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Abstract: This study investigated the problem of controlling a three-phase three-wire photovoltaic
(PV)-type distribution static compensator (DSTATCOM). In order to model, simulate, and control
the system, the MATLAB/SIMULINK tool was used. Different controllers were applied to create
switching pulses for the IGBT-based voltage source converter (VSC) for the mitigation of various
power quality issues in the PV-DSTATCOM. Traditional control algorithms guarantee faultless
execution or outcomes only for a restricted range of operating situations due to their present design.
Alternative regulators depend on more resilient neural network and fuzzy logic algorithms that
may be programmed to operate in a variety of settings. In this study, an adaptive linear neural
network (ADALINE) was proposed to solve the control problem more efficiently than the existing
methods. The ADALINE method was simulated and the results were compared with the results
of the synchronous reference frame theory (SRFT), improved linear sinusoidal tracer (ILST), and
backpropagation (BP) algorithms. The simulation results showed that the proposed ADALINE
method outperformed the compared algorithms. In addition, the total harmonic distortions (THDs)
of the source current were estimated under ideal grid voltage conditions based on IEEE-929 and
IEEE-519 guidelines.

Keywords: ADALINE; BP; DSTATCOM; harmonics; ILST; load-balancing; photovoltaic; reactive
power; shunt active filter; SRFT

1. Introduction

In recent years, the advent of power electronic three-phase loads, such as the switched
mode power supply (SMPS); uninterruptible power supply (UPS); integrated circuits (ICs);
solid state drives; lighting control adjustable speed drives (ASD); and some fluctuating
loads, such as electric hammers and furnaces, have increased the degree of deterioration
of power quality by drawing the reactive power component of the currents, unbalanced
currents and harmonic currents in a three-phase, three-wire system. The increasing usage of
such non-linear loads incurs a high economic and maintenance burden, and hence, it is nec-
essary to properly study, research, and implement devices that can mitigate these problems
to improve the power quality of systems and protect the connected equipment [1,2].

Many methods and equipment have been used so far to mitigate such current-based
power quality problems, including line conditioners, passive filters, and active filters [1].
The passive filter has the disadvantages of a higher weight and greater resonance. The
evolution of active filters further mitigates the described problems. The main advantages
of active filters are to eliminate the resonance and harmonics, compensating for the reactive
power. Some of the well-known active filters are the static compensator (STATCOM),
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interline power quality compensator (IPQC), unified power quality compensator (UPQC),
dynamic voltage restorer (DVR), and distributed static compensator (DSTATCOM), which
are also collectively known as custom power devices (CPDs). The DSTATCOM, in particular,
has emerged due to its fast response and lower space requirement [1–3].

Just like inverters, the power electronic converters need pulses for functioning/switching
of the IGBT switches, and hence, suitable control algorithms are implemented to control the
VSC to mitigate current-based power quality problems. Synchronous reference frame (SRF)
theory, instantaneous reactive power theory (IRPT), power balance theory, the synchronous
detection (SD) theorem, the Icos∅ theorem, the improved linear sinusoidal tracer (ILST),
artificial neural network (ANN) algorithms, etc., are some of the prominent algorithms used
to generate the reference currents in such systems [1–5]. Some of these control algorithms
have drawbacks, such as the inability to work properly under distorted source voltage
conditions and increased complexity due to the use of a phase-locked loop (PLL) [3,6,7].
The VSC’s PI controllers have been tuned appropriately during the employment of linear
controllers to operate the DSTATCOM, but the negative aspect is that their performance
diminishes as the system’s operating conditions change. Non-linear controllers are capable
of good control, but they are difficult to install and complex.

The ANN algorithms [8], such as backpropagation [9–11] and ADALINE [12–14],
provide a solution to these issues by extracting the control signal, managing the DC bus
capacitor, and ensuring that the control algorithm utilized for reference current proliferation
is as reliable as possible. There are two main qualities of the proposed ADALINE to be
highlighted: (1) they are formed through a learning mechanism and (2) it is not necessary
to establish definite input–output relations. In addition, parallel computing and continuous
closed-loop error reduction mechanism improve system dependability and speed [10–15].

The major contributions of this study are listed below:

I. The LCLC-PV-DSTATCOM was designed for the distribution system to enhance
the power quality under dynamic load conditions.

II. An adaptive ADALINE-based controller was proposed for the suitable control of
the considered PV-DSTATCOM. An ADALINE-based controller provides adaptiv-
ity regarding power quality issues based on the learning mechanism.

III. The performance of the ADALINE-based controller for the PV-DSTATCOM system
was analyzed under various dynamic load conditions and compared with the
performance of conventional controllers.

In the present work, the ADALINE algorithm was proposed to control the PV-
DSTATCOM. In addition, the ADALINE algorithm was compared with the BP, ILST, and
SRFT algorithms and the comparison results demonstrated its superiority under various
load conditions.

Section 2 describes the PV based DSTATCOM system configuration. The BP, ILST, and
SRFT algorithms are presented in Section 3, and modelled by using MATLAB/Simulink.
Section 4 describes in detail the proposed ADALINE control method. Section 5 explains
the comparative breakdown of the 4 controllers with the aid of the simulation results. The
work is concluded in Section 6 summarizing the outcomes, the benefits of the proposed
method and the perspectives on future works.

2. System Configuration of the PV-Based DSTATCOM

This considered system comprised a solar PV string in series and parallel connections
for a required output power rating, an interfacing inductor, an RC filter, and a voltage
source converter (VSC). The PV module was affiliated with the VSC, which not only acted as
a converter but also performed the role of a compensator for the mitigation of power quality
problems. It was then interfaced to the 3-Ø grid system connected with various types of
loads, such as non-linear loads, non-linear with linear balanced loads, non-linear with
linear unbalanced loads, and a thyristor load with dynamic firing angles. For maximum
power extraction from the solar array, the incremental conductance (IncCond) algorithm
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was incorporated into the system. The PV-DSTATCOM and the connected LCLC network
are represented in Figure 1. The system parameters can be found in Appendix A.
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3. Control Methods Description

DSTATCOM offers a total power component that is suitable for a nonlinear load for
power quality enhancement and harmonic suppression; it ensures that the source current
always has a unity power factor when viewed from the source side. As the source only
delivers actual power, load equilibrium is achieved by balancing the reference source
currents, facilitating the DSTATCOM network’s controller switching [1–5,10–15]. Several
approaches are employed to extract the fundamental frequency’s real component from the
load current. In the following subsections, the algorithms used in this study are described.

3.1. Synchronous Reference Frame Theory (SRFT)

The currents of reference compensation were calculated in two phases. The load
current of the a-b-c reference frame was transformed to the α-β reference frame’s load
current. The DC components were removed using low-pass filters and translated back into
the stationary reference frame and subsequently into the a-b-c reference frame [16], which
formed the basic components of load currents, as indicated in Equation (1). To create the
voltage templates, a phase-locked loop was employed.

Il d = IdDC + IdAC; Il q = IqDC + IqAC (1)

In Figure 1, IdDC is the filtered-out DC component of the input current and IQdc is the
filtered-out quadrature DC component of the input current.

In the hysteresis current band controller, the reference current obtained following an
inverse Park and Clarke transformation was compared with the measured source currents,
and switching pulses were generated suitably for the IGBT switches, as illustrated in
Figure 2. Since PV power was employed, an appropriate maximum power point tracker
(MPPT) near the solar array was constructed for maximum power extraction [1–3,13,15].
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Figure 2. Structural diagram of the SRFT.

3.2. Improved Linear Sinusoidal Tracer (ILST)

The structure of the ILST is depicted in Figure 3. Load currents samples were used
to collect the active power component, as well as the basic current output from the ILST
at zero crossings of the fundamental phase load component. To synchronize the currents
supplied into the grid, templates built from point of common coupling (PCC) voltages were
employed. The only active component of current was transferred across the grid since grid
currents were in the UPF.
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The solar PV power, loads, and the grid should all have the net active power balance
in the system, given as in Equation (2):

Isnet = I f p + Ipdc − Ipv (2)

where Isnet is the net current, Ifp is the fundamental component, Ipdc is the filtered-out
component after the PI controller, and IPV is the current from the photovoltaic system. The
net fundamental in-phase load component Ifp is given as in Equation (3) [17]:

I f p = I f pa + I f pb + I f pc (3)

where Ifpa, Ifpb, and Ifpc are the fundamental components of load current in phase with
source voltages of phase a, phase b, and phase c, respectively.
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In the hysteresis current band controller, the produced reference current was compared
with the measured source currents, and switching pulses were correspondingly created for
the IGBT switches [16–18]. As illustrated in Figure 3, the MPPT was incorporated within
the control algorithm.

3.3. Backpropagation Algorithm

The backpropagation algorithm is a neural network. It is particularly smooth regarding
weight correction and updating because it incorporates three layers that implement the
following three functions: (1) feed-forward of the input signal training and computation,
(2) backpropagation of the error signals, and (3) upgrading of training weights [19,20]. By
establishing a starting weight, the current technique was utilized to estimate the three-phase
weighted value of the load active and reactive power components. This value was updated
at every iteration till the error was constant and at a minimum thanks to the feedback loop
(backpropagation). The algorithm was accurate despite the slow nature of convergence due
to a large number of training steps [21,22].

The reference current was the summation of active and reactive power components,
which was then compared with the sensed source currents in the hysteresis current band
controller. Switching pulses are generated accordingly for the IGBT switches, as shown in
Figure 4.

Isare f = Isap + Isaq, Isbre f = Isbp + Isbq, Iscre f = Iscp + Iscq (4)
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Since PV power is used, a suitable MPPT was implemented near the solar array for
maximum power extraction.

4. The ADALINE-Based Control Method

This study proposed an ADALINE to generate a reference fundamental active load
current. It is a neural network with two layers, namely, the input and output layers invented
by Widrow and Hoff [23]. The neural network is based on the least-mean-square algorithm
(LMS), which is a simple tool that can identify and estimate linear real-world problems
and, in some cases, non-linear problems with self-learning [23].
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The inputs of the network are multiplied by the weights, which are modified at each
iteration and added up to obtain an estimated output. The output is compared with the
target signal and the comparison error is used by the algorithm to modify the weights.
The main aim of the network is to extract the fundamental signal from the distorted load
signals. The basic structure of the ADALINE is shown in Figure 5.
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The distorted load current containing harmonics can be expressed using the Fourier
series as a sum of sine and cosine. The main aim is to find the coefficient of sine and cosine
components, which are an and bn, respectively [23–27].

The sine and cosine functions are known as the input to the ADALINE network,
without their amplitudes. The unknown amplitudes are considered the modifiable weights
that are updated at each iteration. The output of the network is the load current (y) to be
estimated, whereas the load current measured is the target signal (tg). The load current
estimated [26] is defined in Equation (5):

yk =
M

∑
n=1,5,7...

ak
n sin

(
2πn f0tk

)
+ bk

n cos
(

2πn f0tk
)

(5)

The load current to be estimated can be written in a Fourier series sampled at tk = kTs,
where k is the sampling index, Ts is the sampling time or interval, n is the index of the
harmonic, and M is the highest order of the harmonics. In this work, we considered all the
odd harmonics till M = 19 [28–30]. The network weights were updated using the LMS to
minimize the error between the target load current and the load current estimated using
the ADALINE.

The estimated load current is expressed in Equation (6):

yk =
(

wk
)T

xk (6)

where (
xk
)T

= [sin
(

ω0tk
)

sin
(

5ω0tk
)

. . . sin
(

Mω0tk
)

cos
(

ω0tk
)

cos
(

5ω0tk
)

. . . cos
(

Mω0tk
)
]

(7)

and (
wk
)T

=
[

a1
k a5

k . . . . . . . aM
k b1

k b5
k . . . . . . . b5

k
]

(8)
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The final weight updating rule of the network used in the ADALINE is defined in
Equation (9):

wk = wk−1 − η · ∇Ek(w) = wk−1 + η · ek · xk (9)

Figures 5 and 6 illustrate the ADALINE for the extraction of the active fundamental
component present in the load current. In particular, the fundamental signal is multiplied
by the unit templates to generate the reference source currents. The produced reference
signals are compared with the actual source currents using the hysteresis band current
controller to provide the switching signals for the inverter. Even in this case, since PV
power is used, a suitable MPPT [31–33] was implemented near the solar array for maximum
power extraction.
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5. Results and Analysis

The considered system was modeled and simulated by using the MATLAB/Simulink
environment. The simulation parameters are provided in Appendices A and B. The per-
formance of PV-DSTATCOM was analyzed by adopting various controllers and different
load conditions.

5.1. Performance under Non-Linear Load Conditions

The system under non-linear loading conditions was simulated; examples of such
loads include power converters, solid-state drives, and adjustable speed drives. The
performances of the system under the considered conventional control mechanisms SFRT,
ISLT, and BP were analyzed in Figures 7–9, respectively. The harmonics from the source
currents were mitigated using the proposed ADALINE-based controller to make the source
currents approximately sinusoidal, as shown in Figure 10. The total harmonic distortion
of the source currents under various conditions with considered controllers are listed in
Table 1 to evaluate the performance.
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Table 1. THDs under various dynamic load conditions.

Controller Type
Non-Linear

Load without
Compensation

Non-Linear
Load Condition

Non-Linear
Load with

Linear Balanced
Load Condition

Non-Linear
Load with

Linear
UnBalanced

Load Condition

SRFT 28% 4.1% 3.5% 4.2%

ILST 28% 2.9% 2.4% 2.61%

BP 28% 2.1% 2.26% 2.14%

ADALINE 28% 1.5% 1.3% 1.34%
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5.2. Non-Linear Load with Linear Balanced Load Conditions

The system under non-linear loading conditions along with linear balanced loads was
simulated. Examples of such linear loads include incandescent lamps and heaters. The
efficiency of the proposed ADALINE controller can be clearly analyzed by comparing the
results obtained by the SRFT, ISLT, and BP in Figures 11–13, respectively, with the results
in Figure 14. The ADALINE-based controller for PV-DSTATCOM eliminates harmonics
from source current more efficiently than other aforementioned controllers. Therefore, the
proposed controller shows its superiority.
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5.3. Non-Linear Load with Linear Unbalanced Load Conditions

The system under non-linear loading conditions along with linear unbalanced loads
was simulated. In an unbalanced three-phase load, the load was not equally distributed
over all three phases; large single-phase loads lead to a lack of balance in the other two
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phases. By comparing the results shown in Figures 15–18, it can be noticed how the
proposed ADALINE controller outperformed the conventional controllers.
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Figure 16. Results for the ILST: (a) load current signal rich in harmonics, (b) the ILST controller
applied to a source current, and (c) reactive power compensation.



Energies 2023, 16, 323 13 of 22

Energies 2023, 16, x FOR PEER REVIEW 13 of 21 
 

 

 

Figure 17. Results for the BP: (a) load current signal rich in harmonics, (b) the BP controller applied 

to a source current, and (c) reactive power compensation. 

 

Figure 18. Results for the ADALINE: (a) load current signal rich in harmonics, (b) the ADALINE 

controller applied to a source current, and (c) reactive power compensation. 

5.4. Transient State Analysis for Ideal Source Voltage Condition 

The performance of the system under varying loads was observed and analyzed; the 

following results were obtained for a transient state condition at the moment when the 

loads were thrown into the system under a non-distorted source voltage condition. The 

source voltage is represented in Figure 19. In particular, the efficiency of the proposed 

ADALINE-based controller was superior to the SRFT controller presented in Figure 20 

and the ILST control strategy shown in Figure 21. Moreover, the performance of the sys-

tem was also compared with transient state condition results obtained from the backprop-

agation algorithm in Figure 22 and the results of the ADALINE-based controller in Figure 

23 for the transient state analysis. From the simulation results, it can be concluded that the 

ADALINE-based controller has higher efficiency toward the elimination of total harmon-

ics distortions from the source currents. 

Figure 17. Results for the BP: (a) load current signal rich in harmonics, (b) the BP controller applied
to a source current, and (c) reactive power compensation.

Energies 2023, 16, x FOR PEER REVIEW 13 of 21 
 

 

 

Figure 17. Results for the BP: (a) load current signal rich in harmonics, (b) the BP controller applied 

to a source current, and (c) reactive power compensation. 

 

Figure 18. Results for the ADALINE: (a) load current signal rich in harmonics, (b) the ADALINE 

controller applied to a source current, and (c) reactive power compensation. 

5.4. Transient State Analysis for Ideal Source Voltage Condition 

The performance of the system under varying loads was observed and analyzed; the 

following results were obtained for a transient state condition at the moment when the 

loads were thrown into the system under a non-distorted source voltage condition. The 

source voltage is represented in Figure 19. In particular, the efficiency of the proposed 

ADALINE-based controller was superior to the SRFT controller presented in Figure 20 

and the ILST control strategy shown in Figure 21. Moreover, the performance of the sys-

tem was also compared with transient state condition results obtained from the backprop-

agation algorithm in Figure 22 and the results of the ADALINE-based controller in Figure 

23 for the transient state analysis. From the simulation results, it can be concluded that the 

ADALINE-based controller has higher efficiency toward the elimination of total harmon-

ics distortions from the source currents. 

Figure 18. Results for the ADALINE: (a) load current signal rich in harmonics, (b) the ADALINE
controller applied to a source current, and (c) reactive power compensation.



Energies 2023, 16, 323 14 of 22

5.4. Transient State Analysis for Ideal Source Voltage Condition

The performance of the system under varying loads was observed and analyzed; the
following results were obtained for a transient state condition at the moment when the
loads were thrown into the system under a non-distorted source voltage condition. The
source voltage is represented in Figure 19. In particular, the efficiency of the proposed
ADALINE-based controller was superior to the SRFT controller presented in Figure 20 and
the ILST control strategy shown in Figure 21. Moreover, the performance of the system was
also compared with transient state condition results obtained from the backpropagation
algorithm in Figure 22 and the results of the ADALINE-based controller in Figure 23 for
the transient state analysis. From the simulation results, it can be concluded that the
ADALINE-based controller has higher efficiency toward the elimination of total harmonics
distortions from the source currents.
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Figure 21. Results for the ILST: (a) load current signal rich in harmonics, (b) the ILST controller
applied to a source current, and (c) reactive power compensation.
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The simulated results are given in Figure 24 for the SRFT controller, Figure 25 for the
ILST controller, and Figure 26 for the BP method. The proposed methodology under the
considered situation showed superior performance, as presented in Figure 27.
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Figure 25. Results for the ILST: (a) load current signal rich in harmonics, (b) the ILST controller
applied to a source current, and (c) reactive power compensation.
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The system under non-linear loading conditions along with linear unbalanced loads
was simulated. The results of the application of the SRFT, ILST, and BP methods are shown
in Figures 28–30, respectively. The proposed methodology showed superior performance,
as presented in Figure 31.
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Figure 29. Results for the ILST: (a) load current signal rich in harmonics, (b) the ILST controller
applied to a source current, and (c) reactive power compensation.
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Figure 31. Results for the ADALINE: (a) load current signal rich in harmonics, (b) the ADALINE
controller applied to a source current, and (c) reactive power compensation.

Table 1 reports the performance of controllers for the PV-based DSTATCOM system.
For the evaluation of the controllers, THD was taken into account before the compensation
and after the compensation. It can be observed that the performance of the proposed
ADALINE-based controller was superior under various conditions of the load.

6. Conclusions

In this work, the control of a PV-tied improved hybrid DSTATCOM was studied. The
system and the different controllers adopted were implemented using a MATLAB and
SIMULINK tool. A new ADALINE control model is proposed and applied to the system
and a performance comparison was done with BP, ILST, and SRFT algorithms. In particular,
the SRFT algorithm did not perform well with distorted source voltage conditions due to
the presence of the phase-locked loop. In contrast, the ILST performed well under these
conditions, and the response time was also good, but the computational effort was high.
However, the performance under various dynamic conditions was not satisfactory.

The artificial-neural-network-based algorithms, such as the BP and ADALINE, re-
quired less computational effort and due to the frequent updating of weights and the
minimization of errors, such algorithms performed extremely well. In this work, the ef-
fectiveness of the proposed ADALINE-based controller was analyzed in comparison with
the other controllers for harmonic mitigation, reactive power removal, and load balancing
under various load conditions. From the performed simulation tests, it can be concluded
that the proposed controller outperformed the compared conventional controllers.

The considered topology of the PV-DSTATCOM and the controller played a major
role in the elimination of harmonics in the source currents. Therefore, in future research,
the development of a new topology for a PV-based grid connected system, as well as
other renewable energy sources, such as fuel cells and wind energy, can be considered. To
enhance the performance of the system, artificial-intelligence-based and Petri net-based [33]
controllers can be developed and implemented.
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Appendix A

SRFT: PI controller gains—Kp = 1, Ki = 5, and LPF cutoff frequency = 50 Hz.
ILST: bandwidth (α) = 100 rad/s, tuning frequency (β) = 314.14 Hz, PI controller

gains—Kp = 1, Ki = 5, and LPF cutoff frequency = 50 Hz.
BP: learning rate (µ) = 0.6, scaling factor for the in-phase component (k) = 0.4, scaling

factor for the quadrature component (r) = 0.2, LPF cutoff frequency = 50 Hz, PI controller
gains—Kp = 1 and Ki = 5. ADALINE: learning rate (µ) = 0.6, PI controller gains—Kp = 1
and Ki = 5.

Appendix B

PV array data: rated maximum power (Pmax) = 227.25 W, short-circuit current (Ipv) = 8.2 A,
open-circuit voltage (Voc) = 32.8 V, number of PV array in series = 10, diode ideality factor
= 1.0007, current at MPP (Imp) = 7.5 A, the voltage at MPP (Vmp) = 30.3 V, series and shunt
resistance (Rs, Rsh) = 0.12511Ω and 86.5718Ω, S.C current coefficient (Ki) in %/◦C = 0.07,
O.C voltage coefficient (Kp) in %/◦C = 0.35599, number of PV arrays in parallel = 5, and
cells per module = 54.
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