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Abstract: The adoption of smart grids is becoming a common reality worldwide. This new reality is
starting to impact energy customers as they face a dynamic grid in which they can actively participate.
However, if energy customers are not prepared to participate actively, they can have their energy
costs increased. This paper provides a review of acceptance models and customer surveys around
the world made to assess the customers’ perception and willingness to participate in smart grids.
Contributing to this assessment, this paper presents a survey undertaken in Portugal. The survey
results demonstrate a willingness, from the customer’s end, to actively participate in smart grid
initiatives. It was found that 92.9% of participants are willing to plan their energy usage to face hourly
energy prices and that 95.0% of participants are willing to accept an external control of at least one
appliance, enabling direct load control demand response programs. Also, the results identified two
cognitive tendencies, negativity bias, and loss aversion, which can impact how customers participate
in smart grids. These cognitive tendencies and the literature acceptance models demonstrate the
importance of conducting social science studies targeting smart grids to fully achieve the efficient
participation of end customers.

Keywords: acceptance of smart grids; demand-side management; demand response; energy customer
survey; loss aversion; negativity bias; transactive energy

1. Introduction

The power grid as we know it has been changing in the last years. These changes will
impact energy customers and require them to actively participate in the smart grid [1,2].
Energy customer participation can be achieved using different mechanisms to promote
the balance between production and consumption, the reduction of grid overloads, or the
assurance of grid stability [3]. Implementing smart grids will result in a more reliable and
community-friendly system, allowing, for example, the democratization of energy [4].

The development of smart grids resulted from technological developments, mainly in
hardware, which allowed (near-)real-time communication, monitoring, and control over
the electricity grid and its components. The development of technological enablers of
smart grids has been studied since the proposal of smart grids [5]. These developments
allow the implementation of smart grids and energy management models to increase the
sustainability, efficiency, and stability of smart grids.

One of the critical aspects of these new smart grids is the involvement of the energy cus-
tomers, making use of each user’s energy management to ensure the stability and efficiency
of the system as a whole [6]. Therefore, assessing the energy customer’s willingness to
participate in smart grids actively is essential. In the literature, there are some participation
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strategies based on demand-side management [7], transactive energy [8], and demand re-
sponse [9]. In [10], a demand-side management model for smart homes is proposed using a
bat algorithm with exponential inertia weight. Also, for smart buildings, in [11], a demand-
side management solution is proposed based on internet-of-things devices able to provide
load optimization using a task-management-based predictive optimization mechanism.

Regarding the participation of customers, the work proposed in [12] applies a transac-
tive energy model for multi-vector energy hubs considering the renewable energy resources’
unpredictability to promote energy balance. In [13], the real-time transactive energy model
proposed considers the household’s preferences. In [14], it is demonstrated how aggre-
gators can solve the flexibility aggregation issue to enable the balance of the grid using a
mixed integer linear programming model considering load curves. To address the privacy
issues related to the sharing of energy data, in [15], a privacy-preserving data aggregation
algorithm is proposed to reduce communication overhead.

Although several active participation strategies are proposed in the literature, they
focus their innovation and novelty on grid stability without considering the customers’
willingness to participate. Some of the works, such as [16–18], consider in their models the
users’ preferences. Still, no actual study on the energy customer side has been conducted
to assess their willingness to accept such management models. To solve this issue, this
work surveyed energy customers to evaluate their perception of smart grid topics and their
desire to participate in the smart grid.

This paper reviews energy customer acceptance models and surveys that actively
assess customers’ willingness to participate in smart grids. After this review, a customer
survey was presented by the authors in Portugal, based on previously reviewed surveys,
to assess the readiness of Portuguese people to participate in smart grids. Participation
in the survey was voluntary, and everyone was free to participate. The survey results are
promising and indicate that energy customers are willing to face the new paradigm of
smart grids. However, some issues were detected regarding the lack of information and
the existence of cognitive tendencies relating to the type of participation. The customers’
acceptance and adoption of smart grid technologies are necessary to boost the achievement
of Goal 7 of the 2030 Agenda for Sustainable Development of the United Nations, namely,
targets 7.1, 7.2, and 7.3 (https://sdgs.un.org/2030agenda (accessed on 28 October 2022)).

This paper is divided into seven main sections. After this first introductory section, a
resume of smart grid strategies to influence customers’ electricity consumption patterns is
shown in Section 2. Section 3 presents prior literature regarding acceptance models and
previously conducted customer surveys. Section 4 presents the survey that was conducted
for this work. Section 5 shows the main results of the survey, and in Section 6, this survey
is discussed in comparison to previous surveys. The main conclusions are presented
in Section 7.

2. Smart Grids Strategies to Influence Customer’s Electricity Consumption Patterns

In the old paradigm of power and energy systems, the transport of energy flowed from
central production plants to end consumers, making the balance of both on the production
side [19]. However, in the new paradigm of smart grids, the energy flows in different
directions due to the distribution of energy sources, namely renewable-based, among
end consumers that became known as prosumers [20]. The decentralization of energy
generation in smart grids requires a (near-)real-time monitoring solution where information
flows among grid entities, including, for instance, transmission system operators (TSOs),
distribution network operators (DSOs), aggregators, and end consumers. These changes
enable the balance between generation and consumption on the consumption side, required
by the use of volatile renewable-based generation, and promote the efficiency of grid usage
by decreasing the need for large production plants to satisfy small consumption peak
periods during the day [21].

Increasing household energy efficiency is essential in reducing carbon emissions [22,23].
However, the appearance and adoption of smart grids enable the reduction of carbon emissions by
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increasing grid management efficiency [24]. Customer participation in smart grids is an important
topic that is disruptive from the old power and energy system paradigm. In the smart grid,
customers are called to participate using several active approaches. This section will present three
strategies that enable the participation of end customers in smart grids by promoting a change in
the customer’s electricity consumption patterns: demand-side management, transactive energy,
and demand response.

2.1. Demand-Side Management

The definition of demand-side management can be found in the 1985 IEEE glossary as
“the planning and implementation of those utility activities designed to influence customer
use of electricity in ways that will produce desired changes in the utility’s load shape,
i.e., changes in the pattern and magnitude of a utility’s load. Demand-side management
encompasses the entire range of management functions associated with directing demand-
side activities, including program planning, evaluation, implementation, and monitoring.
Opportunities for demand-side management can be found in all customer classes, including
residential, commercial, industrial, and wholesale” [25].

The demand-side management concept enables the management of energy demand
on the customer side, which can reduce consumption in on-peak hours (i.e., hours when the
electrical grid has an increase in demand) [26]. Although this concept does not specify how
such changes in the user consumption profile can be achieved, two possible mechanisms
are proposed [27]: energy efficiency and demand response programs.

In Lissa et al. (2021), a deep reinforcement learning model is proposed to optimize
the usage of solar renewable energy in a residential environment taking into account the
users’ comfort [28]. Another approach is proposed by Amasyali and El-Gohary (2021).
Machine learning occupant-behaviour-sensitive models predict consumption and comfort
conditions for ahead periods and then optimize energy resources using a genetic algorithm
to reduce energy consumption and improve users’ comfort [29]. In Malik et al. (2022), a
comparative study regarding the optimization of energy usage and users’ convenience
was conducted over three optimization multi-objective techniques: a genetic algorithm, a
hybrid genetic algorithm, and a particle swarm optimization [30].

2.2. Transactive Energy

Transactive energy is a relatively recent concept that can be used in smart grids to
produce changes in the energy demand profiles of customers. Currently, two definitions
must be considered when addressing transactive energy: “A system of economic and
control mechanisms that allows the dynamic balance of supply and demand across the
entire electrical infrastructure using value as a key operational parameter.” [31], and “a
software-defined grid managed via market-based incentives to ensure grid reliability and
resiliency. This is achieved with software applications that use economic signals and oper-
ational information to coordinate and manage devices’ production and/or consumption
of electricity in the grid. Transactive energy describes the convergence of technologies,
policies, and financial drivers in an active prosumer market where prosumers are buildings,
electric vehicles (EVs), microgrids, virtual power plants (VPPs), or other assets.” [32].

Transactive energy mechanisms can be applied to use demand-side management
employing economic and market-based signals that alter the energy prices, promoting the
shifting of consumption on the end-uses side. According to Kok and Widergren (2016),
transactive energy can be divided into four groups: top-down switching, centralized
optimization, price reaction, and transactive control. These groups represent quadrants in
a bi-dimensional matrix of type of communications (i.e., one- or two-way) × decision (i.e.,
made locally or centrally) [33].

In the literature, it is possible to find some examples of the use of transitive energy in
case studies and pilots. Regarding energy price changes, von Bonin et al. (2022) proposed
a dynamic electricity prices model for distributed photovoltaic generation and electric
vehicle charging routines to increase the local usage of distributed generation units [34].
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However, there are more specific cases such as the one proposed by Suhonen et al. (2020),
where the variation in the price of energy focuses exclusively on heating, ventilation, and
air conditioning (HVAC) systems in district areas [35]. However, the variation in the price
of energy is not the only possibility of applying transitive energy, with the opportunity
for consumers and producers to participate in the retail market (at the central or local
level). Models of this same participation are proposed by Gazafroudi et al. (2019) [36],
Olivares-Rojas et al. (2021) [37], and Crasta et al. (2022) [38].

The concept of transactive energy also enables the setting of local electricity prices. In
Oprea and Bâra (2021), energy prices in a local electricity market are set using an auction-
based approach. Several auction types are tests: uniform price, pay-as-bid, generalized
second price, and Vickrey-Clark-Groves [39]. Javadi et al. (2022) proposed a pool-based
energy market for local energy markets using a mixed-integer linear programming opti-
mization to minimize the community energy costs and its members’ demands [40]. Another
approach is given by Talari et al. (2022), where a matching mechanism is used to combine
sellers and buyers according to their preferences regarding green energy, the trading part-
ner’s reputation, and the partner’s location in the grid, and the clearing price is then set for
each transaction using the bidding prices average and premiums [41].

Transitive energy also includes the possibility of direct energy transactions among
customers (i.e., peer-to-peer transactions). This allows customers to completely change
their current passive role and become active players in an environment where they can
buy and sell energy to whomever they want, allowing customers to search for lower
or affordable prices. In Bangkok, Thailand, the T77 project is expanding but is already
operating [42], enabling peer-to-peer transactions among neighbours since 22nd August
2018 [43]. To promote peer-to-peer transactions, some solutions are available, such as
VOLTTRON [44] and µGIM [45], that can be deployed on the customer side and enable the
customer representation in distributed energy transaction markets where energy can be
transacted among customers.

2.3. Demand Response

Demand response programs are mechanisms that promote and allow the active partic-
ipation of customers in the smart grid. The U.S. Department of Energy defined demand
response as “changes in electric usage by end-use customers from their normal consump-
tion patterns in response to changes in the price of electricity over time, or to incentive
payments designed to induce lower electricity use at times of high wholesale market prices
or when system reliability is jeopardized.” [46].

By analyzing the definitions of demand response and transactive energy, it is possible
to observe similarities and overlaps. Therefore, some authors see demand response as
part of transactive energy [47]. Nonetheless, the definition of demand response mentions
its use for system reliability, while transactive energy only mentions the balance between
generation and consumption.

Demand response can be price- or incentive-based [28]. In price-based programs, there
is a variation in the price of energy that promotes the shifting or reduction of consumption
on the customer side. In Allahvirdizadeh et al. (2022), two price-based programs, time
of use (TOU) and real-time pricing (RTP), are tested with an optimization model using
Monte Carlo and k-means to reduce the scenarios [48]. Price-based programs can also be
applied in smaller contexts, such as microgrids and energy communities, to manage energy
consumption [49]. An example of an energy community demand response application can
be found in Zhou et al. (2022), where a scenario-based stochastic model of predictive control
for energy management in energy communities is presented, considering the stochastic
predictability of environment variables, such as building occupancy, temperature, humidity,
and solar irradiance [50]. An incentive-based demand response program is also proposed
by Fanti et al. (2022) for electric vehicles (EVs) relocation in an interactive process with
the users to promote EV relocation using a crowdsourcing approach while increasing the
incentive levels to engage users [51].
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Incentive-based demand response programs are based on payments to energy cus-
tomers according to their participation, usually measured by their effective demand re-
duction. This type of program usually requires an initial step to establish and define the
involvement of each customer, and in some cases, may require the preparation of a prior
contract (e.g., in direct load control programs [52]). Nguyen et al. (2022) propose a model
for the setting of incentive-based pricing considering the maximization of the welfare
of the participants with a sigmoid-curve satisfaction function with fuzzy logic to assess
the costumer-side benefits [53]. A similar mechanism is proposed by Muthirayan et al.
(2019), using the automatic reporting of energy customers’ baselines (that is, the expected
consumption profile for a given period, typically calculated using historical data) [54].

To actively participate in some demand response programs, customers must be part of
a larger group to meet the amount of participation requested [52]. The concept of smart
grids recognizes the existence of aggregator entities that enable the dynamic aggregation,
in a given period, of small and medium players, such as customers, to represent them as a
single entity in energy markets, energy transactions, and in demand response programs
participation [55]. The European project CROSSBOW involves eight countries and is
creating an aggregation platform to enhance demand-side management [56].

3. Acceptance Models and Literature Surveys

The participation of energy customers in the smart grid is a desirable goal. Mechanisms
for this participation have been proposed, such as demand response programs and transactive
energy models. However, customer acceptance will dictate the efficient implementation
of these mechanisms, as the customer is responsible for their participation. This section
presents state-of-the-art smart grid acceptance models and previously published surveys by
other authors considering different geographic locations. Later in this paper, the previously
conducted surveys will be compared to the results of the Portuguese-conducted survey.

3.1. Smart Grid Acceptance Models

End consumers’ perception, acceptance, and active participation in smart grids are
essential for achieving the expected benefits. The authors will focus on two customer
acceptance models proposed in the literature: the acceptance model proposed by Ellabban
and Abu-Rub (2016) and the acceptance model proposed by Park, Kim, and Yong (2017).
These two models correlate external variables and knowledge with the acceptance of smart
grid technology.

Ellabban and Abu-Rub (2016) proposed a smart grid acceptance model, shown in Figure 1,
based on the technology acceptance model (TAM) [57]. This model creates a relation between
external variables and the users’ perceptions and intention to use technology provided by
smart grids, enabling developers to assess the variables that impact the energy customers’
acceptance. In Figure 1, a sequential link is visible between the “perceived eco-environment”,
“perceived usefulness”, “intention to use”, and “usage behaviour”, indicating the importance
of climate-friendly initiatives to increase the acceptance of smart grids among customers.
Also, a sequential link is visible between “perceived performance concerns”, “perceived risk”,
“intention to use”, and “usage behaviour.” To this extent, negative situations for customers
should be avoided, as they impact their behaviour, active participation, and acceptance of
smart grids. The acceptance model proposed by Ellabban and Abu-Rub (2016) is technology
agnostic and can be used and a generic tool to help to understand the external variables that
produce impact in the usage behaviour of energy customers. However, this model fails to
separately identify positive and negative impacts.

Park, Kim, and Yong (2017) proposed an acceptance model for smart grids, shown
in Figure 2, using a comprehensive cause–effect map to identify positive and negative
effects [58]. Contrary to the Ellabban and Abu-Rub (2016) model, this model enables the
identification of negative and positive impacts in the customer acceptance. This model also
provides a better detail regarding external and internal variables that impacts the acceptance
and usage of smart grid technology. In this model, the authors identified a chain of positive
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links between “education and advertisement”, “perceived eco-environmental benefits”,
“perceived usefulness”, “intention to use”, and “actual use.” This association follows the
acceptance model of Ellabban and Abu-Rub (2016), shown in Figure 1. Regarding negative
chains, it is visible that the following components have a negative impact on each other,
“exposure to the risk of smart grid technology”, “satisfaction”, “gap between satisfaction
and expectation”, and “intention to use.” Although more complete than the Ellabban and
Abu-Rub (2016) model, the Park, Kim, and Yong’s (2017) acceptance model lacks the ability
to measure the impact regarding the significance of connections, presenting all connections
as equal.
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The study and analysis of acceptance models and acceptance surveys regarding smart
grids enables the understanding of the perception and acceptance of the energy customers
towards smart grids and their active participation in this new environment. The increase in
knowledge regarding customers’ acceptance and which variables can impact, positively
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and negatively, allow the design of suitable participation models and the creation of
communication strategies to appeal to the participation and involvement of the consumer.

3.2. Past Smart Grid Surveys

The results of a study conducted in Israel involving 554 participants demonstrated an
overwhelming acceptance by participants of the existence of external control by a resource
management system (e.g., 84.9% would accept an external control over their dishwasher,
and 74.9% would accept an external control over their heating systems) [59]. The availability
of customers could enable the use of flexibility in the smart grids.

A study at the University of Qatar involving 1071 participants achieved a degree of
trust of 95% with an error of ± 3%, showing that most participants (75.43%) are willing
to change their consumption profiles. In contrast, more than half (56.0%) are willing to
plan their consumption profile according to energy prices [60]. However, this study raises
a concern regarding the use of smart meters. A total of 42.76% of participants have the
misleading opinion that using smart meters does not violate data privacy. This can be
an issue in customer acceptance, as the models in Figures 1 and 2 demonstrate that the
perception of risks reduces the acceptance of smart grids.

Similar results were obtained in a study conducted at the University of Imam Abdul-
rahman Bin Faisal, Saudi Arabia, involving 228 participants [61]. Where 73.0% are willing
to shift their washing machine to night periods if energy prices are lower, this study also
revealed that 55% of participants believe there is insufficient information for customers
regarding smart grids.

On the island of Tilos, Greece, a study concerning smart grid acceptance involving
226 residents was conducted, with a 95% trust and a ±3% error [62]. This is a significant
study because the island has already installed smart grid technology. The overall result
shows that 82% of the residents have a favourable view of the installed smart grid, and
only 1% object to the installed grid. The results obtained in the Tilos community demon-
strate a significant positive acceptance by customers of smart grids. However, the results
also showed that 68% of participants would accept a smart meter to reduce their energy
consumption. This demonstrates a misperception about smart meters and can negatively
affect the acceptance of the smart grid.

In [63], a survey to access the acceptance of direct load control was conducted in
Germany and Switzerland with 622 participants. The results shown that 58% and 57%
of participation would accept direct load control over electric boilers and heat pumps,
respectively. However, only 25% and 23% of participants would accept the direct load
control over washing machines and dishwashers, respectively.

An older survey made in Flanders, Belgium, in 2010 was able to create a TAM-based
acceptance model supported by a 500 households survey participation [64]. The proposed
acceptance model is similar to the Ellabban and Abu-Rub (2016) model, shown in Figure 1,
where the perceived usefulness and ease of use have shown an impact in the intention of
use. A similar result was achieved by the only survey conducted in Denmark, Norway,
and Switzerland, where a TAM-based acceptance model was also supported by energy
customers [65].

The previous surveys seam to demonstrate a general willingness of customers to
participate, to some extent, in smart grids. Many participants are willing to enable external
control of their appliances and/or plan their energy consumption taking into account an
hourly variation in energy prices. This desire, often motivated by the possible decrease in
energy costs, can significantly drive the implementation of smart energy grids.

4. Conducted Survey Description

This section presents a survey conducted in Portugal by the authors involving 140 voluntary
participants. This survey was created to assess customers’ knowledge and motivation to
actively participate in smart grids, namely their intention to participate. The survey results
published in this paper contribute to the characterization of the possible energy customer’s
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active participation willingness. Also, the results of this survey will be compared to previous
surveys to compare customer acceptance in several countries. The survey was open, allowing
responses, for 37 days, from the 28th March 2020 to the 3rd May 2020.

Portuguese customers define the population of the survey, that is, anyone who makes
daily use of any electrical equipment. Such a population encompasses almost all people.
The public interest in smart grids justifies the size and description of the population because
the active participation of customers has a close connection with all the people who use
electricity daily, and it can, very certainly, come to impact their energy use. The sample
used for this survey consisted of volunteers who agreed to answer the online survey. The
survey was publicly and directly disseminated among people, including people who are
professionally involved in the field of smart grids, thus allowing the acquisition of a sample
with two subsets: people with no knowledge of the subject and people with experience in
the field of smart grids.

The survey consists of twenty questions divided into seven sections: participant
profile, smart grids, smart meters, energy cost, energy sources, energy transactions, and
energy reports. The survey was written, and distributed among participants, in Portuguese,
however, the questions and answers were translated, by a native-speaking English person,
to enable its presentation in this paper. Table 1 shows the questions included in the survey,
their type, and possible answers. The question of Section 3, ‘smart meters’ with the ID of
3.1, was only presented to participants that answered ‘yes’ to question 2.2. All questions,
excluding questions 3.1 and 4.4, were mandatory. Question 4.4 was multiple choice, and
participants could not select any option.

Table 1. Questions included in the survey.

ID Question Answer Type Possible Answers

1.1 Gender Single {“Woman”, “Man”, “Rather not answer”}

1.2 Age Single
{[18–25], [26–30], [31–40], [41–50], [51–60],

“Above
60”}

2.1 Do you know what a smart grid is? Single {“Yes”, “No”}
2.2 Do you know what a smart energy meter is? Single {“Yes”, “No”}

2.3 Would you like to have a smart meter? Single {“Yes”, “No”, “Yes, if it results in a reduction
of energy costs”}

3.1 Do you think the use of smart meters can violate
your privacy? Single {“Yes”, “No”, “It depends on how they

communicate the data.”}
4.1 Do you think the energy price, without taxes, is: Single {“Low”, “Fair”, “High”}

4.2 You would reduce your energy consumption for
one hour if the energy price rose above: Single {“10%”, “20%”, “25%”, “50%”, “80%”, “I

would not reduce”}

4.3

Assuming that 1 kWh corresponds to having a fan
heater turned on for 25 min, you would agree to
reduce your energy consumption for 1 h if you

were given a minimum incentive of:

Single

{“0.05 EUR for each kWh”, “0.10 EUR for
each kWh”, “0.15 EUR for each kWh”,

“0.20 EUR for each kWh”, “0.30 EUR for each
kWh”, “0.50 EUR for each kWh”, “I would

not reduce”}

4.4 In order to reduce the energy cost, you would
allow an external entity to control automatically: multiple

{“The fridge (ensuring that there is no
damage to the food)”, “The brightness of the

television”, “The start and cycle of the
washing machine”, “The start and cycle of

the clothes dryer”, “The start and cycle of the
dishwasher”, “The water heater”, “The

lighting of the house (turning off the lights or
dimming their intensity)”, “The mobile
phone charger”, “The heater or heating

system of the house”, “The cooling system of
the house”}
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Table 1. Cont.

ID Question Answer Type Possible Answers

4.5

Would you be willing to plan your daily
consumption considering the hourly variation of

the energy price (assuming the existence of
periods with lower prices)?

Single {“Yes”, “No”, “Only on days when I am at
home (e.g., days off)”}

4.6 Would you be willing to change your dinner time
to reduce energy costs? Single {“Yes”, “No”}

5.1 Would you be willing to pay more for renewable
energy? Single {“Yes”, “No”}

5.2 Would you prefer only to use renewable energy
sources in your country? Single {“Yes”, “Yes, but only if the energy cost does

not go up”, “No”}

6.1 Would you be willing to sell your energy to the
grid? Single {“Yes”, “No”}

6.2 Would you be willing to sell your energy to your
neighbours? Single {“Yes”, “No”}

6.3 Would you be willing to share energy with your
neighbours? Single {“Yes”, “No”}

6.4 For energy transactions with your neighbours, you
would prefer to adopt a posture such as: Single

{“Cooperative and collaborative (minimizing
the cost of energy among all)”, “Competitive

(trying to minimize only your cost)”}

7.1
Would you like to receive comparative reports
between your consumption and other identical

households?
Single {“Yes”, “No”}

7.2 Would you like to receive detailed reports on your
consumption by equipment or type of equipment? Single {“Yes”, “No”}

5. Results of the Conducted Survey

After sharing the survey among participants, the results were analysed. Figure 3 shows
the participants’ profiles regarding questions 1.1 and 1.2 related to Section 1 of the survey.
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Figure 3. Participants’ profile (questions 1.1 and 1.2).

In the survey, 37.7% of participants replied “yes” in question 2.3, and 60.9% responded
“Yes, if it results in a reduction of energy costs”, meaning that 98.6% are considering the
acceptance of smart meters in their facilities. The remaining 1.4% that replied “no” also
answered “no” to question 2.1. A total of 98.6% would like to have a smart meter in their
residence, while 57.0% showed concern with data privacy issues raised by smart meters.

Questions 4.1 and 4.2 assess participants’ perceptions regarding energy prices and
their willingness to change their demand profile according to energy prices. The perception
of 40.6% of participants is that the energy price is “fair”, while 53.6% indicate that the
energy price is ”high”. The 46.4% that consider the energy price “low” or “fair” suggest that
they are willing to change their demand profile if energy prices go above 30%. In contrast,
participants who think energy prices are “high” are willing to change their demand profile
if they go above 25%.
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Question 4.3 is similar to question 4.2, differing in the type of problem presented to
the participant. While question 4.2 presents a scenario with percentual values, question
4.3 presents a scenario with monetary values. The results of question 4.2 indicate that if
the energy price increases more than 20%, it will lead to 37.9% of participants changing
their demand profile. If energy prices rise above 50%, 87.2% are willing to change their
demand profile. Using a standard energy tariff applied in Portugal, a 50% increase in
energy price is equivalent to a rise of 0.11 EUR. However, in question 4.3, only 20.4% of
participants considered decreasing their energy consumption if they were paid 0.10 EUR
per kWh reduced. The detailed results can be seen in Figure 4.

Figure 4. Questions 4.2 and 4.3 replies.

When asked whether they would make external control of their energy loads available
to third parties, the participants showed motivation to do so. This will enable direct
load control in smart grids and demonstrate users’ acceptance of the use of home energy
management systems. Figure 5 shows the replies to question 4.4. The control of the “start
and cycle of the washing machine” and the control of the “refrigerator” were the options
with the highest acceptance, 59.4%, and 58.6%, respectively.
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Figure 5. Replies to question 4.4.

When asked whether they would be willing to plan their daily consumption taking
into account the hourly variation in energy prices, 22.1% indicated that they would be
willing to do so for the days they were at home (for example, days off and weekends), and
70.7% indicated that they would be willing to plan their daily consumption. In question
4.6, when asked if they would be willing to change their dinner time to reduce their energy
cost, 36.4% said “yes”, and 63.6% indicated they would not be willing to do so.
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The survey also concluded that 55.0% of participants would be willing to pay more for
renewable energy. When asked whether they preferred that Portugal’s (the country where
the survey was carried out) energy grid be exclusively based on renewable energy sources,
97.9% replied affirmatively. However, of this 97.9%, 48.9% answered, “yes, but only if the
energy cost does not go up.”

Regarding local transactions, 83.5% were willing to sell or share their energy with their
neighbours. Regarding energy transactions between neighbours, 86.3% said they would
adopt a “cooperative and collaborative” transaction (minimizing the cost of energy among
all). The remaining 13.7% would adopt a “competitive” transaction (trying to minimize
only your cost). When asked about a possible sharing of energy with their neighbours,
72.9% of the participants expressed their willingness to share.

The last section of the survey was intended to assess the participants’ interest in viewing
and accessing their energy data. Among the participants, 82.9% showed interest in receiving
comparative reports between their demand and the demand of other homes identical to
their own. When asked if they would like to receive detailed reports on their consumption
discriminated by equipment or type of equipment, 95.7% of participants expressed interest.

A correlation study was made, but no significant correlations were demonstrated
besides the natural aggregation of questions in the same section. The correlation result can
be seen in Figure 6.

Energies 2023, 16, 270 12 of 17 
 

 

Regarding local transactions, 83.5% were willing to sell or share their energy with 

their neighbours. Regarding energy transactions between neighbours, 86.3% said they 

would adopt a “cooperative and collaborative” transaction (minimizing the cost of energy 

among all). The remaining 13.7% would adopt a “competitive” transaction (trying to min-

imize only your cost). When asked about a possible sharing of energy with their neigh-

bours, 72.9% of the participants expressed their willingness to share. 

The last section of the survey was intended to assess the participants’ interest in view-

ing and accessing their energy data. Among the participants, 82.9% showed interest in 

receiving comparative reports between their demand and the demand of other homes 

identical to their own. When asked if they would like to receive detailed reports on their 

consumption discriminated by equipment or type of equipment, 95.7% of participants ex-

pressed interest. 

A correlation study was made, but no significant correlations were demonstrated be-

sides the natural aggregation of questions in the same section. The correlation result can 

be seen in Figure 6. 

 

Figure 6. Correlation heatmap considering the question of Table 1. 

6. Discussion 

The survey results were compared with previous surveys to assess if different geo-

graphic areas were in line with their availability to participate in smart grids actively. 

Figure 6. Correlation heatmap considering the question of Table 1.



Energies 2023, 16, 270 12 of 16

6. Discussion

The survey results were compared with previous surveys to assess if different geo-
graphic areas were in line with their availability to participate in smart grids actively.

Regarding the acceptance of smart meters, 98.6% of the conducted survey participants
replied that they would like to have a smart meter in their residence, surpassing the result
obtained in [60], where the acceptance of smart meters was 76.43%.

The results of question 4.4 (to reduce the energy cost, you would allow an external
entity to control automatically) showed a similarity to the results in [59]. Regarding the
external control over the refrigerator, the survey had a 58.6% positive response, similar
to the 59.9% positive response in [59]. Regarding the washing machine and dishwasher,
the results in the conducted survey were lower than the results of [59]. In the study
undertaken, the positive responses were 59.4% and 45.9%, respectively, while in [59], the
positive reactions were 83.2% and 84.9%, respectively.

Regarding selling and sharing energy, 89.2% of the survey participants were willing
to sell their energy to the electricity grid. This result is slightly higher but similar to the
74.64% obtained in [60].

Regarding the reduction in consumption (questions 4.2 and 4.3), the survey found
that a 50% increase in the energy price per kWh (corresponding to around 0.11 EUR in
Portugal) would lead to 87.2% of participants reducing their consumption. While if a 0.10
EUR benefit per kWh reduced were given to participants, it would only make 20.4% of
them reduce their consumption. Although the answers obtained may indicate a lack of
knowledge on the part of participants about the price of energy due to one question being
in percentage and the other in euros, the results are in line with two concepts: negativity
bias and loss aversion. Negativity bias is the cognitive notion that a negative episode has a
more significant impact than a positive episode, making the person more susceptible to
giving importance to negative experiences. Loss aversion indicates a cognitive tendency
that leads the person to avoid losses to seek gain, so it is better not to lose than to gain. This
could explain why participants were more willing to reduce energy consumption when
facing a penalized scenario and not so keen to make the reduction when encountering a
gain/rewarded scenario.

The findings in this survey are in line with the results published in [66], where a
comparison between incentive- and punishment-based demand response programs was
analysed and where it was concluded that the punishment-based is equally effective in
achieving active participation, and that brings benefits regarding the collective perception
of the customers regarding the community needs. However, this can be due to the loss
aversion bias.

The identification of negativity bias and loss aversion is one of the most important
findings of this survey because they go beyond state-of-the-art studies and provide a better
perception of the customer in the smart grid context. The analysis of the state-of-the-art
does not mention the impact that negativity bias and loss aversion have on the active
participation of the energy customer. However, in this survey, it is possible to identify the
effect caused by these cognitive trends on the willingness of customers to participate in
smart grids actively.

Issues impacting the acceptance of smart grids from the end-customers’ side should
be identified and addressed. One of the issues identified by Spence et al. (2015) is that
people with lower social grades are less likely to accept energy data sharing (for demand
response and transactive energy purposes) and demand-side management solutions [67].
This observation and the negative bias could penalize lower social grades in smart grids,
provoking an increase in energy costs and making it challenging to balance the grid on the
consumer side.

When discussing the engagement of users, gamification can increase the participation
and interest of people, being used in several sectors [68,69]. This concept can be used to
engage and boost the involvement of energy customers trying to avoid the impact of a
negative bias to increase participation and, therefore, the acceptance of active participation
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actions in smart grids. In energy, gamification is also proposed as an efficient engagement
mechanism, as seen in [70], applied in energy-related behaviour changes in residential
consumption, and in [71], where a solution for office employers is proposed to increase the
awareness of consumption.

To avoid penalizing lower social-grade customers, participation models can also adopt
fairness techniques to offer equal opportunities for energy customers [72]. A previous study
observed a link between perceived procedural fairness and the acceptance of energy-related
projects [73]. Therefore, fairness strategies should be deployed in active participation in
smart grids to increase acceptability and promote customer equality.

7. Conclusions

The acceptance of customers regarding smart grids is an important aspect that can
affect the effective implementation of smart grids, namely the use of demand-side manage-
ment, demand response programs, and energy transactions.

This paper proposes a survey applied in Portugal among 140 participants to evaluate
their intention to participate in smart grids considering several methods of participation.
The survey’s positive results showed that 95% of the participants would accept the control
of at least one electrical appliance by an external entity and that 92.9% would be willing to
plan their energy consumption in case of applying hourly energy prices.

The proposed survey also identified the influence of negativity bias and loss aver-
sion. This was an important conclusion in this survey, indicating that customers are more
likely to reduce expenses than to maximize gains. In this way, the advantages presented
by the active participation of customers in smart grids may not have the desired effect,
as penalized scenarios could represent an increase in the participation rate. Therefore,
because this survey’s objective was not to study the negativity bias and loss aversion, it
is necessary to have dedicated surveys and interviews to assess the real impact they can
have on the active participation of customers in the smart grid. The identified bias and the
literature acceptance models highlight the significance of conducting social science studies
and surveys on smart grids to understand the energy customers fully. Only then will it be
possible to increase the participation rate of end customers to achieve seamless integra-
tion of consumers in the smart grid to enable the balance between energy consumption
and generation.

The survey results suggested that the actual participation of end customers in smart
grids can be impacted by cognitive bias. This should be studied in future work, also
addressing other cognitive biases such as the farming effect and confirmation bias that limit
the actions and decisions of persons. The cognitive biases are not considered during the
conception and proposal of new participation models and energy management models for
smart buildings. However, future works should address the acceptance of such models
among the end customers. These demonstrate the need for pilot frameworks and living
labs that enable the fast and straightforward deployment of energy-related models in a
(un)controllable environment among persons to assess the model’s acceptance, efficiency,
and usage/usefulness.
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