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Abstract: Electrical machines are prone to faults and failures and demand incessant monitoring
for their confined and reliable operations. A failure in electrical machines may cause unexpected
interruptions and require a timely inspection of abnormal conditions in rotating electric machines.
This article aims to summarize an up-to-date overview of all types of bearing faults diagnostic
techniques by subdividing them into different categories. Different fault detection and diagnosis
(FDD) techniques are discussed briefly for prognosis of numerous bearing faults that frequently occur
in rotating machines. Conventional approaches, statistical approaches, and artificial intelligence-
based architectures such as machine learning and deep learning are discussed summarily for the
diagnosis of bearing faults that frequently arise in revolving electrical machines. The most advanced
trends for diagnoses of frequent bearing faults based on intelligence and novel applications are
reviewed. Future research directions that are helpful to enhance the performance of conventional,
statistical, and artificial intelligence (machine learning, deep learning) and novel approaches are well
addressed and provide hints for future work.

Keywords: bearing fault diagnosis; condition monitoring; feature extraction; fault detection and
diagnoses; principal component analysis; neural networks; vibration signals; spectral analysis; genetic
algorithm; support vector machines; power spectral density

1. Introduction

Electrical machines are considered the backbone of the industry and play a major
role in industrial, commercial, and domestic applications. These electric machines have
to work under different circumstances such as extreme ambient temperature, frequently
varying load conditions, fluctuations in voltages and currents, high moisture, and overloads
causing faults and failures [1]. Bearing faults are considered the most frequent types and
are accountable for 30% to 40% of failures in rotating electric machines. Previous studies
suggest that 80% of failures in bearings occur due to a lack of proper lubrication [2]. Bearings
are subjected to rotation, which is mostly because of the mechanical stress endured during
rotational movement and bearing currents. The failures in the bearings mostly happen
due to poor installation, poor assembling, improper use, and improper maintenance. The
movement of current in the bearing depends upon shaft voltages and capacitive currents
caused by frequency and power supply control inverters. Another cause for the failures
of bearings is contamination, mostly caused by foreign substances from external sources
in the bearing lubricant. The foreign substances contain dirt (sand) and water entering
through the seal, causing the failures in bearings [3]. Electrical and mechanical failures in
machines have some unique features to diagnose them, and most techniques employing
motor current signature analysis (MCSA) are implemented [4]. Figure 1 shows the ball
bearing with broken cage, material fatigue and moisture-based corrosion.
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Figure 1. (a) Ball bearing structure. (b) Outer raceway fault. (c) Inner raceway fault.

Mostly, faults and failures occur in bearings due to microscopic sub-surfaces, metal
surfaces, and cyclic loading stress on the bearing. These variable and cyclic loads produce
separation in the bearing surfaces, which further leads to a sapling in the rolling element
of the bearings. These developments will increase noise and vibrations, which alter the
internal dimension of bearings. The parameters resembling noise, vibration, and tempera-
ture cause more saplings in the bearing and damage it entirely. Thermal stress comprises
50% of failures in bearings and also wipes out the lubricant and creates conditions unsafe
for consistent operations. Frequent failures in bearings are also due to flaking and pitting,
unusual wear patterns, saplings, rust, corrosion, creeping, and usually some other relatively
small combination of causes that are mostly correctable and predictable. Another reason for
bearing failure is fluting, which occurs when alternating current (AC) or direct current (DC)
passes through bearings during operation and harms the symmetry of the bearings due to
circulating currents [5]. When an unfixable failure is found in the bearings, it is necessary
to explore the causes of the defects to prevent future failures in these precise parts of the
machines. Figure 2 shows the major types of classifications established in rolling bearings
with their specific types.
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Traditionally, vibration analyses are mostly employed for the extraction of essential
features through sensors for diagnostics and can also be used for the generation of datasets,
which are further minimized by dimension reduction techniques such as principal com-
ponent analysis (PCA) and linear discriminant analysis (LDA) for accurate measurements
of distinctive values for the diagnosis of a defective bearing. To extract precise and useful
information from vibration signals, signal processing techniques are adopted that change
information from the time domain to the frequency domain through fast Fourier transform
(FFT). The timely inspection of these abnormal conditions on rotating machines is very
important for their secure and consistent operations. In the last few years, many researchers
are paying attention and preceding their research with the employment of advanced tech-
niques based on a hybrid algorithm to diagnose abnormal conditions in rotating machines.
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Many diagnostic techniques/algorithms are implemented to diagnose the bearing faults
and are addressed by a variety of available signals, which consist of thermal imaging [6],
vibration [7], acoustic noise [8], stator current spectrum [9], and many more. Figure 3 shows
the different percentage contributions of faults and failures in rolling bearings, the detail
can be studied in [10].
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Several types of diagnostic approaches are available for different types of faults that
occur on rotating machines, including conventional approaches, which mostly use vibration
signals to diagnose the faults, statistical approaches, model-based approaches, hard-ware-
based approaches, history-based approaches, and artificial intelligence-based approaches
(machine learning and deep learning). These approaches employ different signals that
follow patterns such as motor current signature analysis (MCSA), vibration signals, acoustic
signals, electromagnetic signals, voltage, and current signals to diagnose numerous types
of faults in rotating machines [10]. Currently, condition monitoring techniques are utilized
on a variety of equipment such as revolving machines and auxiliary equipment to prevent
serious issues that may result from their damage. Condition monitoring of electrical ma-
chines implements multiple types of sensors that are used to sense any abnormal condition
that happened during operation and collect useful information for long-term prediction.
In electrical motors, condition monitoring is implemented individually on different parts,
and measurements are taken by employing vibration-based techniques, signal processing
techniques, and temperature differences for their diagnostics. The importance of bearing
failure diagnosis in revolving electric machines is clear because it is estimated that half of
the failures that occur in revolving electrical machines are bearing faults [11]. A variety
of different faults investigated in the literature that influence the performance of rotating
electric machines is displayed in Figure 4.
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Figure 4. A variety of different faults occurring in rotating electrical machines.

There are three targets of failure analysis: detection, isolation, and identification.
Condition monitoring of revolving electric machines ensures the chances of taking the
minimum risk for operations and reduces the minimum effective cost of maintenance. In
online condition monitoring, the operating system will generate real-time data at critical
moments of the machine during running conditions. Periodic condition monitoring in-
vestigates monitoring during a fixed interval of time and reduces the chances of fault in
machines [12]. The classification of proposed approaches discussed briefly in this article is
shown in Figure 5.
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2. Conventional Techniques for Diagnosis of Bearing Faults

Fault diagnostic techniques such as conventional approaches are the typical method
for the detection and diagnosis of bearing faults by employing vibration, current, voltage,
stray flux, temperature, acoustic measurements, etc. These conventional approaches are
utilized to extract useful attributes from the vibration spectrum, waveforms, and signals
to accurately classify abnormal conditions. In [13,14], wavelet packet decomposition was
employed to observe the stator current and detect the abnormal conditions in the bearing
of IM. The WPT can analyze different bearing faults under varying load conditions and
detect the non-stationary nature of faults in diverse frequency modes. In [15], the authors
investigated the ball bearings’ faults by utilizing a modified winding-based model (MWFM)
with the coupled circuit model through variations in the air gap of IM. Stator current
spectrum analysis is employed to observe the amplitudes of faulty current signatures for
the diagnosis of bearing faults. Figure 6 shows the development of harmonics in stator
current due to bad bearing.
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conditions [15].

In [16], the authors proposed a strategy to diagnose the bearing and eccentricity fault in
permanent magnet synchronous machines (PMSM) by utilizing the motor current signature
analysis (MCSA) and stator current harmonics. The stator current spectrum is used as
a healthy indicator of the reference spectrum at different speed tests with the vibratory
indicator to diagnose bearing faults. Figure 7 shows the stator current harmonics spectrum
to diagnose bearing (redline) and eccentricity faults (blue-line) in electric machines.



Energies 2023, 16, 296 6 of 54Energies 2023, 16, x FOR PEER REVIEW  6  of  54 
 

 

 

Figure 7. Stator current spectrum to diagnose bearing faults (redline) and eccentricity faults (bluel‐

ine) in PMSM [16]. 

In [17], the authors proposed a technique to diagnose linear bearing faults in linear 

brushless AC machines by utilizing the frequency spectrum of vibration signals. In [18], 

the  authors  recommended  bearing  fault‐finding  of  PMSM  under  dynamic  conditions 

through discrete wavelet decomposition and finite element analysis (FEA). From stator 

current harmonics, DWT is utilized to extract a significant attribute from vibration signals 

for bearing fault diagnosis. In [19–22], the authors investigated the park’s vector approach 

to diagnosing bearing faults in IM through motor supply current and bearings ball pass 

frequencies (BPFs). Figure 8 points out the comparison of healthy bearings frequency with 

failure in the outer race of bearings by implementing the park’s vector approach via cur‐

rent signals. 

 

Figure 8. The impact of outer raceway fault on (a) phase a (b) phase b, (c) phase c, (d) overall phasor 

diagram, (e) bearing fault Park’s vector (BFPV) [19]. 

In [23], the authors suggested the procedure to identify inner raceway and outer race‐

way bearing defects of induction motors via spectral analysis. Discrete wavelets transform 

Figure 7. Stator current spectrum to diagnose bearing faults (redline) and eccentricity faults (blueline)
in PMSM [16].

In [17], the authors proposed a technique to diagnose linear bearing faults in linear
brushless AC machines by utilizing the frequency spectrum of vibration signals. In [18], the
authors recommended bearing fault-finding of PMSM under dynamic conditions through
discrete wavelet decomposition and finite element analysis (FEA). From stator current
harmonics, DWT is utilized to extract a significant attribute from vibration signals for
bearing fault diagnosis. In [19–22], the authors investigated the park’s vector approach
to diagnosing bearing faults in IM through motor supply current and bearings ball pass
frequencies (BPFs). Figure 8 points out the comparison of healthy bearings frequency
with failure in the outer race of bearings by implementing the park’s vector approach via
current signals.

Energies 2023, 16, x FOR PEER REVIEW 6 of 54 
 

 

 

Figure 7. Stator current spectrum to diagnose bearing faults (redline) and eccentricity faults (bluel-

ine) in PMSM [16]. 

In [17], the authors proposed a technique to diagnose linear bearing faults in linear 

brushless AC machines by utilizing the frequency spectrum of vibration signals. In [18], 

the authors recommended bearing fault-finding of PMSM under dynamic conditions 

through discrete wavelet decomposition and finite element analysis (FEA). From stator 

current harmonics, DWT is utilized to extract a significant attribute from vibration signals 

for bearing fault diagnosis. In [19–22], the authors investigated the park’s vector approach 

to diagnosing bearing faults in IM through motor supply current and bearings ball pass 

frequencies (BPFs). Figure 8 points out the comparison of healthy bearings frequency with 

failure in the outer race of bearings by implementing the park’s vector approach via cur-

rent signals. 

 

Figure 8. The impact of outer raceway fault on (a) phase a (b) phase b, (c) phase c, (d) overall phasor 

diagram, (e) bearing fault Park’s vector (BFPV) [19]. 

Figure 8. The impact of outer raceway fault on (a) phase a (b) phase b, (c) phase c, (d) overall phasor
diagram, (e) bearing fault Park’s vector (BFPV) [19].

In [23], the authors suggested the procedure to identify inner raceway and outer
raceway bearing defects of induction motors via spectral analysis. Discrete wavelets
transform (DWT) is used for extracting useful information from the faulty bearing of
induction motors and comparing characteristic frequencies of healthy and faulty indicators
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for fault investigation. In [24–26], the authors anticipated the noninvasive bearing faults
of IM by employing stray flux measurements and flux probes for the analysis of different
kinds of bearing faults. Figure 9 shows the spectrum of healthy bearings (black spectral
lines) and faulty bearings (red spectral lines) obtained by stray flux measurements and
power spectral density for bearing fault diagnosis.
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In [27,28],the authors suggested a methodology to evaluate the normal operating
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of the motor voltage. Figure 10 shows the results of bearing healthy conditions and outer
raceway defects obtained from applying the instantaneous frequency of motor voltage.
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In [29], the authors suggested the technique of identifying the generalized roughness
during abnormal conditions in bearings through spectral kurtosis energy utilizing vibration
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or current signals. In [30], the authors suggested a methodology to diagnose bearing
faults of variable-speed wind turbines through power spectral density (PSD) for extracting
features of faults from stator current measurements. Characteristic features, stator current,
and fault signatures of bearings are utilized for the diagnosis of wind turbine bearing faults.
Figure 11 shows the results of the bearing cage fault and outer race fault by implementing
threshold impulse values and power spectral density.
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Figure 11. Power spectral density (PSD) results for the diagnosis of bearing fault in the wind turbine
for (a) bearing cage fault and (b) outer race fault. Reproduced with permission of [30].

In [31], the authors proposed the prognostic methodology to diagnose the bearing
failures in electric railway traction motors by placing a high-frequency inductance coil near
the railway traction bearing to extract useful information for the classification of bearing
faults. In [32,33], the authors recommended bearing faults of variable-speed converter-
fed electrical machines by applying systematic approaches to investigate bearing wear
conditions and incipient bearing faults through mutual analysis of electrical current signals
and vibration signals. In [34], the authors suggested a technique to point out the ball bearing
failures by utilizing bearing-rated frequency and vibration indicators. The fundamental
frequency is compared with the frequency of the inner raceway and outer raceway of the
bearing to diagnose abnormal conditions. In [35], the authors investigated the detection
of bearing faults in PMSM by employing the instantaneous power factor and the torque
oscillations in damaged bearings. The diagnostic index was developed to validate healthy
and faulty bearings conditions at variable loads. Figure 12 shows the results of the fault
index for healthy and outer raceway bearings faults by employing instantaneous power
factor and the torque oscillations in PSPM.

In [28], the authors implemented angular contact for evaluating the bearing faults
by employing the envelope technique to identify inner race, outer race, and ball bearing
failures. In [36,37], the authors applied vibration analysis to remove the nonbearing fault
component (RNFC) filter to detect healthy, inner race, outer race, and double holes in the
outer race bearings. Frequency-domain features are compared with time-domain features
to analyze the abnormal conditions. Figure 13 shows the outcomes obtained by the RNFC
filter to detect healthy, inner race, outer race, and double holes in the outer race bearings.
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In [38], the authors suggested the wireless sensor-based network to observe the sit-
uation of bearings and to be able to explore the characteristics of vibration signals using
accelerometers. The measurements of accelerometers are compared with a piezoelectric
transducer, which is set as a reference signal to evaluate the results of the bearing faults.
In [39,40], the authors proposed to diagnose the bearing faults of a brushless direct current
motor (BLDC) at different speed variations through its phase current examination. Multiple
signal processing techniques were applied, such as zero-phase filtering, Hilbert transform,
and accurate rotating angle curves, to obtain frequency characteristics of the noisy current
signal for faulty bearings assessment. In [41], the authors proposed an application for the
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diagnosis of bearing gearbox faults in high-speed locomotives employing temperature
sensor signals. Axle box monitoring for bearing health is applied based on temperature
signals that are obtained through sensors from the wireless transmission. In [42], the
authors proposed a wavelet-based approach to find out the bearing faults in the rotating
electrical machines using vibration analysis via wavelet transform. Multiple techniques
such as temporal analysis, spectral analysis, envelope analysis, and wavelet transformation
are applied as fault diagnostic approaches.

In [43], the authors suggested an improved variational mode decomposition (IVMD)
to trace the incipient faults in rolling bearings using a combination of traditional varia-
tional mode decomposition and empirical mode decomposition (EMD). The intrinsic mode
function (IMF) set the evaluation index for the reconstruction of signals employing the
transient impulse monitoring index and Hilbert envelope analysis to evaluate bearing
failures. In [44], the authors proposed to diagnose the inner race and outer race faults
of roller bearings by IM, utilizing high-resolution spectral analysis of the stator current.
Fourier transform was implemented to visualize the stator current and observe the frequen-
cies of small magnitudes via high resolution. In [45], the authors suggested an approach
to finding out the inner raceway, outer raceway, and ball bearings failures through the
probabilistic model of fault vibrations obtained from accelerometers. Figure 14 shows the
results of receiver operating characteristic (ROC) curves for evaluating the performance
of the probabilistic model to diagnose ball bearing faults, inner race faults, and outer race
faults.
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In [46], the authors proposed the phase-locked loop-based approach to find out the
bearing faults of doubly fed induction generators (DFIG) used in windmills. Vibration
signals were obtained via a resampling technique based on the angle of the rotor position,
and experimental results were validated with simulation results. Figure 15 shows the
comparison results of the auto-power spectrum for the diagnosis of bearing faults in direct
wind turbines through the current demodulated signals.

In [47], the authors suggested an intelligent-based strategy for bearing fault diagnosis
in a brushless direct current motor (BLDC) and permanent magnet synchronous generators
(PMSG) employing synchro-squeezing wavelet transform (SWT) with touch-less order
tracking (TOT). SWT can extract instantaneous frequencies of fault signals and also re-
structure the harmonic components correctly to diagnose abnormal bearing conditions.
In [48], the authors recommended the diagnostic techniques for multiple kinds of bearing
failures (outer race, inner race, lack of lubrication, and healthy status) in IM by utilizing
noninvasive, contactless thermal infrared imaging. DWT was employed to extract data
in the form of two dimensional and converted it into thermal images for evaluation of
bearing faults in electric machines. In [49,50], authors proposed electrostatics-based sensors
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for the diagnosis of roller bearing fault performance degradation by implementing spec-
tral regression. The constructive attribute was extracted through the time and frequency
domain from normal operating conditions of bearings through the Gaussian model to
predict the remaining useful life (RUL) of the bearings. Figure 16 shows the results of the
electrostatic sensor for evaluating the degradation assessment depending on the fusion of
various attributes and shows the assessment of the bearing whole life with time.
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In [51], the authors proposed a scheme to diagnose corrosion failures in bearings
of a doubly fed induction generator in windmills based on a bi-spectrum modulation
signal. Outcomes obtained from the bi-spectrum are compared with fundamental fre-
quency and characteristic frequency to identify faulty harmonics in the current spectrum.
Figure 17 shows the stator current waveform in the time domain to classify healthy and
faulty bearings.
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In [52,53], the authors proposed conditional monitoring of journal bearings by imple-
menting motor current signature analysis (MCSA) of induction machines. The experimental
setup was created for low voltage rotating machines for evaluation of journal bearing faults
by comparing the observations of different designs. In [54], the authors suggested an
online fault diagnostic methodology for the evaluation of bearing failures in brushless DC
machines and brushed DC motors by employing a stochastic resonance-based adaptive
filter. The stochastic resonance-based adaptive filter was utilized to obtain the phase of
purified signal for the analysis of diverse bearing faults in rotating machines.

In [55], the authors proposed an embedded system for the diagnosis of bearing failures
in permanent magnet synchronous motors (PMSM) using tachometer-based fast and online
order analysis (FOOA) composed of two algorithms for obtaining useful information from
sinusoidal currents and calculating the envelope order spectrum for the classification of
bearing faults. In [56], the authors suggested the diagnosis of inner race creep bearing faults
of wind turbine generators by utilizing vibration and temperature analysis. Failures of
bearing creep were achieved by continuous monitoring through vibration speed harmonic
and absolute temperature values. Figure 18 shows the recognition of generator bearing
inner race creep by utilizing vibration and temperature investigation and their replacement
by showing slowly developing trends in the behavior of the bearing.

The authors of [57] suggested a strategy for the recognition of outer race-bearing faults
in IM by employing the homogeneity algorithm (HA). The homogeneity algorithms (HO)
can identify the changes in normal regime from vibration signals and alarm the presence
of bearing faults in IM efficiently. In [58], the authors proposed bearing fault diagnostic
indicators by employing MCSA based on normalized triple covariance for IM. In [59], the
authors paid attention to diagnosing the faulty bearings through the envelope harmonic
product spectrum and the adaptive second order cyclo-stationarity blind deconvolution
algorithm for the recognition of incipient bearing faults in locomotives. A comparison of
different conventional diagnostic techniques is presented in Table 1.
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Table 1. A summary of different conventional techniques for bearing fault diagnosis.

Technique/Assisting
Technique Pros Cons Bearing Fault

Type Applications References

Wavelet packet
transform

+
MCSA

Efficient technique for
extracting features to
diagnose abnormal

conditions

Higher computing
cost Ball bearings Induction motors [13,14]

Modified windings
approach

+
MCSA

Accurate for faulty
signals having

harmonics in their order

Need inductance
as a parameter Ball bearings Induction motors [15]

Stator current
harmonics

+
MCSA

Works well in noisy
environments to extract

features

Not applicable to
stationary signals Ball bearings

Permanent magnet
synchronous

machines
[16,52,54]

Finite element
analysis

+
Wavelet transform

Able to handle
incredibly complex

faults at the same time

High
computational cost

demands more
memory

Ball bearings
Permanent magnet

synchronous
machines

[17,18]

Park vector
approach

+
MCSA

Easy to implement for
recognizing multiclass
problems in machines

Difficult to
implement under

varying load
conditions

Ball bearings Three-phase
induction motors [19–22]
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Table 1. Cont.

Technique/Assisting
Technique Pros Cons Bearing Fault

Type Applications References

Discrete wavelet
transform

+
FFT

Able to analyze the
faulty signal in the time
and frequency domain

Poor directionality
and a lack of phase

information

Inner raceway and
outer raceway Induction motors [18]

Stray flux
measurements

+
Power spectral

density

For same flux
measurements, shows
greater values of faulty

signals

Less sensitive and
demands precise

calibration
Ball bearings Induction motors [24–26]

Instantaneous
frequency

+
Power spectral

density

Provide an
understanding of where
the useful information is
lying in the faulty area

Fluctuations in
measuring the
exact numeric
value of faulty

signals

Ball bearings and
roller bearings Induction motors [27,28,30]

Spectral kurtosis
energy

+
Vibration and
current signals

Fast approximation
ability for fault detection
and classification rates
in electrical machines

Demands prior
information and

hasa high
computational cost

Outer race, inner
race faults of ball

bearings

Induction
machines [29]

High-frequency
inductance coil

+
Vibration and
acceleration

signals

Ability to detect
abnormal conditions in
machines under high
voltages and current

circumstances

Hasa larger
decrement in the

detection of faulty
signals

Ball bearings Induction motors [31]

Main bearing
fundamental

frequency
+

Vibration signals

Provides excellent
localization of

transientvalues of
bearing faults

Unable to
reconstruct the

signal coefficients
Ball bearings Wind turbines [34]

Mutual
information on

current and
voltage

+
FFT

Measures the value in
multiple predictable

means and shows high
efficiency to isolate

bearing faults

Hasa greater risk
of manipulation of

data
Ball bearings Converter-fed

electrical machines [32,33]

Impact of load on
stator current

+
MCSA

Measures the value in
multiple predictable

means and shows high
efficiency to isolate

bearing faults

Has a greater risk
of manipulation
for faulty data

Cylindrical roller
bearings

Permanent magnet
synchronous

machines
[35]

Envelope analysis
+

Airborne noise
signals

Aggressive and has the
ability to work under

varying loads conditions

Distortion will
occur if the faulty

signal is
over-modulated

Angular contact
bearings Induction motors [28]

WPT/RNFC filter
+

Vibration signals

Has the ability to detect
bearing faults at early

stages

Demands incessant
data for fault

analysis
Roller bearings Induction motors [36,37,42]

Rational energy
harvester

+
Piezoelectric

sensors

Precise to detect the
fault under varying

loads conditions

Poor results for
noisy signals Roller bearings Washing machines [38]
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Table 1. Cont.

Technique/Assisting
Technique Pros Cons Bearing Fault

Type Applications References

Hilbert transform
+

Zero phase
filtering

Noninvasive, suitable
for constant load

conditions to classify
multiple faults

Does not provide
perfect information

on faulty signal

Variable speed
bearings BLDC motors [39,40]

Local outlier factor
algorithm

+
Abnormality index

model

Easy to implement,
ability to work in a strict

environment to detect
the fault

Limited
bandwidth for
faulty signals

Axle-box bearings High-speed trains [41]

Improved
variational mode

decomposition
+

EMD

Noninvasive, suitable to
classify multiple faults

at the same time

Affected by
environmental

changes
Ball bearings Rotating machines [43]

High-resolution
spectral analysis of

stator current
+

Phase modulation

Accurate and can
measure faults where
segregation is difficult

Expensive and has
a nonlinear

response

Inner race and
outer race faults

Induction
machines [44]

Probabilistic model
+

Vibration
disturbances

Has the ability to
decompose a signal into

multiresolution to
segregate bearing faults

Poor performance
for noisy signals Ball bearings Induction motors [45,56]

Adaptive
stochastic

resonance filter
+

Vibration signals

Aggressive and has the
ability to implement

under low slip
conditions

The complex
calculation for

nonperiodic faulty
signals

Wind turbines Brushed/brushless
DC motors [46,54]

Synchro-
squeezing wavelet

transform
+

Tacholess order
tracking

Offer simultaneous
localization of faulty

signals in the FT domain
to detect abnormal

conditions

Not applicable to
stationary signals

Inner race and
outer race

Ball
bearing

BLDC motors [47]

Thermal infrared
imaging

+
Discrete Wavelet

transform

Hasthe ability to
perform in low visibility

situations for accurate
detection of faults

Expensive and
hasa nonlinear

response

Outer race, inner
race faults of ball

bearings
Induction motors [48]

Spectral regression
+

Electrostatic
sensors

Cost-effective and
provides a wide range
for fault-complicated

environments

High cost and
affected by

environmental
conditions

Roller bearings Induction motors [49,50]

Modulation/bispectrum
analysis

+
Fundamental

frequency

Cost-effective and
provides a wide range
for fault-complicated

environments

High cost and
affected by

environmental
conditions

Roller bearings Wind turbines [51,55]

Homogeneity
algorithm

+
Vibration signals

The best algorithm for
comparative analysis of

the multiple faults
occurred in machines

Time-consuming
and expensive

Outer race ball
bearing Induction motors [57]
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Table 1. Cont.

Technique/Assisting
Technique Pros Cons Bearing Fault

Type Applications References

Normalized triple
covariance

+
MCSA

Proves as a valuable tool
for the selection of faulty
signals from the matrix

of random variables

The chances of
errors are very

high due to
complex values

Ball bearings Induction motors [58]

Envelope
harmonic product

+
CYCBD spectrum

The most common
technique for analysis of

faulty conditions in
bearings

Vibrations also
contribute to

unwanted parts of
the signals

Roller bearings Locomotive
bearing fault [59]

3. Statistical Techniques for Diagnosis of Bearing Faults

Statistical approaches are generally employed in research to collect and explore a
large amount of data and find out hidden trends. These techniques are implemented to
explore the trends, the relationship between variables, and approximation analysis by using
quantitative data. Statistical parameters commonly implement root mean square values,
mean values, variance, skewness, kurtosis, and crest factor attributes for measuring the
consequences of bearing faults. In [60], the authors proposed an approach to diagnosing
the outer race and inner race bearing faults of IM using statistical time features with
neural networks. Statistical time features for bearing failures were obtained from vibration
signals and compressed by using curvilinear component analysis for visualization behavior.
Feature-extracted signals were employed to identify a crack in the outer race, deformation
of the seal, and a hole in the outer race. Figure 19 shows the frequency plot for the
damaged bearing seal condition and hole in the outer race fault by implementing stray
flux measurements.
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Figure 19. (a) Applied probes for amplification and filtering (b) frequency plot for the damaged
bearing seal condition and (c) hole in outer race fault [60].

In [61], the authors implemented empirical mode decomposition (EMD) of acoustic
signals obtained through kurtosis and crest factors of the time domain for checking the
status of healthy and faulty roller bearings. In [62], the authors suggested a step-varying
vibrational resonance (SVVR) algorithm to investigate the faulty status of a bearing by
regulating the diverse parameters. Extraction features by SVVR were compared with simu-
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lated signals and practical signals, and results from SVVR depicted incredible precision in
extracting and enhancing the weak information status of bearing fault detection in the time
domain. In [63], the authors pointed out the bearing faults by employing the empirical cu-
mulative distribution function to explore hidden patterns collected from extracted features
through the signal-to-noise ratio (SNR). Extracted features were employed to diagnose the
statistical spectral images and classify the multiple bearing faults that frequently take place
in revolving electrical machines.

In [64], the authors proposed a methodology for bearing fault diagnosis under steady
and inconsistent speed operations. Absolute value principal component analysis (AVPCA)
was employed for plotting images of vibration signals through the time–frequency domain,
fast Fourier transform, and probability plot. By applying AVPCA, the identification of
bearing faults was made possible and could also be used to diagnose gearbox faults.
Figure 20 shows the result of the outer race, inner race, and ball bearing fault detection and
their classification by implementing the sum of square error (SSE) distance evaluation.
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In [65], the authors suggested a variety of research trends for the diagnosis of roller
bearing faults depending on the time-varying Kalman filter for accurate prediction of
the remaining useful life (RUL). The Kalman filter is employed on linear and quadratic
functions to forecast the RUL in roller bearings. Figure 21 shows the bearing test rig
diagram for the prediction of RUL in roller bearings.

In [66], the authors suggested the identification of incipient bearing faults in rotating
machinery through single value decomposition (SVD) and the squared envelope spectrum
(SES) by employing vibration signals. The optimal singular component (SC) was utilized
through the kurtosis of SES for information gain and to demonstrate the results of incipient
faults. Figure 22 shows the setup for detecting bearing faults and their related results using
the kurtosis variation for different stages.

In [67], the authors proposed a methodology to identify and distinguish the multiple
kinds of ball bearing failures extracted by empirical mode decomposition (EMD) of non-
stationary time series signals. The Case Western Reserve University (CWRU) dataset was
applied to check the validity of the work to diagnose multiple kinds of bearing failures at
different loading conditions. Figure 23 shows the results of ball bearing faults at 0% loading
conditions and 100% loading conditions by implementing Kullback–Leibler divergence
based on empirical mode decomposition (EMD).
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In [68], the authors proposed 1.5-dimensional symmetric difference analytical energy
operators to enhance the extracted features for bearing fault diagnosis. A statistical filtering
channel was employed to reduce the background noise and improve the signal-to-noise
ratio SNR for the faulty bearing’s characteristic frequency. Figure 24 shows the results for
the diagnosis of abnormal conditions in faulty bearings through different high-pass filters
and matches their effects with statistical filtering.
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Figure 24. (a) Time domain of three different statistical filtering algorithms using high pass filter
(HPF, green), Empirical mode decomposition (EMD, blue) and statistical filtering (SF, red). (b) Feature
extraction spectrum result for the diagnosis of bearing fault characteristic frequency. Reproduced
with permission of [68].

In [69],the authors suggested an approach for the investigation of roller bearing faults
detection and classification using radial internal clearance (RIC). Statistical condition indi-
cators, fast Fourier transform (FFT), and continuous wavelet transform (CWT) techniques
were utilized to evaluate the results. An experimental setup was created to validate the
RIC measurements to predict the lifetime of roller bearings accurately. In [70], the authors
proposed the bearing fault diagnosis of hybrid stepper motors by employing the revolv-
ing angle estimation of motor current. Variational nonlinear chirp mode decomposition
was applied for the extraction of features from the vibration signals spectrum order and
resembledthe rotating angle curve to diagnose bearing faults. In [71], the writers suggested
a hybrid approach utilizing the kurtosis spectrum and envelope spectrum analysis of
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the stator current for the prognosis of roller bearing faults detection and classification in
aerospace and industrial applications. An estimation index was set with different bearings
experiments performed under variable load conditions. Figure 25 shows the results of the
stator current spectrum with healthy and damaged bearings for different bearing faults
by employing a fast kurtogram and a wavelet kurtogram and enhancing the results of
envelope analysis for bearing fault diagnosis.
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Figure 25. Comparison of the stator current spectrum for (a) healthy bearing and (b) faulty bearing,
where significant change in the amplitude of certain harmonics is highlighted by circles [71].

In [72], the authors suggested a methodology that depends on the improved version
of singular value decomposition (SVD) for the selection of the kurtosis envelope and
optimized by an enhanced version of wavelet packet transform (WPT) for the diagnosis of
roller bearing faults detection and classification. An indicator-based filter was designed
to extract frequency characteristics from an envelope spectrum analysis for the bearing
fault diagnosis. In [73], the authors proposed the rectangular resampling methodology
for the diagnosis of bearing faults in electric motors under variable speeds using the
Kanade–Lucas–Tomasi (KLT) algorithm. Faulty indications were obtained through the
microphone and recorded by a high-speed camera in an angular domain-based angle curve
for obtaining characteristic frequency in brushless direct current motors (BLDC). Figure 26
shows the instantaneous rotating angle (IRA) and instantaneous rotating frequency (IRF)
for the diagnosis of the inner race and outer race bearing faults.

In [74], the authors suggested failures of roller bearings in inverter-fed revolving
machines during transient bearing current patterns and estimate the remaining useful
life (RUL). In [75], the authors proposed an efficient technique to find out the unknown
abnormal conditions of bearings employing time-varying speed characteristics and strong
background noise. Stochastic resonance was utilized on the input signal to evaluate the non-
stationary features of the faulty signal, and an imaginary index was set up to convert the
angular domain into a spectrum for bearing fault diagnosis. In [76], the authors proposed
a speed-based methodology to evaluate the main bearing fault of wind turbines (MBWT)
by implementing the signals of shaft speed under a steady-state load. Various kinds of
ball/roller bearing faults, such as outer-race faults were diagnosed through tower signals
and empirical mode decomposition. Figure 27 shows the geometry of the wind turbines
main bearing.
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Figure 27. Wind turbine main bearing (WTMB) geometry [76].

Figure 28 shows the results of the main wind turbine bearing fault by employing
absolute value principal component analysis (AVPCA) via the shaft speed signal under
constant loads. Ball-free fault (BFF), ball outer race fault (BOF), ball inner race fault
(BIF), and ball bearing fault (BBF) are evaluated by different input schemes to diagnose
bearing faults.

In [77], the authors proposed the identification of roller bearing faults by implementing
multivariable statistical process control methods (MSPC) such as higher-order cumulants
analysis (HCA), independent composite analysis (ICA), and principal component anal-
ysis (PCA). Two bearings’ life datasets were evaluated, and the outcomes provided the
suggested approaches and showed the paramount precision for the diagnosis of bearing
faults. Figure 29 shows the results of higher order cumulants analysis (HCA), independent
component analysis (ICA), and principal component analysis (PCA) through multivariate
statistical process control (MSPC) to diagnose the rolling elements bearing faults; the red
horizontal lines show dynamic control limits, and the black dashed lines demonstrate the
incipient bearing fault.
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In [78], the authors proposed a hybrid strategy to investigate wind turbine generator
bearing faults by employing sparse representation and shift-invariant dictionary learning
for the extraction of features in the frequency domain. In [79], the authors suggested linear
discriminant analysis (LDA) and principal component analysis (PCA) for the judgment of
ball bearing faults focused on global spectrum analysis. Envelope spectrums were applied
for the extraction of features from vibration signals and to obtain useful information from
bearing-specific characteristics and frequencies. Figure 30 shows the results of ball bearing
failures depending on the global pattern of vibration signals by utilizing PCA.
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Similarly, Figure 31 shows the results of a faulty ball bearing based on the global range
of vibration signals by utilizing LDA for the diagnosis of ball bearing faults.
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Figure 31. (a) Discrimination of bearing faults by LDA; (b) contour of PDF for estimated class of ball
bearing fault [79].

In [80], the authors suggested a statistical-based indicator for the diagnosis of bearing
faults in PSPM by employing the stator currents for the replacement of faulty bearings with
healthy bearings. Figure 32 shows the replacement of faulty bearings with healthy ones
utilizing a vibration indicator. N-change stands for when a bearing is replaced with a faulty
one, and N-default stands for when a vibration indicator starts to respond.
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Figure 32. Replacement of healthy bearings with faulty ones by using statistical indicators [80].

In [81], the authors proposed a prognostic approach to forecasting the remaining
useful life (RUL) of a bearing by utilizing the bidirectional strategy based on multiple
statistics of vibration signals. An enhanced Kalman filter was implemented as a maximiza-
tion algorithm to estimate the remaining useful life (RUL) of bearings. In [82], authors
proposed to estimate the remaining useful life (RUL) and identification of bearing faults
by introducing the time–frequency characteristics for extracting features from vibration
signals. Curve fitting and extended Kalman filtering approaches were employed for the
assessment of bearing RUL. Figure 33 shows the predicted results for the RUL of the bearing
by employing an extended Kalman filter with a curve-fitting approach.
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In [83], the authors proposed a signal processing strategy to recognize rolling bearing
failures in revolving electric machines by employing an adaptive morphological update
lifting wavelet (AMULW). In [84], the authors suggested diagnosing the bearing faults
by utilizing stator current noise cancellation and statistical control to suppress dominant
components and bearing fault frequencies. Sigma limits were applied to detect the variation
in the magnitude of noise cancellation stator current and statistical process control technique
for accurate diagnosis of bearing faults. In [85,86], the authors proposed a statistical
approach to find out the multiple kinds of abnormal conditions in roller bearings by
implementing vibration energy on the spectra Quest machinery fault simulator. Table 2
shows a comparative analysis of several statistical diagnostic techniques.

Table 2. A summary of different statistical techniques for bearing fault diagnosis.

Technique/Assisting
Technique Pros Cons Bearing Fault

Type Applications Reference

Curvilinear
component

analysis
+

Stray flux
measurements

Dominant to identify
bearing faults and not

affected by surrounding
noise

Not capable of
processing the data
based on complex

values

Ball bearings Induction motors [60]

Empirical mode
decomposition

+
Kurtosis and crest

factors

Ability to decompose a
faulty signal into
multiresolution

Limited to detect
IR and OR faults

Gears and roller
bearings Electric machines [61]

Step-varying
vibrational
resonance

+
Duffing oscillator

Noninvasive and can
segregate the faults

under low slip
conditions

Demand high
computational

efficiency
Ball bearings Induction motors [62]

Statistical spectral
analysis

+
ECDF

Influential results for
classification of bearing

faults

Calculation and
interruption are

difficult

Incipient ball
bearing faults AC machines [63]

Absolute value
principal

component
analysis

+
RSB-BFD

Reduce overfitting of
faulty signal and

improves visualization

Loss of useful
information about
the faulty signals

Ball bearings 200 HP induction
motors [64]

Box-Cox
transformation

+
Kalman filter

Noninvasive and can
segregate faults

Demand complex
processing

Estimate
remaining useful

life
Induction motors [65]

Single value
decomposition

+
Squared envelope

spectrum

Efficient and stable
algorithm removes noise

from faulty signals

Results have worse
quality and are

limited

Incipient bearing
faults of ball

bearings

Aerospace and
industrial

applications
[66,71]

Kullback–
Leiblerdivergence

(KLD)
+

Empirical mode
decomposition

Ability to decompose
nonlinear faulty signals

to isolate faults

Demand more
computational
power faulty

signals

Inner and outer
race ball bearing

faults
Induction motors [67]
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Table 2. Cont.

Technique/Assisting
Technique Pros Cons Bearing Fault

Type Applications Reference

Recurrence
quantification

analysis
+

Statistical filter

Aggressive, able to
diagnose faults under
steady load conditions

Sensitive for
complete

visualization of
faulty data in a

single view

Roller bearings Induction motors [68]

Statistical
condition
indicators

+
FFT, CWT

Ability to find out the
shortest way for the
segregation of faults

Complex to
implement and
demand large

memory

Roller bearings Induction motors [69]

Variational
nonlinear chirp

mode
decomposition

+
Order analysis

Noninvasive and
accurate under

steady-state conditions
to isolate abnormal

conditions

Poor visualization
of faulty bearing Ball bearings Hybrid stepper

motors [70]

Improved singular
value

decomposition
+

WPT

Noninvasive and has
high performance to

classify multiple faults

Lack of real-time
response Roller bearings Induction motors [72]

Contactless
angular

resampling
method

+
Order Analysis

Ability to perform
excellently under

varying load conditions
to detect the faults

Expensive, subject
to sensors failures Roller bearings Induction motors [73]

Redundant
second-generation

wavelet packet
transform

+
Extended Kalman

filter

Easy to calculate, high
signal-to-noise ratio

Haspoor
directionality

Estimation of RUL
in roller bearings Rotating machines [74,82]

Stochastic
resonance

+
Characteristics

frequency analysis

Adaptive to load
changes and noise

resilient

Very sensitive to
harmonics Ball bearings Induction motors [75]

AVPCA
+

Shaft speed
measurements

Adaptive and able to
predict accurately faulty

signal

Bad results due to
harmonics and

unwanted
vibrations

Main wind turbine
bearing

Inverter-fed
rotating machines [76]

Multivariable
statistical process

control
+

HCA, ICA, and
PCA

Simple to implement,
shows exceptional
results to segregate

faults

Interruption of
results is

impossible

Ball/roller
bearings Wind turbines [77]

Sparse
representation

+
Laplace transform

Able to remove
correlated features from

faulty signals
Information loss

Inner race and
outer race

ball/roller bearing
Wind turbines [78]
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Table 2. Cont.

Technique/Assisting
Technique Pros Cons Bearing Fault

Type Applications Reference

Statistical spectral
indicators

+
LDA, PCA, and

MCSA

The powerful
dimensions reduction

algorithm

Difficult for more
than two-class
classification

Ball/roller
bearings

Low rotational
speed machines [79,80,84]

Clustering and
change point

detection
algorithm (KPDA)

+
K-means clustering

Easily handles problems
for more than two faults

at the same time

Demands prior
domain to extract

faulty signals
features

Roller bearings Induction motors [81]

Adaptive
morphological
update lifting

wavelet
+

Linear
decomposition

Powerful technique and
coupling artificial

intelligence

Picks unwanted
faulty signals Roller bearings Induction motors [83]

Maximum kurtosis
denoising
algorithm

+
Minimum entropy

deconvolution

Self-adapted data
mining technique and
better visualization of

bearing faults

Unable to identify
failures in a noisy

environment
Roller bearings Induction motors [85,86]

4. Artificial Intelligence (AI) Techniques for Diagnosis of Bearing Faults

In the past few years, researchers are paying attention to artificial intelligence-based
approaches (ML and DL) for the diagnosis of bearings’ abnormal conditions in electric
machines. These techniques follow hidden patterns to diagnose bearing faults and offer
sufficient diagnostic results. In [87], the authors implemented artificial bee colony archi-
tecture to identify bearing faults in three-phase induction motors. Faulty data was taken
out by characteristics of the joint in the sequence between the stator current signals in
the time domain. In [88,89], the authors suggested the efficient net optimizer for bearing
fault classification and their degradation level. Acoustic signals were employed to gain
faulty knowledge from spectrograms in the time domain. In [90], the authors proposed a
technique, a defective signature wavelet image (DWSI), with deep convolution networks to
trace the bearing faults by utilizing acoustic emission signals.

In [91,92], the authors diagnosed multiple roller bearing faults by experimental tests
and obtained the images by spectrograms to train CNN for bearing fault diagnosis in an
IM. In [93], the authors suggested an influential ML algorithm support vector machine
(SVM) with adaptive cascade fault observer and fuzzy orthonormal regressive to diagnose
the bearing faults of rotary machines. In [94], authors proposed support vector machines
(SVM) and decision trees (DT) to sort out the bearing faults in electric machines. Attribute
withdrawal methodology was employed to extract features from bearings that were opti-
mized by employing particle swarm optimization to recognize bearing faults. In [95],the
authors proposed a recurrent neural network (RNN) to detect faulty bearings in a noisy
environment and create a dataset by adding random noise for training the RNN. Figure 34
shows the confusion matrix plot for the RNN-WDCNN on the CWRU dataset to evalu-
ate bearing faults. Diagonal elements in the confusion matrix are accurately classified,
and non-diagonal elements are unclassified (normal, ball bearing, inner race, outer race)
bearing faults.
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Figure 34. Confusion matrix plot for proposed algorithm RNN-WDCNN to diagnose ball bearing,
inner raceway, and outer raceway bearing faults [95].

In [96], the authors utilized a support vector machine (SVM), K-nearest neighbor
(KNN), and decision trees (DT) for the classification of incipient bearing faults by utilizing
the CWRU dataset. Features of the dataset were tuned by EMD-KLD for bearing fault
classification. Figure 35 shows the results of the direct acyclic graph support vector machine
(DAG-SVM), KNN, and DT for evaluating bearing faults.
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In [97], the authors recommended the diagnosis of bearing faults by employing discrete
wavelet transform (DWT) and the ensemble ML algorithm. Current signals were used to
extract features using discrete wavelet transform (DWT) for creating a dataset for training
the random forest (RF) and extreme gradient boosting for bearing fault classification.
Figure 36 shows the ROC curve for evaluating the classification performance of RF and
extreme gradient boosting for the diagnosis of bearing faults.
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In [98], the authors suggested deep belief network and the Dempster–Shafer theory for
the diagnosis of bearings in rotating AC machines. CWRU was put into practice to validate
the performance of the proposed algorithm. In [99], the authors proposed a feed-forward
neural network (FFNN) to identify the outer-race bearing faults for one HP induction motor
at its early stages. Linear discriminant analysis (LDA) was utilized for extracting features
to train the FFNN. Figure 37 shows the outcomes of projection regions for the classification
of multiple bearing faults by using an FFNN at different stages.
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In [100], authors suggested an approach to diagnose the roller bearing faults in electri-
cal machines utilizing ensemble local x-tics-scale decomposition (ELCD) and an extreme
learning machine (ELM). Figure 38 shows the results for the prediction of fault diagnosis in
rolling bearing elements by implementing ELCD and ELM.



Energies 2023, 16, 296 30 of 54

Energies 2023, 16, x FOR PEER REVIEW 29 of 54 
 

 

In [98], the authors suggested deep belief network and the Dempster–Shafer theory 
for the diagnosis of bearings in rotating AC machines. CWRU was put into practice to 
validate the performance of the proposed algorithm. In [99], the authors proposed a feed-
forward neural network (FFNN) to identify the outer-race bearing faults for one HP in-
duction motor at its early stages. Linear discriminant analysis (LDA) was utilized for ex-
tracting features to train the FFNN. Figure 37 shows the outcomes of projection regions 
for the classification of multiple bearing faults by using an FFNN at different stages. 

 
Figure 37. Projection of decisions region for multiple faults classification obtained by FFNN [99]. 

In [100], authors suggested an approach to diagnose the roller bearing faults in elec-
trical machines utilizing ensemble local x-tics-scale decomposition (ELCD) and an ex-
treme learning machine (ELM). Figure 38 shows the results for the prediction of fault di-
agnosis in rolling bearing elements by implementing ELCD and ELM. 

 
Figure 38.Test classification results for the diagnosis of rolling bearing element faults in rotating 
machines [100]. 
Figure 38. Test classification results for the diagnosis of rolling bearing element faults in rotating
machines [100].

In [101], the authors suggested an intelligent neuro-wavelet neural network in combi-
nation with variational mode decomposition (VMD) to diagnose bearing faults. Vibration
signals were employed to extract useful information and remove the redundant features to
construct a dataset for training the intelligent neuro-wavelet neural network and estimating
bearing faults. In [102], the authors suggested an improved shuffled frog leaping algorithm
(ISFLA) for incipient fault detection of roller bearings. Particle swarm optimization was
utilized to tune the parameters of ISFLA for the detection of roller bearing faults. In [103],
the authors proposed a stack sparse auto-encoder (SSAE) with a deep neural network
(DNN) for the diagnosis of bearing faults by employing envelope spectrum analysis. The
complex envelope spectrum had silent features to extract features of each fault type present
in bearing at variable speeds. In [104], the authors proposed the Wasserstein generative
adversarial network and convolutional neural network (WG-CNN) for the diagnosis of
roller bearing faults. A high-quality bearing fault dataset was produced, and outcomes
were compared with the CWRU dataset for evaluation. In [105], the authors suggested
an artificial neural network (ANN) with a multilayer perception artificial neural network
(MLP-ANN) for roller bearing fault diagnosis. In [106], the authors suggested an artificial
neural network incorporated with Laplace transform to diagnose the inner race, outer
race, and rolling element faults. Time domain vibration signals were further processed
with Laplace transform for extracting useful information from bearings. Figure 39 shows
the Laplace wavelet kurtosis for the diagnosis of multiple bearing faults from simulated
vibration signals.

In [107], the authors proposed discriminant feature distribution analysis for the diag-
nosis of IM bearing faults with a genetic algorithm (GA) filter to optimize the attributes and
train KNN to classify bearing faults. In [108], the authors suggested compressive sampling
(CS) on the numerous measurements vector (MMV) and feature ranking framework for
the categorization of roller bearing faults obtained through pulsation indication. Support
vector machines (SVM), artificial neural networks (ANN), and logistic regression (LR) were
employed to validate the outcomes. In [109], the authors proposed K-means clustering op-
timized by a genetic algorithm (GA). The genetic algorithm can overcome the drawbacks of
K-means clustering for extracting useful information to point out faulty bearings. Figure 40
shows the 3D plot of clustering results for testing data to diagnose bearing faults for the
healthy, inner race, outer race, and ball damage conditions.
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In [110], the authors proposed an FGPA-based online multi-core system to diag-
nose and monitor in real-time the bearing faults signature extraction by employing time–
frequency analysis of acoustic signals through multiclass support vector machines. In [111],
the authors suggested the convolutional neural network (CNN) and envelope spectrum
(ES) for the diagnosis of roller bearing faults utilizing acoustic emission analysis (AE) under
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variable speeds operations. The envelope spectrum was used to extract raw signals and
provide useful information about frequency peaks to create datasets and train the CNN
for the diagnosis of faults in roller bearings. In [112], the authors suggested the discrete
orthogonal Stock-well transform (DOST) with transfer learning to diagnose the healthy
condition, outer race, and inner race bearing faults through vibration imaging. Figure 41
shows vibration-based images obtained from the DOST to diagnose the healthy condition,
inner raceway, and outer raceway faults.
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Figure 41. Vibration-based images from discrete orthogonal Stock-well transform (DOST) for a
bearing’s healthy conditions (HC),inner race fault (IRF), and ball fault (BF) [112].

In [113], the authors diagnosed the abnormal conditions in bearing and gears by
utilizing feature sparse representation through slow feature analysis (SFA) and long short-
term memory (LSTM). Figure 42 shows the monitoring chart for the diagnosis of bearing
fault using sparse three-way data-based dynamic SFA (STBDSFA).
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In [114], the authors proposed a fuzzy sliding mode observer with decision trees (DT)
for the diagnosis of roller bearing faults in industrial applications. In [115], the authors pro-
posed a hybrid algorithm by employing empirical wavelet transform (EWT), fuzzy entropy,
and SVM (EWTFSFD) to diagnose bearing faults. The proposed algorithm, EWTFSFD,
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was utilized to decompose vibration signals into frequency and amplitude modulation to
achieve effective outcomes for bearing fault diagnosis. In [116], the authors proposed the
fault diagnosis of rolling element bearings by employing detrended fluctuation analysis
(DFA) and improved detrended fluctuation analysis (IDFA) incorporated with linear dis-
criminant analysis to trace out the bearing healthy state, inner race, outer race, and cage
fault in feature vectors. Figure 43 shows the testing results of DFA and IDFA for tracing the
multiple kinds of bearing faults.
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Figure 43. Testing results for multiple kinds of bearing faults by implementing (a) DFA and
(b) IDFA [116].

In [117], the authors recommended K-nearest neighbor (KNN) and random forest (RF)
and decision trees (DT) to classify the bearing faults of IM. The autocorrelation technique
was employed for the extraction of the informative attribute from bearings and generated a
dataset by using the accelerometer. Figure 44 shows the confusion matrix plot to diagnose
the healthy condition, inner raceway, and outer raceway faults of IM bearings through
KNN and RF.

In [118], the authors proposed the diagnosis of incipient roller bearing faults through
wavelet transform (WT) optimized by particle swarm optimization (PSO) from vibration
signals at diverse speeds. In [119], the authors proposed an artificial neural network (ANN)
and convolutional neural network (CNN) for the diagnosis of bearing faults in rotating
machines using thermal images. Six kinds of thermal images of the rolling element were
diagnosed (one healthy and five faulty). Figure 45 shows the results of thermal images to
diagnose bearing faults for a healthy state, outer race, inner race, ball defect, cage defect,
and lack of lubrication.

In [120], the authors proposed a sensor-driven technique to diagnose the bearing
faults using a convolutional neural network with s-transform (ST-CNN). To enhance the
performance of the proposed algorithm, data from the sensor were converted into a 2D
time–frequency matrix, and the coefficient matrix was fed to ST-CNN to diagnose the
bearing faults. Figure 46 shows the block diagram of ST-CNN for training and testing
procedures and also shows the confusion matrix plot for diagnosing IRF and ORF.
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In [121], the authors suggested a physics-based convolutional neural network (PCNN)
algorithm utilizing kurtosis and envelope analysis for rolling bearing fault diagnosis.
Figure 47, shows the results of rolling bearing faults detection and their localization through
PCNN and their comparison with SVM and ANN.
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In [122], the authors recommended Gramian angular field (GAF) integrated with
Dense-Net for feature extraction and convert them into 1D time series images to diagnose
the bearing faults. Figure 48 shows the patterns of GAF with Dense-Net for diagnosing
inner race and outer race faults bearing faults in electric machines.
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and (b) outer race bearing faults expressed by using [122].

In [123], the authors proposed a convolutional neural network through Fault-Net for
the classification of multiple types of bearing faults employing vibration signals. Mean
and median channels were applied to extract information acquire from raw signals to
create a dataset and train CNN for bearing fault diagnosis. In [124], the authors proposed
support vector machines for bearing fault diagnosis using radial basis function (RBF)
kernel in rotating machines. A hybrid feature pool was obtained through time-domain
features, envelope power spectrum, and wavelet energy optimized by the kernel function
for providing input to the SVM for bearing fault diagnosis. In [125], the authors suggested
the finite element method (FEM) to overcome the shortage of data that are a much-needed
part of the field of machine learning (ML) for diagnosis of bearing faults. Simulation-based
finite element methods were employed to enlarge the datasets and applied to ML classifiers
to sort out bearing faults. Figure 49 shows the simulation results of the inner race and
outer race bearing faults in comparison with experimental data and synthetic data for their
diagnosis.
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In [126,127], the authors proposed support vector machines (SVM) to diagnose the
bearing faults, employing complex signals in the rotating machines. Composite multiscale
weighted permutation entropy (CMWPE) was utilized to extract features and convert them
into the high dimensional feature set to input SVM for fault diagnosis. Figure 50 shows
the results of bearing faults using CMWPE incorporated with SVM to diagnose the normal
state (NOR), inner race fault (IRF), outer race fault (ORF), and ball bearing faults(BBF) in
rolling element bearings.
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Figure 50. CMWPE entropy curves to diagnose (a) normal, (b) inner raceway, (c) outer raceway,
(d) ball bearing faults, and (e) mean values for all states of fault faults. Reproduced with permission
of [126].

In [128], the authors proposed the characteristics of time-domain zero-crossing features
and defected frequencies obtained by vibration signals to classify bearing faults. The
defective frequencies are represented by spectral analysis, and classification is completed
by using FFNN for bearing fault diagnosis. Figure 51 shows the results of multiple bearing
failures by employing time domain zero-crossing with FFNN.
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In [129], the authors suggested the incorporation of a multivariable feedback extreme
learning machine (MFELM) with convolutional neural networks (CNN) for the diagnosis
of IM faulty bearings. The MFELM provided the ultimate decision about layers of neural
networks from vibration signals through sensors to generate datasets through a spectro-
gram. Figure 52 shows the results of roller bearing faults and the prediction of their useful
remaining life using MFELM and relative root mean square value (RRMS).
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Figure 52. (a) Short-term degradation results for bearing faults prediction. (b) Performance of the
proposed diagnostic methodology for forecasting of remaining useful life (RUL) [129].

In [130], the authors proposed incipient fault detection and health monitoring of
bearings through complementary ensemble empirical mode decomposition (CEEMD)
incorporated with kernel-based support vector machines. Figure 53 shows the results of
CEEMD incorporated with kernel-based SVM for estimating the lifetime bearings and their
degradation stages based on experimental data.
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In [131], the authors suggested support vector machines and decision trees for the
diagnosis of bearing faults in rotating machines through noncurrent defects obtained by
statistical features for dataset generation. In [132], the authors recommended data-driven
probabilistic E-support vector regression for estimating the remaining useful life of roller
bearings. Wavelet transform was utilized for extracting informative features from the time
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domain, frequency domain, and time scale domain through accelerometers. Figure 54
shows the actual and computed RUL for provided data.
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In [133], the writers proposed a deep neural network (DNN) for the diagnosis of
bearing faults. Vibration signals were employed for feature extraction to convert multi-
domain images and fed to the DNN for the classification of bearing faults. In [134], the
authors proposed health monitoring of ball bearings using Hilbert–Huang, support vector
machines SVM, and support vector regression SVR. Hilbert–Huang was implemented to
haul out attributes from stationary vibration signals. SVM and SVR were utilized to classify
and estimate the RUL of bearings, respectively.

In [135], the authors suggested the sparse representation theory incorporated with
kernel functions of support vector machines (SVM) for the diagnosis of bearing faults. Root
mean square error (RMSE) and mean square correlation coefficient (MSCC)were utilized for
feature extraction optimized by PSO to obtain significant information for training purposes.
In [136], the authors recommended a Bayes classifier for the classification of bearing faults
in PMSM employing linear discriminant analysis (LDA) of the stator currents. In [137],
the authors suggested a stacked pruning sparse denoising auto encoder (sPSDAE) for
evaluating the rolling bearing faults. The auto encoder was used for extracting features
from subsequent layers to feed sPSDAE for learning. In [138], the authors proposed the
classification of bearing faults by implementing support vector machines (SVM), which
uses bi-spectrum analysis to extract features for generating datasets. Bi-spectrum analyses
were further subjected by PCA to reduce dimensions and input to SVM for classification of
bearing faults as shown in Figure 55.

In [139], the authors investigated the methodology for evaluating the bearing fault
diagnosis of metallic, ceramic, and hybrid bearings based on an adaptive stacked auto en-
coder. In [140], the authors suggested a complete ensemble empirical mode decomposition
with adaptive noise (CEEMDAN) with piecewise aggregate approximation (PAA) for the
decomposition of long signals to enhance the demodulation and filtering for the diagnosis
of the bearing’s abnormal conditions accurately. In [141], the authors suggested continuous
wavelet transform CWT and convolutional neural networks to predict the bearing fault size
diagnosis based on deep transfer learning algorithms (DTL) and time–frequency images.
Vibrations signals were employed to obtain useful information to create datasets using
continuous wavelet transform (CWT) and scalogram images. Figure 56 shows the confusion
matrix plot by employing the proposed methodology for the true class and predicted class.
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Figure 56. Confusion matrix plots and their accuracies for prediction of bearing fault size using a
convolutional neural network with continuous wavelet transform [141].

In [142], the authors proposed multichannel and multilevel one-dimensional convolu-
tional neural networks (1D-CNN) for the detection of enhanced bearing faults in electric
motors by employing vibration signals obtained through accelerometers. In [143], the
authors suggested support vector machines (SVM) and fiber Bragg grating (FBG) to detect
bearing failures in three-phase induction motors. Outer race faults were diagnosed in the
proposed work at 47 different frequencies, and principal component analysis (PCA) was
employed as a feature reduction technique for the dimension reduction of the dataset for
gaining excellent results. Figure 57 shows the power spectral density (PSD) results for
the recognition of healthy bearings and outer raceway abnormal conditions at different
loading conditions.



Energies 2023, 16, 296 41 of 54

Energies 2023, 16, x FOR PEER REVIEW 41 of 54 
 

 

 
Figure 56. Confusion matrix plots and their accuracies for prediction of bearing fault size using a 
convolutional neural network with continuous wavelet transform [141].  

In [142], the authors proposed multichannel and multilevel one-dimensional convo-
lutional neural networks (1D-CNN) for the detection of enhanced bearing faults in electric 
motors by employing vibration signals obtained through accelerometers. In [143], the au-
thors suggested support vector machines (SVM) and fiber Bragg grating (FBG) to detect 
bearing failures in three-phase induction motors. Outer race faults were diagnosed in the 
proposed work at 47 different frequencies, and principal component analysis (PCA) was 
employed as a feature reduction technique for the dimension reduction of the dataset for 
gaining excellent results. Figure 57 shows the power spectral density (PSD) results for the 
recognition of healthy bearings and outer raceway abnormal conditions at different load-
ing conditions. 

 

Figure 57. Power spectral density PSD of dynamic strain signal for (a) healthy bearings and (b) outer
raceway faults. Reproduced with permission of [143].

In [144], the authors investigated abnormal conditions of ball bearings by employing
maximal overlap discrete wavelet transform (MODWT) and image edge detection for
grid-fed three-phase induction machines. In [145], the authors recommended the method-
ology to diagnose bearing faults in electric machines by employing a convolutional neural
network with wireless sensor network data fusion. In [146], the authors suggested the
progressive detection of bearing faults in three-phase induction motors by employing
the matrix pencil method and MUSIC algorithm via pre-fault frequency cancellation. A
very comprehensive review article on sound and acoustic emission-based fault diagnostic
techniques is presented in [147]. Some AI based fault detection techniques are summarized
in Table 3.

Table 3. A summary of different artificial intelligence techniques for bearing fault diagnosis.

Technique/Assisting
Technique Pros Cons Bearing Fault

Type Applications References

Artificial bee
colony

+
Decision trees

Intelligent and
self-organizing
algorithm for

segregation of bearing
faults

Local search ability
is poor for

collecting results
Ball bearings Induction motors [87]

Efficient-Net, CNN
+

CWT

Noise-resilient and does
not demand labeled data
for faults classification

Network structure
is complex and

requires pre
training

Ball bearings Induction motors [88,89]

Defective signature
wavelet image

+
DCNN

Inexpensive,
to find the shortest path

to diagnose bearing
faults

Demands large
amounts of data Ball bearings Induction motors [90]

Convolutional
neural network

+
Transfer learning

Ability to detect
significant features

without supervision

Demands very
large database Roller bearings Induction motors [91,92]
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Table 3. Cont.

Technique/Assisting
Technique Pros Cons Bearing Fault

Type Applications References

Adaptive cascade
observer

+
Fuzzy orthonormal

regressive

Easily handle complex
tasks in noisy
environment

Training rate is
very slow Roller bearings Induction motors [93]

Support vector
machines

+
Particle swarm
optimization

Best classifier as
compared to other

algorithms and fast to
train

The kernel
selection process is

difficult
Ball bearings Rotating machines [94]

Recurrent neural
network

+
WD-CNN

Capable of memorizing
sequential events and
receiving input from

multiple variables

Demands high
processing time

and overfitting to
problems

Roller bearings Induction motors [95]

EMD-KLD
+

SVM, KNN, DT

Excellent classification
algorithms

Difficult to
understand Roller bearings Induction motors [96]

Ensemble RF,
XG-Boost

+
DWT

Excellent predictive
capability

Hard to tune the
parameters

Roller/ball
bearings Induction motors [97]

Deep belief
network

+
Dumpster Shafer

theory

Has excellent learning
strategy and greedy for

complex problems

Does not provide
accurate results

among dependable
variables

Ball bearings Rotating machines [98,133]

Feed-forward
neural network

+
Linear

discriminant
analysis

Computationally
powerful algorithms
demand less training

time

High
computational cost
and robust to noise

Outer raceway
faults

Small HP
induction motors [99]

Ensemble local
x-tics

decomposition
+

SVM

Easy to implement and
deal with noisy faulty

data

Demands large
searching time Ball bearings Rotating machines [100]

Neuro wavelet
approach

+
Variational mode

decomposition

Demands low
computational power

and less memory

Sensitive and
frequent learning

issues

Outer raceway
faults

Small HP
induction motors [101]

Improved shuffled
frog leaping
algorithm

+
Back propagation
neural network

High-speed convergence
rate and ability to

predict accurate fault
size

Demand
pre-training phase
for accurate results

Roller bearings Rotating machines [102]
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Table 3. Cont.

Technique/Assisting
Technique Pros Cons Bearing Fault

Type Applications References

Stack pruning
sparse auto

encoder
+

Deep neural
network

Powerful hybrid
algorithm and can learn

independently

Time-consuming
and has a complex

structure
Roller bearings Induction motors [103,138]

Wasserstein
generative
adversarial

network
+

CNN

Approximation model
and implemented where

loss function exists in
training

Hard to
implement, and
training time is
very unstable

Roller bearings Induction motors [104]

Artificial neural
network

+
Deep neural

network

Requires few neurons to
establish excellent

capability

Time-consuming
and has a complex

structure
Roller bearings Induction motors [105]

Artificial neural
network

+
Laplace wavelet

transform

Approximation model
and implemented where

loss function exists in
training

Hard to
implement, and
training time is
very unstable

Roller bearings Induction motors [106]

Discriminant
feature

distribution
analysis

+
GA, KNN

No need for linearly
separable classes

Sensitive to noisy
faulty data Roller bearings Induction motors [107,117]

Multiple
measurement
vector (MMV)

+
Compressing

sampling

Exhibits less error and is
susceptible to overfitting

Demands mutually
exclusive classes Ball bearings Induction motors [108]

K-means clustering
+

GA

Suitable to implement
on any size of the

dataset

Poor results for
small datasets and

overfitting
Ball bearings Rotating machines [109]

FPGA, SVM
+

Acoustic emission

Has the ability to solve
complex problems by
implementing kernel

functions

Its fault detection
and classification
accuracy depend
on the value of k

Roller bearings Induction motors [110]

CNN
+

envelope spectrum

Provides sparse
representation and

extracts only relevant
features from the dataset

Training time is
slow and lack of

transparency in the
results

Roller bearings Induction motors [111]

Stock-well
transform

+
Transfer learning

Demands less training
time and the ability to
handle nonlinear data

A large number of
samples are
needed for
excellent

performance

Inner and outer
race faults Induction motors [112]

STBDSFA
+

LSTM

Simple, easy to
implement, and training

time is less

Demand high
storage Roller bearings Low-speed

machines [113]
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Table 3. Cont.

Technique/Assisting
Technique Pros Cons Bearing Fault

Type Applications References

Fuzzy sliding
mode observer

+
Decision trees

Easily deals with noisy
data for accurate results Overfitting Roller bearings Rotating machines [114]

Integrated
empirical wavelet

transform
+

SVM

Fast, accurate, and
requires less memory;
also, its interference

speed is high

High
computational cost

and requires a
high-memory

system

Ball bearings Induction motors [115]

Improved
detrended
fluctuation

analysis
+

SVM

Easy to understand and
works accurately for

classification problems

Lazy algorithm
and consumes too

much time for
training

Ball bearings Induction motors [116]

Self-adaptive
wavelet transform

+
PSO

Deals with the complex
relationships between

nonlinear functions

High
computational cost Roller bearings Rotating machines [118]

Convolutional
neural network

+
Thermal Images

Accurate predictive
models for nonlinear

and complex problems

Demands a lot of
power and is very
slow due to many

layers

Ball bearings Induction motors [119]

Convolutional
neural network

+
S-transform

Extremely accurate and
much faster than other

algorithms

Demands more
data for precise

results
Ball bearings Rotating machines [120]

Physics-based
neural network

+
Kurtosis and

envelope analysis

Fast approximation
capability

Needs large
memory Ball bearings Rotating machines [121]

Gramian angular
filed (GAF)

+
Dense-Net

Powerful algorithms
and better feature

extraction capability

Limited to the
number of inputs Ball bearings Induction motors [122]

Convolutional
neural network

+
Fault-Net

Excellent algorithm for
nonlinear relationships

Difficult to
understand Ball bearings Induction motors [123]

Hierarchical radial
basis function

+
SVM

Powerful and can
handle very complex

problems

Results are not
transparent due to

overfitting
Ball bearings Rotating machines [124]

Generative
adversarial

network
+

Finite element
analysis

Ability to handle
categorical features and

faulty datasets

The possibility of
error is high due to

large datasets
Roller bearings Induction motors [125]
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Table 3. Cont.

Technique/Assisting
Technique Pros Cons Bearing Fault

Type Applications References

Modified
multiscale
weighted

permutation
entropy

+
SVM

Excellent algorithm for
nonlinear relationships

Difficult to
understand the

discrete faulty data
Ball bearings Induction motors [126,127]

Feed-forward
neural network

+
Time domain
zero-crossing

Handles complex
problems; also handles

overfitting problems

Multiclass
problems are not

addressed
properly

Ball bearings Induction motors [128]

Multivariate
feedback extreme

learning
+

RRMS

Convolutional filters to
transform 2D data into

3D for high performance

The computational
training cost is

expensive
Ball bearings 6-pole induction

motors [129]

CEEMD
+

SVM

Capable of receiving
high accuracy

Demands labeled
data Roller bearings Induction motors [130,141]

One vs. all
+

SVM, DT

Powerful architectures,
easy to implement, and

hard to overfit

Training time is
slow due to a large
number of datasets

Ball bearings Rotating machines [131]

Reliability density
function

+
SVR

Best classification results
and good for

high-dimensional data,
less risk of overfitting

High memory
requirements

RUL of roller
bearings PMSM [132]

Hilbert–Huang
transform

+
SVM, SVR

Ability to solve
multiclass problems for

both continuous and
discrete data

Kernel selection is
difficult Ball bearings PMSM [134]

SVM, DT, KNN,
and RF

+
PSO

Simple to implement
and excellent for

multi-objective functions

Low convergence
rate Roller bearings Rotating machines [135]

Mean square
correlation

coefficient (MSCC)
+

PSO

Predict complex and
nonlinear combinations

of inputs

Demands labeled
data for high

accuracy
Ball bearings Rotating machines [136]

Naive Bayes
classifier

+
LDA

Feature selection
methodology used to

select features by mutual
information

Nonlinear data
decreases the

performance of the
model

Roller bearings Induction motors [137]

Bi-spectrum
analysis

+
SVM

Able to deal with
complex and nonlinear

problems

Overfitting and
training time are

high

Metallic, ceramic,
and hybrid

bearings
Rotating machines [139]

Adaptive stacked
encoder

+
Softmax layer

A noise-assisted
methodology

implemented for roller
bearing fault diagnosis

Computational
cost is very high Rolling bearings Induction motors [140]
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Table 3. Cont.

Technique/Assisting
Technique Pros Cons Bearing Fault

Type Applications References

Convolutional
neural network

+
Continuous

wavelet transform

Provides high accuracy
rate for detecting
bearings features

Demands very
large datasets for

training
Rolling bearing Servo motors [141]

Multilevel
1D-CNN

+
Vibration signals

Able to detect important
attributes without

supervision

Slower due to
max-pooling of

data
Rolling bearings Electric motors [142]

Support vector
machines

+
Fiber Bragg grating

High accuracy in the
detection of faults due to

margin separation

Highly dependent
on the size of the

dataset
Ball bearings Three-phase

induction motors [143]

Maximal overlap
discrete wavelet

transform
+

Image edge
detection

Powerful algorithm to
represent faulty bearing

signals in redundant
forms

Demands high
computational

power
Ball bearings Three-phase

induction motors [144]

Convolutional
neural network

+
Fusion wireless

sensor

Demands fewer number
of parameters than other

DL algorithms

Computationally
expensive Rolling bearings Induction motors [145]

MUSIC algorithm
+

Pre-fault frequency

Has the ability to
provide extra

information about faulty
signals

Does not provide
exact information
for the localization
of faulty elements

Ball bearings
Three-phase

induction
machines

[146]

5. Recommendations and Suggestions

The successful implementation of different approaches to implementing conventional,
statistical, and artificial intelligence-based approaches demands physically powerful cor-
relations between different variables and makes a strong feature extraction capability for
excellent results. For researchers and engineers, to implement conventional, statistical,
and artificial intelligence-based approaches for bearing fault identification, we have the
following suggestions.

• Make a proper environmental setup to examine the working conditions of all possible
working combinations; for example, select the fixed operating point for varying loads
at different speeds.

• For high-speed applications, in which chances of faults are complicated by external
sources such as in the case of electrical motors fed by external sources, such as variable
frequency devices (VFD), deep learning algorithms are proposed for accurate results.

• Sensors that are very helpful for recording the abnormal conditions produced in
symmetry due to certain conditions are mounted close to the bearings for accurate
results, and for machine learning/deep learning-based approaches, multiple sensors
are required for processing of high-level data.

• The dataset which is used to implement machine learning/deep learning models must
have used labeled data for high-level accuracy because unlabeled data in the dataset
provides unsatisfactory results.
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5.1. Gaps and Thoughts for Future Investigation

Although major developments are made in the field of fault detection and diagnosis
of multiple issues found in rotating electrical machines, various types of issues are still
unsolved. The following issues discussed below need the concentration of researchers and
engineers to tackle them:

5.2. Current Challenges

• In the case of distributed faults in bearings, roughness and waviness forms of bearing
faults have a huge untold impact on the frequency spectrum. For that reason, fault
characteristics and frequency components are not addressed properly.

• For generating datasets, the majority of the work is performed in laboratories to train
machine learning and deep learning models, so there is a need to make arrangements
to record the real data for making datasets.

• The collection of data from different sources makes it easier to generate datasets, but
accurate and excellent results demand labeled data, and that is why machine learning
and deep learning models are not able to give high-accuracy results.

• The data imbalance is mostly due to data collected when bearings are in healthy
condition, and limited samples are collected during faulty conditions, producing an
imbalance of data in datasets, which also affects the performance of models.

• Usually, vibration signals are used to accumulate information through imposing
accelerometers in laboratories, but real series of data nearly have lots of noise in their
measurements. This is an open query for researchers: is it feasible to generate datasets
from practical work without noisy measurements?

5.3. Future Work Directions

• To implement transfer learning as a promising approach instead of vibration signals,
which have an excellent ability to transfer knowledge, and learn from past experiences
to identify unexpected faulty conditions in real-world applications.

• Distinctive transfer learning-to-know strategies include domain randomization and
area adaptation, which can successfully increase the range of the source domain
(present datasets) and facilitate quicker studying and higher overall performance in
the goal area (real-world applications).

• The datasets, which have limited labeled data points and are imbalanced, are proposed
to implement semi-supervised learning to make possible the full utilization of data
points for excellent results.

• The data augmentation approach is employed to solve the unbalancing in the dataset
and is also used to identify the fake data points in the dataset, which badly affect the
performance of artificial intelligence techniques.

• To introduce a few short learning techniques in combination with transfer learning,
which addresses the data unbalance and scarcity in datasets and is very helpful for
generating datasets from practical, real-world applications?

• The data points in datasets that have noise and are measured by vibration signals are
suggested to use other types of sensors such as acoustic emission sensors and imple-
ment sensor fusion techniques to improve the strength of data points in the dataset.

6. Conclusions

This paper comprehensively reviewed state-of-the-art existing prose by employing
conventional, statistical, and artificial intelligence (machine learning and deep learning)-
based approaches for the diagnosis of all major types of bearing faults in electrical ma-
chines. From the previous literature, different fault detection and diagnosis (FDD)-based
approaches (conventional, statistical, and artificial intelligence) were discussed, namely,
vibration measurements, acoustic emission, temperature analysis, thermal imaging, spec-
tral analysis, wavelet techniques, signal processing, and other mentioned techniques used
for searching for bearing faults in rotating machines. Bearing fault diagnosis approaches
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were discussed by defining their merits, demerits, applications, and specific type of ab-
normal conditions that occurred on the bearings. Conventional techniques highlighted
the previous literature-based methodologies to trace the abnormal conditions in bearings
and also reviewed the advancements in research with hybrid mechanisms. Current and
vibration analysis were most commonly employed with other techniques to characterize
faults due to their robust and noninvasive nature. Conventional techniques also pointed
out the time-varying conditions on variable speed drives and large locomotives’ linear
bearing faults using high-frequency analysis. Mostly statistical approaches were used
in the extraction of useful information and featured reduction analysis such as principal
component analysis (PCA) and linear discriminant analysis (LDA) and were the important
statistical parameters employed. Statistical approaches (skewness, kurtosis, root mean
square values, stochastic resonance analysis, empirical mode decomposition, curvilinear
component analysis) implemented data analysis and descriptive analysis-based approaches
to diagnose all types of bearing faults in different applications. Statistical approaches
mainly employed feature reduction techniques to optimize the parameters for excellent
results in diagnosing the bearing faults. All the statistical techniques were discussed in the
form of a table with their specific applications, merits and demerits, and bearing fault types
taking place on bearings. Artificial intelligence-based approaches such as machine learning
and deep learning demand large numbers of data points for training, and these algorithms
have the capability to extract attributes for excellent results. Artificial intelligence-based
approaches (machine learning and deep learning) were mostly discussed with all types
of algorithms (support vector machines, K-nearest neighbors, random forest, fuzzy logic,
neural networks, deep belief network, artificial bee colony) with different optimization
and feature reduction techniques for the diagnosis of bearing faults in electrical machines.
Machine learning and deep learning algorithms employed the Case Western Reserve Uni-
versity (CWRU) dataset to validate their performance for the diagnosis of bearing faults.
Feature reduction techniques such as principal component analysis (PCA) and linear dis-
criminant analysis (LDA) were employed in the datasets, and trained algorithms provided
more efficient results for bearing fault diagnosis. Similarly, artificial intelligence-based
approaches (machine learning and deep learning) were summarily discussed in the form
of a table to discuss their merits and demerits, bearing fault type, applications, and their
relevant references to search out the related articles. In the end, some recommendations
and suggestions about current challenges and future directions were addressed briefly.
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