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Abstract: Algae are regarded among the most favorable feedstocks for producing sustainable
biodiesel and utilizing it in diesel engines. Additionally, ethanol addition further enhanced the
performance and reduce greenhouse emission. Algae biodiesel was produced, and an experimental
study was performed to understand the diesel engine performance and emissions characteristics
using different fuel blends by varying the ratio of diesel, biodiesel, and ethanol, such as D100, B10,
B20, B5E5, and B10E10 (where number shows the percentage of the respective fuel). It was found
that brake thermal efficiency was reduced by 0.49% and 1.29% for B10 and B20 blends, while the
addition of ethanol enhanced the BTE by 0.37% and 1.60% respectively. However, SFC increases by
1.45%, 2.14%, 3.18%, and 3.78% respectively for B10, B20, B5E5, and B10E10 with respect to diesel fuel.
Combustion characteristics were increased with increasing concentration of biodiesel and ethanol
addition. Particulate matter, smoke emissions, and CO2 were slightly reduced by 3%, 4%, and 0.18%,
respectively, while NOx emissions were increased by 26% for B10 blended fuel as compared to diesel
fuel. Further addition of 5% (volume) ethanol in B5 fuel reduced particulate matter, smoke emissions,
and CO2 emissions by 26.4%, 22%, and 23% respectively. Among the tested blends (B10, B20, B5E5,
and B10E10), ethanol blended fuel was found to be more promising due to its higher combustion and
performance and to have lower emissions to diesel fuel.
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1. Introduction

The use of fossil fuels, which are the primary transportation fuels in emerging nations,
has increased due to rapid population expansion and industrialization. It is virtually
guaranteed that fossil fuels will contribute to around 60% of the expansion in energy,
accounting for over 80% of the global energy supply by 2035. This circumstance is predicted
to persist in the future [1]. India ranks third in crude oil consumption despite ranking
twenty-first in crude oil production. There is a huge difference between oil consumption to
oil production. These crude oil imbalances suggest that India is heavily reliant on crude
oil imports [2]. Similarly, India, Japan, European Union nations, South Asian countries,
and African countries rely heavily on crude oil imports from other countries. These crude
oils are used in different sectors for power and electricity, such as transportation, industry,
electricity generation, etc. [3]. However, the majority of refined crude oil, i.e., petroleum-
based fuel, is used in the transportation sector.

The major concerns that must be taken into consideration when utilizing diesel as a
fuel in an internal combustion engine (ICE) include rising exhaust gas emissions and the
price of crude oil [4]. The health of people is impacted by major polluting gases, such as
NOx, carbon monoxide, unburned hydrocarbons, and smoke opacity, which also contribute
to environmental pollution [5]. A diesel-powered engine is necessary in today’s climate.
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However, it significantly adds to air pollution in the atmosphere. Diesel engines pollute
the air because they emit high quantities of aromatics and Sulphur [6]. Emissions from
fossil-fueled diesel engines include smoke, NOx, CO2, CO, SOx, and PM [7]. With over 66%
use, the transportation sector is the largest segment responsible for the limitless energy
utilisation from conventional fuel.

The continual depletion of conventional fuel, growing costs, and escalating emissions
of greenhouse gases have increased the demand for environmentally friendly, cost-effective,
and renewable energy that is conducive to lowering greenhouse gas emissions [8,9]. As
a result, there is a need to transition energy from fossil derived fuel to alternative fuel.
Canabarro et al. (2022) observed that 70% GHG emission were reduced when biofuel used
in place of diesel fuel [10]. Finding a sustainable and alternative fuel to replace diesel is
essential to address the current problems and halt climate change. Furthermore, the use of
biofuels, such as biodiesel, which has lately been deemed a reasonable substitute to fossil
fuels, helps to improve combustion and reduce greenhouse emission [11].

Biodiesels have become increasingly popular in recent years because it contains no
sulphur, are oxygenated, and have a higher cetane number than fossil diesel. They typically
emit fewer exhaust emissions than those of fossil diesel. Biodiesel also has strong lubricity,
which helps the moving components of engine. Biodiesel can be derived using different
generation feedstock, including 1st, 2nd, and 3rd generation feedstock [12].

Traditionally, first-generation biodiesel was derived from edible biomass, such as
vegetable oils, which may substitute the use of fossil fuel burning while simultaneously
reducing CO2 emissions into the environment. However, it was considered that using
first-generation fuel sources would cause a food vs. fuel catastrophe. To address this issue,
second-generation biofuels were developed using non-edible feedstock such as agricultural
waste, wood residual waste, and energy crops. The amount of carbon generated or ingested
by second-generation biofuels is either negative or neutral. The fundamental disadvantage
of second-generation fuels is their seasonal reliance on raw resources. Algae is a third-
generation biofuel that is a viable alternative renewable source for biofuel production that
overcomes the disadvantages of first and second-generation biofuels. These advantages
have led to a growth in biodiesel production from diverse feedstocks throughout the
years [2]. Despite the advantages described previously, there are significant downsides to
using biodiesel in diesel or turbine engines alone. Relative to fossil diesel, biodiesel has
greater BSFC and NOx emissions along with lower BTE and ITE.

Prabhu et al. (2018) tested biodiesel blends in diesel engines and discovered that it
is a preferable alternative to conventional diesel fuel. The compression ratio was varied,
and it was found that the performance of biodiesel is fairly close to that of diesel. However,
there was decrease in BTE and increase in SFC and NOx emission as compared to diesel
fuel [13]. Karthikeyan et al. (2020) conducted experiments in a CI engine utilizing a diesel–
Marginatum macroalgae biodiesel blend. These mixes were tested on diesel engines at a
constant rotational speed of 1500 rpm under varied loads, including low, partial, and high
loads [14]. Subramaniam et al. (2020) performed an experimental study on blend of algal
biodiesel and diesel fuel. Among the evaluated test fuel, A20 was found to be more similar
to diesel in the terms of combustion. It was discovered that using biodiesel fuel resulted in
higher thermal efficiency and lower PM, smoke, CO, and HC emissions except for NOx [15].
Kurczynski et al. (2021) derived biodiesel from waste animal fat and tested it in a diesel
engine. It was found that biodiesel blend fuel reduced PM, and CO emissions while there
was an increase in SFC and NOx [16]. Rajak et al. (2022) and Singh et al. (2022) obtained
similar findings using biodiesel blended fuel in a diesel engine [17,18]. Further, the addition
of biodiesel in diesel fuel reduces the BTE and increases the SFC of fuel. These challenges
can be overcome by adding some oxygenated additives such as ethanol [19]. Karin et al.
(2022) performed an experimental study utilizing the ethanol in biodiesel blended fuel.
It was found that Ethanol-blended biodiesel fuel can cut smoke emissions [20]. Sathish
et al. (2022) utilize the ethanol in Azadirachta indica biodiesel blend to predict the engine
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behavior. It was found that BTE was increased by 15% for D80B20 blend as compared to
B100 fuel [21].

It was found from the literature that biodiesel can reduce the greenhouse gas emission
and can easily blended with diesel fuel. However, the addition of biodiesel in diesel fuel
lowers the BTE and increases the SFC. Further, the combustion characteristics of diesel
biodiesel blended fuel were found to be lower than the diesel fuel. The emission of NOx
also increased with an increasing concentration of biodiesel fuel. These limitations of
biodiesel blended fuel can be reduced by adding small concentration of ethanol fuel.

The primary goal of this study is to propose an alternative fuel (biodiesel) derived from
algae and further preparing binary and ternary blend with addition of diesel and ethanol.
The prepared blend was tested, and an investigation was carried out to understand the
influence of blended fuel in diesel engine. The idea focuses on the utilisation of sustainable
biodiesel production derived from locally available algae. Furthermore, the paper discusses
in detail the key design features of biodiesel production, blending procedure, and the
experimental assessment in diesel engine using ethanol addition. As a result, current
research work helps in closing the information gap in the application of biodiesel blends
and ethanol.

The current research work is as follows. Section 2 highlights the algae oil extraction,
biodiesel production, blending procedure and ethanol addition, fuel qualities, experimental
test setup, its key features, test protocol, and uncertainty analysis. Section 3 summarizes
the key findings of the investigation and initiates vital conversations. Section 4 concludes
with closing remarks and future prospects on the subject.

2. Materials and Methods
2.1. Raw Materials

The heterogeneous colony of microalgae was gathered from a lake in Bhopal. The
other chemicals, such as catalyst, alcohol, n-hexane etc., were purchased from the local
supplier in Bhopal. The collected algae were dried in the sunlight around one week and
converted into powder form. A Soxhlet extractor was utilized to extract oil from the dried
algae, employing n-hexane as the solvent. The transesterification reaction was carried out
using a 6:1 methanol to oil ratio, and (0.9% wt.) KOH catalyst (0.9% wt.) at 65 ◦C for 80 min.
The biodiesel and glycerol were separated under typical gravity circumstances. Figure 1
depicts the schematic diagram of biodiesel production from algae.
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The physiochemical properties of algae biodiesel were tested according to ASTM
standards and listed in Table 1, along with diesel and ethanol fuel.
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Table 1. Physicochemical properties of diesel, ethanol and algae biodiesel fuel.

Fuel Properties Test Method Ethanol Diesel Algae Biodiesel

Carbon (mass%)
ASTM D 5291

52.2 87 78
Hydrogen (mass%) 13.0 12.6 12

Oxygen (mass%) 34.8 0.4 10
Density at 25 ◦C (kg/m3) ASTM D 1298 789 830 871

Viscosity @ 40 ◦C (mm2/s) ASTM D 445 1.2 2.6 5.2
Calorific value (MJ/kg) ASTM D 240 28.32 42.5 40

Cetane number - 8 48 52
Auto ignition temperature (◦C) - 365 210 -

2.2. Blend Preparation

Binary and ternary blends are developed and tested against diesel fuel. The blending
procedure was carried out using a mechanical mixing approach in which the mixture of
algae and diesel was constantly swirled at a speed of 500 rpm for 25 min with a magnetic
stirrer at room temperature. Binary blends are represented by the letters BX, while ternary
blends are represented as BXEY, where X and Y represent the volume concentration of
algae biodiesel and ethanol in diesel fuel. Table 2 lists the key attributes of these blends.
All of these blends are thoroughly blended before being analyzed for biofuel homogeneity.

Table 2. Physicochemical properties of diesel, binary and ternary test fuel.

Fuel Blend Carbon
(mass%)

Hydrogen
(mass%)

Oxygen
(mass%)

Density
(kg/m3)

Viscosity
(mm2/s)

C. Value
(MJ/kg)

Cetane
Number

D100 87.0 12.6 0.4 830 2.6 42.5 48
B10 86.1 12.5 1.4 834 3.1 42.1 48.4
B20 85.3 12.4 2.3 838 3.5 41.9 48.9

B5E5 75.5 12.6 11.9 829 2.8 41.5 47.8
B10E10 73.9 12.7 13.4 826 2.6 41.1 47.6

2.3. Test Engine

The current experiment was performed on a 3.7 kW direct combustion Kirloskar
Model TV 1 diesel engine. A K type thermocouple, standard burette, and an orifice meter
were used to monitor the temperature and mass flow rates of fuel and air respectively. An
electrical dynamometer was used to load the engine. The emission characteristics, such
as CO2, NOx, and smoke, are measured employing a testo 350 gas analyzer and PM is
measured employing air quality device with particle counter (Testo 380). The test engine
is fitted with a differential pressure sensor at the air tank section for measurement of the
actual volume of air being drawn into the cylinder. Additionally, a Piezo-electric pressure
sensor with measurement range of 0–100 bar is fitted for measuring the pressure inside
the cylinder.

The data gathering unit signals were synced with the crank angle encoder data. The
analogue signal was converted into digital using an analog-to-digital converter and real-
time data was analyzed and recorded in data acquisition system. A typical schematic of the
test engine is shown in Figure 2. Three repetitions of each experiment were performed, and
average data were taken for the computation to assure repeatability.

2.4. Test Procedure

The produced fuel blends are subjected to testing with varying engine loads. To
assure the accuracy of the data obtained, the engine is operated on diesel for 10 min before
to every investigation. Only after the engine achieved stable equilibrium were the test
values recorded. Meanwhile, the stationary multifuel engine is driven at its maximum
speed of 1500 revolutions per minute (rpm). The study of different performance metrics,
i.e., BTE, ITE, and BSFC, are computed using thermodynamic relations, and the emission
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characteristics, CO2, smoke, and NOx, are determined using a testo 380 gas analyzer. The
experiment test was carried out at 15.5 compression ratio, 1500 rpm engine speed, adopting
various engine loads (25%, 50%, 75%, and 100%) using a 3.7-kW diesel engine.
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2.5. Uncertainty Analysis

Errors and uncertainty occur in experiments due to inadequate observer accuracy,
equipment imprecision, and inappropriate instrument calibration. The best accuracy of the
experimental results is predicted by examining the number of errors [22]. The real value
has been predicted using the mean of repeated observations in uncertainty analysis [23,24].
Table 3 shows the uncertainties of the calculated and measured characteristics. Equation (1)
is used to calculate total percentage uncertainty in the experimental setup [25].

Percentage uncertainty = 2

√
(Brake power)2 + (SFC)2 + (Cylinder pressure)2 + (EGT)2 + (Smoke)2+

(PM)2 + (NOx)2 + (CO2)2 + (Time)2 + (Engine Speed)2 (1)

Table 3. Uncertainly error analysis during experiment.

Measure Parameters Range Accuracy Uncertainties

Brake power - 0.03 kW ±1.0%
SFC - ±5 g/kW h ±0.8%

Cylinder pressure 1–25 MPa ±10 kPa ±0.5%
EGT 0–1000 ◦C ±1 ◦C ±0.25

Smoke 0–100 ±1% ±1.0%
NOx 2000–4800 ppm ±20 ppm ±1.0%

CO2 0–50 vol. %
±0.3 vol.% + 1% of mv (0 to 25 Vol.%) ±1.25%±0.5 Vol.% + 1.5% of mv (>25 to 50 Vol.%)

PM 0–300 mg/m3 0.1 mg/m3 ±0.2%
Smoke 0–4800 ppm ±10 ppm ±0.2%

Crank angle encoder 0–720 ◦CA ± 0.2 ◦CA b TDC ±0.3%
Time - ±0.6 s ±0.2%

Engine speed 0–10,000 rpm ±10 rpm ±0.1%

Based on the above Equation (1) the composite uncertainty was found as ±2.39%
which was below the permissible limit.
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3. Results
3.1. Combustion Characteristics
3.1.1. Cylinder Pressure

Cylinder pressure denotes the highest pressure produced within the combustion
chamber, followed by full fuel combustion [26]. Figure 3 depicts the cylinder pressure of
various fuel blends at increasing engine load. Biodiesel has a higher cylinder pressure
value than conventional diesel due to its higher fuel oxygen molecules, which improved
fuel combustion, resulting in an increase in the rate of pressure [27].
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Further, ethanol addition in biodiesel blends improve the cylinder pressure and this
is particularly noticeable at higher engine load. This can be concluded because of fuel
features, e.g., the high autoignition temperature and greater heat of vaporization of ethanol,
the pressure of biodiesel combined with ethanol in-cylinder pressure, and the heat release
rate is higher than biodiesel [28]. In regard to the increase in cylinder pressure and rate
of pressure, the biodiesel blend with ethanol outperforms the biodiesel blend and diesel
fuel [29].

3.1.2. Maximum Pressure Rises Rate

The findings of the maximum pressure rise rate are shown in Figure 4 (MPRR). The
relationship between MPRR and engine noise and vibration are linear. The pressure
increases rate was the greatest at the premixed combustion phase. The MPRR of fuels
including ethanol is higher than the MPRR of fuels based on B10, B20, and D100. It rises
with the amount of ethanol in the fuels because, at the same injection pressure, the better
atomization properties of ethanol-blend fuels with lower viscosity and density result in an
increase in the percentage of premixed combustion. These similar results were consistent
with the findings of Wai et al. (2022) who conducted their experiment using ethanol and
biodiesel fuel [29]. However, it was shown that the MPRR reduced as the biodiesel % grew
when it was compared to that of B10, B20 against diesel fuel.
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3.1.3. Heat Release Rate

In a diesel engine, the cylinder heat release rate (HRR) is one of the most important
combustion factors. The HRR is described as the amount of heat produced by the energy
per unit of time. The rate of heat release from a cylinder is determined by the cylinder
pressure and peak rising pressure rate [30]. The HRR of algal biodiesel and diesel re-
vealed comparable patterns with regard to crank angle. Figure 5 clearly illustrates that
the trajectory for biodiesel has shifted to the left when compared to diesel, indicating that
combustion occurs sooner for biodiesel–diesel blends than for base diesel [31].
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HRR was observed to rise with increasing ethanol percentage compared to blended
fuel, which might be attributed to the immediate heat release followed by improved mixture
preparation during the delay period. The ethanol-blended fuel exhibits the maximum peak
of premixed combustion HRR, indicating that a larger proportion of the fuel is burned
during the premixed combustion phase. These findings can be validated by previous work,
e.g., that of Rajendran et al. (2021) using a ternary blend of isopropyl alcohol, biodiesel,
and diesel fuel [32].

3.1.4. Ignition Delay Period (IDP)

In general, the ignition delay is generally referred to as the lag of time between the
start of injection of fuel (SOI) to the start of combustion (SOC) upon ignition of the air fuel
mixture inside the combustion chamber. The method of calculation involved experimentally
finding the time interval between the SOI and SOC. Since the engine is fitted with a data
acquisition system, the measurement was performed with ease within the DAQ and the
same result was acquired. Ignition delay is a measurement of how quickly a fuel ignites
when heated. Because it inhibits premature igniting during the compression stroke, fuel
with a comparatively shorter ignition delay is appropriate for diesel engine operations.
Figure 6 depicts the IDP of test fuel against increasing engine load for various tested fuels.
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It was found that for B10 and B20, ignition delay periods of 0.72% and 1.75% were
lower than that of diesel fuel (D100). This can be contributed towards with higher oxygen
concentration of biodiesels. Furthermore, the biodiesel has low heat capacity, causing rapid
heating and evaporation, reducing the igniting delay [33,34]. However, for the blends of
B5E5 and B10E10, ignition delays were 1.35% and 2.17% greater than those of the diesel
fuel. It was concluded that adding ethanol in biodiesel blends improved the ignition delay
period. The rising tendency may be explained by B5E5 and B10E10 fuels having lower
cetane numbers than D100. Because ethanol has a low cetane number, it was concluded
that biodiesel ethanol fuel blends had a lower cetane number than diesel fuel (see Table 2).
Despite the inability to determine the cetane number for the fuel blends, it was predicted
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that algae biodiesel and ethanol blends cetane numbers would decline as the ethanol
content increased [35].

Furthermore, when engine loads grow, in-cylinder pressure and temperature rise, and
numerous activated OH radicals are produced as a result of the addition of ethanol, which
play an important part in the fuel ignition stage. Lower cetane numbers have less of an
inhibitory influence on ignition. As a result, with large loads, the difference in IDP between
biodiesel and ethanol blend fuel mixes lessens [36]. Similar findings were obtained by
Chow et al. (2021) when palm biodiesel blend was enriched with ethanol [37].

3.1.5. Combustion Duration

The ignition delay and burn rate of a fuel droplet have the most effects on how long it
takes to burn. The length of the burning phase has a considerable impact on how well a
combustion-powered engine performs overall and how it emits pollutants. The time from
the beginning of combustion to the end of combustion is shown in Figure 7 for each tested
fuel. Biodiesel blends had a longer combustion duration than diesel fuel. This might be
due to its greater viscosity and reduced volatility, which results in poor combustion and
poor atomization, extending the time of ignition [38].
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According to Kuszewski et al. (2019), combustion with more oxygen from intake air
or oxygenated fuel has a shorter combustion time because it has less pyrolysis and more
oxidation [35]. The combustion duration was seen to steadily decrease from B20 droplet
to B5E5 and B10E10 BE30 droplet in Figure 8 As shown in Figure 8, the decreasing trend
of combustion duration with increasing ethanol concentration might be explained by the
increasing trend of burn-rate constant and higher ignition delay period of ethanol blend
biodiesel fuel [37].

3.2. Performance Characteristics
3.2.1. Brake Thermal Efficiency

Brake thermal efficiency (BTE) is defined as the amount of chemical energy in the fuel
that is transformed into useable energy.
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Figure 8 indicates that when engine load increases, the thermal efficiency of the engine
increases for all test fuels. The BTE of D100, B10, B20, B5E5, and B10E10 fuels were 32.37%,
32.21%, 31.95%, 32.49%, and 32.89%, respectively, at full load. As biodiesel blends increase,
a significant decline in brake thermal efficiency was observed due to higher density and
viscosity, while lower volatility and calorific values of the higher algae biodiesel blend
result in impoverished atomization and combustion efficiency [39].

Further addition of ethanol in blended biodiesel fuel improves the BTE at all loads.
This can be attributed to the higher oxygen content of ethanol and biodiesel. Thus, the
combustion process may be improved, resulting in the increased thermal efficiency of
ethanol blended fuel [40].
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Ethanol addition also decreases the viscosity and density of the fuel blend and im-
provements made to the atomization and evaporation of fuel droplets inside the engine
cylinder [41]. El-Sheekh et. al. (2022) obtained similar findings using ethanol enriched fuel
with blended biodiesel in a diesel engine [42].

3.2.2. Specific Fuel Consumption

Specific fuel consumption (SFC) is used to evaluate engine performance. The ratio of
fuel consumption to engine power is known as the SFC and is expressed in kg/kWh. The
Figure 9 demonstrates that as engine load increases, the brake specific fuel consumption
decreases for every test fuel. The decrease in SFC is evident by the increase in the BTE of
the engine, as observed in the above relevant section. B10 and B20 blend fuel had 1.4% and
2.1% higher SFC. However, adding ethanol lowered the SFC by 0.6% and 1.5% for B5E5
and B10E10 fuels as compared to diesel fuel.

Due to a higher load, the in-cylinder temperature and flow turbulence contribute to
appropriate atomization and thorough mixing of fuel, consequently leading to a faster
combustion efficiency [43]. The ethanol addition in biodiesel blended fuel further reduced
the SFC. The decreased specific fuel consumption of ethanol fuel blends may be owing to
their lower viscosity and higher volatility, which boosts the mixing of air/fuel velocity and
enhances the combustion process and combustion efficiency [24,44].
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3.2.3. Exhaust Gas Temperature (EGT)

The exhaust temperature was determined using a thermocouple mounted on the
exhaust pipe, as illustrated in Figure 10. It grows with increasing engine load because at
higher load, the engine requires a higher combustion temperature.
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It was found that at every engine tested mode, the EGT of ethanol blended fuels
is lower than that of biodiesel blended fuel. These results can be validated by other
investigations and may corroborate the above-mentioned findings of Thiyagarajan Dabi
et al. (2020) [45].
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3.3. Emission Characteristics
3.3.1. Carbon Dioxide

The public is concerned about particular carbon dioxide (CO2) emissions from the
transportation and electricity sectors because they have a significant impact on the envi-
ronment and air quality [46]. Carbon dioxide is a by-product of combustion, which occurs
when fuel is completely burned. CO2 emissions can be reduced in a variety of different
ways. The CO2 emission of tested fuel is depicted in Figure 11 for increasing engine load.
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In this current research, emissions were reduced by adding biodiesel and ethanol with
diesel fuel [47]. When diesel fuel was used, the CO2 emission was 843 g/kWh. However, a
slight reduction was observed by adding biodiesel. Further, adding ethanol in the binary
blend reduced CO2 emission drastically. CO2 emission reduced by 11.44% and 12.57% for
B5E5 and B5E10 as compared to diesel fuel. However, using biodiesel blended fuel slightly
reduced the CO2 emission 0.18% and 0.56% for B10 and B20 respectively as compared to
diesel fuel.

The oxygen emission is inversely proportional to the emission. Since there are more
oxygen molecules in ethanol and a smaller propensity for them to develop, ethanol-blend
fuels have greater oxygen surpassing capabilities. Further addition of ethanol in blended
biodiesel fuel reduced the CO2 emission in diesel engine due to the reduced carbon content
of ethanol. The current research findings can be validated by the previous researcher work
as Wai et al. (2022) [48].

3.3.2. Oxides of Nitrogen

Figure 12 depicts the nitrogen oxide emissions from each tested fuel. It really is
important to note that increasing combustion temperatures represent a primary factor
responsible for the increase in NOx emissions. All of the experiments show that NOx
emission increases with increasing engine load for all tested fuels [49].
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The findings show that as contrasted to pure diesel, the algae biodiesel blend increases
NOx emissions. When B10 and B20 used as a fuel NOx emission increased by 26.9%, and
31.7% respectively as compared to diesel. However further addition of ethanol reduced
NOx emission by 6.5% and 14.6%, respectively, as compared to B20 blend fuel. This is due
to the high latent heat of ethanol vaporization, which causes a substantial quantity of heat
to be absorbed inside the combustion chamber, thus lowering the combustion temperature.
NOx generation is thus limited in this manner. Another reason for reducing NOx emission
due to the substantial fall in EGT as the increasing ethanol content into the blended fuel [42].
Ortega et. al. (2021) found a similar pattern in NOx emission when ethanol is used with the
blend of palm and sunflower oil [50]. Similarly, Wojs et al. (2019) found that increasing the
concentration of ethanol in biodiesel blended fuel further reduces the NOx emission [51].

3.3.3. Smoke Emission

Smoke is produced as a result of oxygen deficiency and poor combustion of a hydro-
carbon. The investigation discovered that the intensity was highly depending on engine
load. The higher the engine load in a single cylinder engine, the greater the smoke intensity
due to increased fuel supply for burning [52].

The engine load, fuel viscosity, flame velocity, progression of oxidation, and tempera-
ture of combustion all these parameters influence smoke emission. Figure 13 depicts the
smoke emission of tested fuel at increasing engine load. It was found that the intensity of
smoke emission increases with increasing engine load. The highest smoke emission was
observed for diesel fuel. The smoke emission reduced by 3.4%, 5%, 22.9%, and 23.7% for
B10, B20, B5E5, and B10E10, respectively, as compared to diesel fuel.

Furthermore, with increasing the percentage of algae biodiesel and ethanol added in
the blended fuel, smoke emissions fall across the board. This is due to the lower cetane
number of biodiesel and ethanol than that of diesel, resulting in a longer flame retardation
time and more complete fuel mixing [53]. The decreased viscosity of ethanol and biodiesel
promotes evaporation and atomization of the fuel, allowing it to burn more completely.
Furthermore, the greater oxygen concentration of ethanol and biodiesel enhances full
burning of the fuel and can expedite soot oxidation [54]. Similar findings were obtained
by Zhang et. al. (2022) with the experiment performed using a blend of biodiesel and
ethanol [55].
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3.3.4. Particulate Matter

Particulate matter emissions, which represent a significant risk to public health, are
a serious concern in the operation of modern diesel engines. Engine fueling with FAME
pure biodiesel or mixes containing diesel fuel reduces the amount of dangerous particulate
matter in the internal combustion engine exhaust, similar to carbon dioxide emissions and
smoke emission [44]. Figure 14 depicts the PM emission of tested fuel at increasing engine
load. The maximum pm was observed for diesel fuel. PM reduced by 3% and 26% for B10
and B5E5, respectively, as compared to diesel fuel. It can be concluded from Figure 14 that
PM emissions decrease with increasing engine load for all test fuels. Further, it was found
that increasing the biodiesel and ethanol concentration reduces the harmful PM emission.
This is due the fact of biodiesel and ethanol has higher oxygen concentration.
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The presence of oxygen in the fuel also affects PM, and the amount of oxygen inside the
fuel lowers PM emissions after burning. The current study findings agree with literature,
as observed by Mofijur et al. (2019) [56].

4. Conclusions

Algae oil is extracted and biodiesel derived using transesterification in the laboratory.
Binary and ternary blends are prepared as per ASTM Standard. Blended fuel is tested and
combustion, performance, and emission characteristics are examined using a diesel engine.
Major findings of this research work concluded based on the current study:

• Algae oil is extracted using n-Hexane solvent and biodiesel produced employing 6:1
methanol to oil ratio, and (0.9% wt.) KOH catalyst (0.9% wt.) at 65 ◦C for 80 min. The
maximum 91% biodiesel yield was obtained employing the transesterification method.

• Binary (B10 and B20) and ternary (B5E5, B10E10) blends of test fuels were prepared
using diesel, biodiesel, and ethanol and tested using a diesel engine.

• The diesel-biodiesel and ethanol blends had higher cylinder pressure and heat release
rate as compared to diesel fuel. It was found that cylinder pressure increased by 1%,
2%, 3%, and 4% and peak heat release rate reduced by 3.41% and 4.04% and increased
by 1.69%, and 2.23% for B10, B20, B5E5, and B10E10 respectively as compared to
diesel fuel.

• BTE was found lower while SFC was found higher for algae biodiesel and diesel blends
due to their lower heating value and a higher percentage of oxygen as compared to
diesel fuel. However, adding ethanol concentration increases the BTE and lowers the
SFC of ethanol blended fuel as compared to diesel fuel.

• BTE was reduced by 0.49% and 1.29% for B10 and B20 blends while BTE was increased
by 0.37% and 1.60% respectively. However, SFC increases by 1.45%, 2.14%, 3.18%, and
3.78% respectively for B10, B20, B5E5, and B10E10 with respect to diesel fuel.

• The emission characteristics, including NOx, CO2, PM, and smoke, have been studied
at different load employing binary and ternary blended fuels. PM, smoke, and CO2
emission were decreased for all the biodiesel blends while NOx increased as compared
to diesel fuel when the biodiesel blend was used as compared to diesel fuel.

• Ethanol is added in biodiesel blend fuel to reduce the greenhouse gas emission. The
addition of ethanol further reduces the emission of PM, smoke, CO2, and NOx emission
as compared to diesel fuel.

Algae can be used to produce sustainable biodiesel. Adding ethanol in biodiesel
blends derived from algae proved to be a dependable solution for promoting a feasible
and cost-effective fuel operating mode while retaining adequate thermal performance.
Furthermore, ethanol presented excellent results in terms of emissions reduction, which
encourages the notion of sustainable and clean operation in diesel engines. Future research
should incorporate new technologies, such as waste heat recovery systems, which enhance
fuel economy and lessen the environmental effect of diesel engines.

Author Contributions: Conceptualization: S.K.; Methodology, S.K. and G.D.; Formal analyses: S.K.,
G.D. and T.N.V.; Investigation: S.K.; Data curation: G.D., T.N.V. and P.V.; Writing—original draft: S.K.;
Supervision and project administration and resources: G.D., T.N.V. and P.V.; Review, and editing:
G.D. and P.V. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All the data is provided within the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2023, 16, 229 16 of 18

References
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52. Emiroğlu, A.O.; Şen, M. Combustion, performance and emission characteristics of various alcohol blends in a single cylinder
diesel engine. Fuel 2018, 212, 34–40. [CrossRef]

53. Kuszewski, H.; Jaworski, A.; Ustrzycki, A.; Lejda, K.; Balawender, K.; Woś, P. Use of the constant volume combustion chamber to
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