2.6% 0.92 θ I
1 8.7% 0.73

I2 1.9% 0.93 θ I
2 9.4% 0.71

I3 3.3% 0.91 θ I
3 7.9% 0.72

P 1.1% 0.96 Q 0.9% 0.97

The performances of the proposed method were visualized by the confusion matrix in
Figure 8. It is shown that the average accuracy of the fault classification model is above
99%. The accuracy of the fault location model is 95.7%, and the erroneous location is mostly
distributed near the fault bus.
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3.2. Influence of Fault Resistance

The proposed method is tested under various fault resistances in this part. Specifically,
we chose fault resistances of 0.05 Ω, 10 Ω, 25 Ω, and 1000 Ω for the experiments. The
fault location results are shown in Figure 9. Here we define a k-hop accuracy to represent
the accuracy of the error locating bus within k hops Ω from the real fault bus, since the
zero-hop accuracy is not satisfactory when the fault resistance is very small or large.
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The k-hop accuracy results for different fault resistances are indicated in Figure 9,
and more numeric results are in Table 2. When the fault resistance is 10 Ω and 25 Ω,
the zero-hop accuracy is above 95% and the three-hop accuracy can be more than 99%.
However, when the fault resistance is 0.05 Ω and 1000 Ω, the zero-hop accuracies are about
70% and 60%, respectively, but the three-hop accuracy can still reach 90%, which indicates
that the proposed model can still capture a part of the fault characteristics for these faults.
The erroneous location is deemed to be affected by the parameters of lines. If the fault
resistance is much smaller or larger than the adjacent line impedance, the location tends to
be incorrect [15].

Table 2. Comparison results with different fault resistance.

Fault Resistance MAPE of Feature
Reconfiguration

Accuracy of Fault
Classification

Accuracy of Fault
Location

0.05 Ω 19.9% 81.8% 70.3%
10 Ω 4.4% 99.1% 95.7%
25 Ω 4.5% 98.9% 95.2%

1000 Ω 21.1% 78.9% 60.1%

3.3. Influence of Noise

In practical application, measurements often contain noises generated by environmen-
tal factors [21]. In this part, the locating performance under noise of the proposed method
is studied. We added 10 dB, 20 dB, 30 dB, and 40 dB Gaussian noise to the test set for the
experiments. The location results are shown in Figure 10, and more numeric results are in
Table 3.
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Table 3. Comparison results with different noise.

SNR of Noise MAPE of Feature
Reconfiguration

Accuracy of Fault
Classification

Accuracy of Fault
Location

10 dB 18.9% 83.1% 65.3%
20 dB 10.5% 90.3% 82.2%
30 dB 5.5% 98.3% 93.2%
40 dB 4.9% 98.9% 95.5%

It is shown that with the decrease in signal-to-noise rate (SNR), the locating perfor-
mance of the proposed method decreases. However, when SNR is 30 dB and 40 dB, the
zero-hop locating accuracy is above 92%. In addition, when SNR is 10 dB, the three-hop
locating accuracy is still more than 83%, which indicates that the proposed fault location
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method is quite robust to mild noise. At present, the measurement error of µPMU is mostly
below 1%. Thus, the anti-noise ability of the proposed method can meet most practical
application scenarios.

3.4. Influence of the µPMU Allocation

In Section 2.1, key buses where µPMUs are allocated are defined. We installed µPMU
on buses with more adjacent buses because more distribution network characteristic infor-
mation can be obtained by doing so. Experiments in the IEEE 37 Bus system also prove
the feasibility of this allocation method. In this part, two other allocation methods are
tested for comparison with the method used in this paper: Allocation 1, to use the same
amount of µPMUs as this paper used and allocate them into the distribution network at
equal intervals; and Allocation 2, to install µPMUs directly on all the front and end buses
of the distribution network (such as bus 799, 712, 725, etc. in IEEE 37 Bus system).

The numeric comparison results are shown in Table 4 and Figure 11 shows the k-hop
fault location results. It is shown that the µPMU allocation used in this paper is superior to
the other two methods. Among them, the performance of Allocation 1 is similar to that of
the method in this paper, and the performance of Allocation 2 is the worst.

Table 4. Comparison results of different µPMU allocations.

Allocation MAPE of Feature
Reconfiguration

Accuracy of Fault
Classification

Accuracy of Fault
Location

Allocation 1 6.1% 98.3% 94.8%
Allocation 2 17.5% 95.9% 86.1%

Allocation in this paper 4.4% 99.1% 95.7%
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3.5. Influence of Distribution Network Reconfiguration

To reduce loss or balance the loads, the configuration of a distribution network may
change [22]. In this part, to assess the performance of the proposed method under distri-
bution network reconfiguration, we modified the topology of the IEEE 37 Bus system and
conducted experiments under the following three cases of reconfiguration:

1. Disconnect bus 709 and bus 730 and connect bus 708 and bus 730;
2. Disconnect bus 702 and bus 703 and connect bus 705 and bus 727;
3. Disconnect bus 702 and bus 713 and connect bus 703 and bus 713.

The location results are shown in Figure 12, and more numeric comparison results are
in Table 5. It is shown that the performance of the proposed method degrades somewhat
due to the reconfiguration of the distribution network, which is deemed to be affected
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by the robustness of the proposed model and the position changes of the key buses after
network reconfiguration. In addition, the closer the reconstructed network is to the original
network, the better the performance of the proposed method is. However, the zero-hop
locating accuracy and three-hop can still be above 85% and 90%. respectively. Note that the
reconfiguration scenarios are not involved in the model training process, which means the
proposed method is somewhat robust to distribution network reconfiguration.
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Table 5. Comparison results of different reconfiguration of distribution network.

Network
Reconfiguration

MAPE of Feature
Reconfiguration

Accuracy of Fault
Classification

Accuracy of Fault
Location

Reconfiguration 1 9.5% 91.7% 85.2%
Reconfiguration 2 8.3% 94.3% 88.7%
Reconfiguration 3 7.7% 95.9% 90.1%

No reconfiguration 4.4% 99.1% 95.7%

3.6. Influence of DGs Access

As a mushrooming number of DGs are connected to the distribution system, traditional
fault location methods are challenged by distorted fault currents from DGs. In this part,
we investigate the performance of the proposed method for distribution network with
DGs access.

To simulate a multi-DGs condition, DGs are added at buses 718, 725, 735, and 741 in
the IEEE 37 Bus system. Based on the definition of the key bus in Section 2.1, and based
on the original allocation of µPMU in Section 3.1, µPMU should also be installed on the
above bus connected to DG to better obtain the characteristic information from DGs. The
numeric results are shown in Table 6, and Figure 13 shows the k-hop fault location results.
It is shown that the performance of the proposed method degrades slightly with DG access.
However, the zero-hop locating accuracy is still 92.3% and the three-hop accuracy can also
be above 98%, which proves that the proposed method is somewhat robust to DG access.

Table 6. Comparison results with DGs access.

DGs Access MAPE of Feature
Reconfiguration

Accuracy of Fault
Classification

Accuracy of Fault
Location

With DGs 5.1% 98.2% 92.3%
No DGs 4.4% 99.1% 95.7%
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3.7. Performance in Another Complex Distribution Network

As the previous experiments are all conducted in the IEEE 37 bus system, to verify
the effectiveness of the proposed method in more complex distribution networks, we
have tested it in the IEEE 123 bus system [23]. As in the IEEE 37 bus system, the fault
measurement data of the key buses in the IEEE 123 bus system is obtained according to the
definition of the key bus in Section 2.1, and then the proposed SR-GNN-based model is
utilized to obtain the fault type and fault location.

The performance of the proposed method in the IEEE 123 bus system is shown as the
confusion matrix in Figure 14. It can be proved that the proposed method can still achieve
good performance in complex distribution networks such as the IEEE 123 bus system, since
the average accuracy of the fault classification and location model are still above 98% and
95%, and the erroneous location is mostly distributed near the fault bus.
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3.8. Performance Comparison with Existing Advanced Methods

To compare the performance of the proposed SR-GNN-based method with the exist-
ing fault location methods and to show that the proposed method has the current high
identification accuracy and good economy, this section selects some advanced fault location
methods proposed in the last two years and makes a comparison with the proposed method.

The results of the comparison are shown in Table 7. It is shown that, although using
the SR model to reduce sensor cost, the fault location accuracy of the proposed method
is still comparable to those of using wide area measurement methods. In addition, in
the methods also using sparse measurement, it still has a slightly higher performance
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than some methods, such as the sparse voltage measurement-based method in [15], which
proved that the proposed method can guarantee high positioning accuracy while having
a good economy.

Table 7. Comparison results with existing advanced methods.

Method Type of Measurement Accuracy of Fault Location

GCN-based method [2] Wide Area 97.6%
1-D CNN-based method [13] Wide Area 95.6%

Sparse Voltage-based method [15] Sparse 90.1%
Graph-based method [24] Sparse 95.9%

SR-GNN-based method (this paper) Sparse 95.7%

4. Conclusions and Outlook

In this paper, we develop an SR-GNN-based fault classification and location method
in the power distribution network. Unlike most methods that rely on wide area measure-
ment, the proposed method can accurately evaluate the fault type and location only by
obtaining the measurements of some key buses with µPMU in the distribution network.
This reduces the construction cost of the distribution system. In addition, it is tested in
IEEE 37 Bus system to verify its effectiveness. Further experiments show that the proposed
method has a certain anti-noise capability and is robust to fault resistance change, distri-
bution network reconfiguration, and distributed power access. In a nutshell, this paper
proposes a high-performance and low-cost fault diagnosis and location method for the
power distribution system.

The method proposed in this paper is a cloud intelligent algorithm and is deployed
on the cloud platform of the distribution network. The cloud platform is typically a high-
performance computer that can easily deploy the proposed method. After the data collected
by the µPMUs on the distribution network buses is uploaded to the cloud platform, fault
diagnosis can be performed. Therefore, the proposed method can be used by industry.

The main innovation points of this paper are as follows: (1) Based on sparse bus
measurement, the SR method in the image processing field is utilized to estimate and
reconstruct all bus features of the distribution network; (2) Using the model based on GAT
for distribution network fault diagnosis.

Although the proposed method has good performance under most conditions, how
to improve its fault diagnosis and location ability in some specific conditions, such as
the detection of high impedance faults, remains to be further studied. In addition, this
paper can inspire new guidelines for research, such as memristor based circuits [25] fault
detection, and power flow calculation of distribution network.
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