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Abstract: This paper presents the development and use of benchmarking grey-box models for the
detection and diagnosis of multiple-dependent faults (MDFDD) of a water-cooled centrifugal chiller.
Models are developed using data recorded by a Building Automation System (BAS) from a central
cooling plant of an institutional building. The forward residual-based fault detection model identifies
a fault symptom, when the difference between the measured value of target variable and benchmark-
ing value exceeds the corresponding threshold. For the fault diagnosis, most publications start from a
known single fault and establish the impact on following variables in the system. This paper presents
a rule-based backward approach. The proposed method identifies if (i) the fault symptom is correct
(i.e., a variable has abnormal values), or (ii) the fault symptom is incorrect (i.e., the symptom of target
variable is caused by impacts generated by other faulty variables due to the dependency between
variables), or (iii) both target and regressor variables are abnormal. For testing the proposed MDFDD
model, some artificial faults are inserted into the measurement data file, and results are discussed
about the method potential for the application.

Keywords: dependent faults; detection; diagnosis; chiller; benchmarking models

1. Introduction

In Canada, the energy used for buildings reached to 2.79 EJ in 2018, accounting
for 28.78% of overall energy usage [1]. The heating, ventilation, and air conditioning
(HVAC) systems use about 70% of building electricity [2] or 50% of energy consumption
for non-domestic buildings [3]. Faults of HVAC systems lead to energy waste [4], in-
crease in maintenance cost [5] and the degradation or even possible damages to HVAC
equipment [6,7]. For instance, a study about the building maintenance reported 11 fault
cases of chillers and boilers every year per 1000 m2 floor area [8].

As modern HVAC systems become increasingly complex, the combined effect of differ-
ent faults of such systems leads to increase difficulties for the detection and
isolation [9]. Building automation systems, installed in large commercial and institu-
tional buildings, are gold mines of data about the operation and performance of HVAC
systems. The maintaining HVAC systems at optimum operation status becomes one of
the most important approaches for improving energy efficiency [10]. Some questions that
should be investigated with respect to HVAC systems are listed below:

(1) Could the diversity and quality of data stored in BAS be considered sufficient for
the detection and diagnosis of faults.

(2) How cost-effective is the development and use of FDD models based on data from
BAS, compared with models based on dedicated monitoring systems.

(3) How can dependent faults be detected using data at 10–15 min time steps.
(4) How might the uncertainty of measurements affect the fault detection.
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(5) What is the minimum number and type of sensors for each potential fault that
should be used.

(6) What is the potential of virtual sensors for FDD, when considering the cost and
uncertainty of prediction.

2. Literature Review

A fault is defined as a departure from an acceptable range of observed variable or
calculated parameter associated with the equipment [11]. Due to impacts caused by faults in
HVAC systems, a number of research studies have focused on fault detection and diagnosis
(FDD) methods. An early study of components failure of a household refrigerator was
published in 1988 [12].

Most publications have discussed the detection and diagnosis of single faults [9,13]
in vapor compression chillers, HVAC systems [14–16], and air handling units (AHU) [17].
Data-driven FDD methods are commonly developed with black-box FDD techniques
because of simplicity. Rule-based FDD is the second most common FDD method. A single
fault is usually much simpler to deal with, compared with the multiple simultaneous faults
(MSFs) that occur at the same time but at different locations [9,18]. The simultaneous or
sequential faults can be classified in four categories [19]: (i) induced faults, (ii) independent
multiple faults, (iii) masked multiple faults, and (iv) dependent multiple faults.

The detection and diagnosis of multiple/simultaneous faults in HVAC systems is
still a challenge, since the combination of several faults makes difficult the separation of
individual faults.

Multiple faults (MFs) and multiple dependent faults (MDFs) are two related but
distinct topics. Both refer to multiple faults, but differ in whether dependency among faults
exists. A fault symptom might not reveal a real fault, but could be the result of another
fault in the system.

Some publications ignore the dependency of multi-faults. Such methods cannot be
used for the detection and diagnosis of multiple dependent faults. For example, ref. [20]
assumed the case when independent faults occur simultaneously in two separate loops of
a variable air volume (VAV) system: (i) the sensor of supply air temperature control loop,
and (ii) the sensor of outdoor air control loop. Reference [21] proposed a set of 26 rules for
the isolation of multiple single faults of air handling units. For instance, faults of mixed
air temperature, chilled water circulating pump, and cooling coil valve controller can be
detected. However, the interaction between the individual fault is not analyzed. As a result,
the methods proposed in these two papers are not applicable to the detection and diagnosis
of multiple dependent faults (MDFDD) in HVAC systems.

Only a small number of publications deal with methods for MDFDD in HVAC systems.
Most studies started by inserting either (i) a physical fault in an experimental set-up, or
(ii) a numerical abnormal value in the experiment data file or in the computer simulation
results. The impact of such an artificial fault of the regressor variable was assessed on
other subsequent variables (called target variables) by measurement or simulation. This
approach has an important value on the understanding of the relationship between the
cause (the fault) and the effect on other variables of subsequent equipment. A few examples
are presented in this section.

Breuker and Braun [22] used measurements from a three-ton packaged rooftop unit
along with polynomial models to develop a statistical, rule-based classifier of faults.
Such rules show whether a particular measurement increases or decreases in response to
a particular fault at steady-state conditions. For instance, the compressor valve leakage
generally increases the discharge refrigerant temperature (Tdis) from the compressor above
the normal value under steady-state condition. If measurements in a real rooftop units show
the increase in Tdis, the detection rule indicates that the fault is caused by the compressor
valve leakage; all other possible causes being neglected.

References [23–25] proposed one decoupling-based method to indicate the relationship
between target variable and potential source of fault. They used an air-cooled roof top
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unit of three tons of refrigeration installed in a laboratory-controlled environment as a case
study. Based on the theoretical analysis of physical processes in the system and within
each equipment (e.g., compressor, condenser), and from experimental measurements,
they proposed a decoupling-based method. The decoupling-based method simplifies
the diagnosis by assuming that abnormal target variable (e.g., the discharge refrigerant
temperature Tdis) is caused exclusively by one regressor variable, while the role of all other
possible regressor variables is neglected. For instance, they concluded that the abnormal
deviation of Tdis is only caused by the compressor valve leakage. The situation of faulty
target variable (e.g, faulty sensor of Tdis) was not considered.

Kim and Braun [26] expanded previous work on FDD methods [23–25], and developed
a MDFDD system that decouples the impacts of individual faults to estimate multiple faults
that occur simultaneously. They developed virtual sensors for the compressor, expansion
valve, condenser, evaporator, and refrigerant charge, using measurements from a four-ton
rooftop unit in a laboratory-controlled environment, and the compressor map. When two
simultaneous faults occur (e.g., the reduction in airflow rate due to condenser fouling,
and compressor valve leakage) the impact ratio of each fault on the system performance
(e.g., COP) degradation is isolated.

One can conclude that methods presented by [22–26] are forward methods, which
detect the impact of some faults (e.g., compressor valve leakage) on the next sensors or
equipment performance (e.g., chiller COP). These methods could be used as reference
rules for the reverse detection of single faults. However, such rules can be applied directly
only to the type of rooftop unit used in laboratory-controlled experiments. The level of
detailed measurements of all variables used in laboratory work is not feasible for an HVAC
equipment in existing buildings. Additional research is needed for the generalization of
decoupling-based method to other configurations of HVAC systems and equipment.

This paper presents an alternative method for the detection and diagnosis of multiple-
dependent faults (MDFDD) of water-cooled centrifugal chillers, using the measurement
data from Building Automation System (BAS) of an institutional building. For this purpose,
benchmarking grey-box models are developed as forward models for the detection of a fault
symptom, when the difference between measurements and predictions of target variable
exceeds a threshold value. Once the fault symptom is detected, rule-based backward fault
diagnosis models are applied. The proposed method can be generalized by updating the
model parameters with measurements from other chillers. Such an alternative method can
be integrated in BAS for continuous commissioning of HVAC equipment.

This paper contributes to the research efforts for the detection of multiple dependent
faults of a water-cooled centrifugal chiller, using data recorded by a Building Automation
System (BAS). This topic is rarely discussed in the field of FDD for the HVAC systems.
A forward residual-based fault detection approach and a rule-based backward approach
are developed.

The paper is organized as follows: Section 3 presents the development of MDFDD
method including the development of benchmarking models, detection of symptoms, and
diagnosis of faults. Section 4 presents the case study and the model training and testing
results for benchmarking grey-box models. Since there are no faults recorded during
the chiller operation, numerical artificial faults are inserted in the measurement data file.
Section 5 presents the results of MDFDD method under artificial faults. Section 6 presents
conclusions and future work.

3. Method

The proposed MDFDD method is summarized as follows:

(a) Key target variables that give essential information about the chiller performance are
selected (e.g., the electric power input to the compressor, and chiller COP).

(b) Benchmarking grey-box models that predict the expected operation values of selected
target variables, under normal operation conditions, are developed using measure-
ment data from building automation system (BAS). These models use measurements
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from regressor variables (e.g., the chilled water leaving temperature) that could be the
source of abnormal performance of target variables.

(c) If the residual of measured target value and predicted value exceeds the threshold,
the fault symptom of target variable is detected.

(d) A fault symptom might not reveal a real fault but could be the result of abnormal
values of regressors (e.g., chilled water temperature), which are in the loop prior
to the target variable. Thus, the target variable could be dependent of regressors.
The backward fault diagnosis method looks for the diagnosis of regressors faults.
Moreover, the faulty target variable itself can also generate the fault symptom.

(e) The multiple-dependent fault detection and diagnosis (MDFDD) method concludes
with three possible outcomes: (i) the target variable is faulty, (ii) the regressor variables
are faulty, and (iii) both target and regressor variables are faulty.

3.1. Benchmarking Models

Three target variables are selected, as being potentially faulty, as examples for the
development and application of proposed MDFDD method: the electric power input to
the chiller (E), the coefficient of performance of the chiller (COP), and the condenser-water
leaving temperature (Tcdwl). The grey-box model has several advantages: (1) robust [27],
(2) requires less data and being fast to train [13], (3) extrapolates well to operating conditions
outside the range of training dataset [27]. Thus, benchmarking grey-box models are selected
to predict the three target variables.

The benchmarking models are developed from measurements of normal operation, i.e.,
without known problems. Regressors of benchmarking models are selected from available
variables from BAS (Tables 1 and 2) that show potential impact over the target variables.
The benchmarking grey-box models present in an explicit format the potential impact of
corresponding regressors. The method can be expanded to other target variables, if needed.

Benchmarking model of the electric power input to the chiller

Eb = α1
(
Tchwl − Tchwl

)
− α2 Vchw + α3 mev,re f + α0 (1)

Benchmarking model of the coefficient of performance (COP)

COPb = β1Tchwl + β2Vchw + β3PLR − β4mev,re f − β0 (2)

Benchmarking model of the condenser-water leaving temperature

Tcdwl,b = γ1(Tchwr − Tchwl) + γ2 Vchw − γ3 mev,re f + γ4 E + γ5 Tcdwr + γ0 (3)

where α, β, and γ with subscripts are the parameters to be identified during the training
phase. Tchwl is mean value of Tchwl over training dataset, as the information of Tchwl setpoint
is unavailable from the case study. PLR is the part load ratio, defined as the ratio of
evaporator cooling load at each time step (Qev,m, see Equation (10)) to the evaporator
cooling load at design condition (Qev,des). mev,ref is the derived refrigerant mass flow rate at
the evaporator (Equation (12)).

The following performance metrics are used to evaluate benchmarking grey-box
models (Equations (4)–(8)):

r =
Cov(y, ŷ)
σ(y)·σ(ŷ) (4)

RMSE =

√
∑n

i=1(ŷi − yi)
2

n
(5)

CV =

√
∑n

i=1(ŷi−yi)
2

n
y

× 100% (6)
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MBE =
∑n

i=1(ŷi − yi)

n
(7)

NMBE =
∑n

i=1(ŷi−yi)
n
y

(8)

where yi is the measured value, ŷi is the predicted value, y is the mean value of measure-
ments, Cov(y, ŷ) is the covariance of y and ŷ, and σ is the standard deviation.

3.2. Forward Fault Detection Model and Evaluation
3.2.1. Forward Residual-Based Detection of Multiple-Dependent Faults

A fault symptom is detected when the residual is greater than the corresponding
threshold. The following four fault symptoms are considered in this paper.

(a) A fault symptom is detected for the chilled water leaving temperature, if the
following condition holds:

If Res (Tchwl) = abs(Tchwl,m − Tchwl) > ε(Tchwl), then Symp(Tchwl) = 1
Otherwise : Symp(Tchwl) = 0

(b) A fault symptom is detected for the electric power input, if the following
condition holds:

If Res(E) = abs(Em − Eb) > ε(E), then Symp(E) = 1
Otherwise : Symp(E) = 0

(c) A fault symptom is detected for the derived measurement of COP, if the following
condition holds:

If Res(COP) = abs(COPm − COPb) > ε(COP), then Symp(COP) = 1
Otherwise : Symp(COP) = 0

where the derived measurement of COP is calculated as follows (Equation (9)):

COPm = Qev,m/Em (9)

Qev,m = cρVchw
(
Tchwr − Tchwl

)
(10)

where Qev,m is the derived measurement of evaporator cooling load, c is water specific heat
capacity, and ρ is water density.

(d) A fault symptom of refrigerant flow rate (mev,ref) at the evaporator is detected, if
the following condition holds:

If Res(mev,re f ) = abs(∆mev,re f ) > ε(mev,re f ), then Symp(Mev,ref ) = 1
Otherwise : Symp(Mev,ref ) = 0

where ∆mev,ref is the derived variation of refrigerant mas flow rate around a reference value
(Equation (11)), which is calculated with respect to the mean value of Tchwl (or Tchwl).

∆mev,re f =
ρVchw

(
Tchwl − Tchwl

)
hsuc − hll

(11)

mev,re f =
Qev,m

hsuc − hll
(12)

where hsuc is refrigerant enthalpy measured at compressor suction, and hll is refrigerant
enthalpy measured at liquid line; both are calculated in terms of refrigerant temperature
and pressure at the corresponding locations.

Within this paper, a fault symptom only indicates the possibility of a real fault, and
thus it requires the fault diagnosis. A question naturally comes up: when a fault symptom
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is detected, is the target variable faulty or regressor variable faulty or both are faulty? To
respond this question, the backward fault diagnosis model is presented in Section 3.3.

3.2.2. Evaluation of Forward Fault Detection Model

The application of forward fault detection model returns a binary result: whether
a condition is normal or faulty. Thus, to differentiate a fault from a normal condition of
a variable is a classification problem. As illustrated by Figure 1, there are four classes of
results (points): true positive (TP), false positive (FP), false negative (FN), and true negative
(TN). TP and FN show the points when a system operates with a fault. Here, TP indicates
the points above a threshold, and FN indicates the points below a threshold. TN and FP
show the situation when a system operates with fault-free status; TN indicates the points
below a threshold, and FP indicates the points above a threshold.
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Three metrics are usually applied to evaluate fault detection models [28,29]: ac-
curacy (AC) (Equation (13)), hit rate (HR) (Equation (14)), and false alarm rate (FAR)
(Equation (15)), which corresponds to accuracy, precision, and sensitivity in the confusion
matrix [30]. AC is defined as the percentage of points that are correctly classified by the
model over the whole testing dataset, during both faulty time and fault-free time. HR is
defined as the percentage of fault points that are successfully detected when a system is
operating with a fault during only faulty time. FAR indicates the percentage of points that
are misclassified during only fault-free time. Therefore, the three metrics cover all the time
intervals over the test dataset. AC gives an overall view of the model, HR focuses on the
intervals when faults are injected to a system, and FAR considers the time when a system
operates under fault-free condition.

AC =
TP + TN

TP + TN + FP + FN
(13)

HR =
TP

TP + FN
(14)

FAR =
FP

FP + TN
(15)
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3.3. Backward Rule-Based Diagnosis of Multiple-Dependent Faults

Diagnosis of such faults is a more difficult task than the detection of single faults.
This paper proposes a rule-based backward approach to diagnose multi-dependent faults
(MDFs). First, we clarify the difference between sensor fault and variable fault. The fault of
a sensor normally does not propagate to other variables, but only shows abnormal mea-
surement values. The variable fault (abnormal value) could propagate to other variables.
An experimental study of fault impacts of a vapor compression rooftop unit indicated that
a physical artificial variable fault usually led to abnormal values of multiple variables [22].
This paper focuses on the variable fault; the study of sensor fault is beyond the scope of
this paper.

To simplify the explanation of the rule-based backward approach, only the diagnosis
of fault symptom Symp(E) is discussed in this paper. The analysis discusses the relationship
between target variable (E) and regressor variable (Tchwl). All other regressor variables are
assumed normal. Similar rules are developed for the case of another regressor variable
mev,ref, which are not presented here because of space limitation.

Rule A. If the fault symptom is detected, i.e., Symp(E) = 1, the status of regressor
variables used in Equation (1) should be verified.

Rule A1. If, for instance, the variable of Tchwl is not faulty, i.e., it does not exceed
its threshold of normal operation (Symp(Tchwl) = 0), Res(Tchwl) < ε(Tchwl), then the target
variable E is faulty. Thus, Symp(E) is independent of regressor variables.

Rule A2. If, for instance, the variable of Tchwl is faulty, i.e., it exceeds its threshold of
normal operation (Symp(Tchwl) = 1), Res(Tchwl) > ε(Tchwl), then faults could occur with the
regressor variable of Tchwl and/or the target variable E. Thus, additional investigation is
required to verify the dependence between E and Tchwl, because the fault symptom of E
could be induced (i) by abnormal operation of regressor variable of Tchwl, (ii) by target
variable E itself, or (iii) by both.

Two cases could occur:

� The fault of Tchwl propagates to the predicted benchmark value of Eb, and the residual
between Eb and Em exceeds the threshold of E. This case indicates the measured Em
is not affected by Tchwl fault, and, as a results, the variable of E appears to be faulty.
Thus, both variables Tchwl and E appear to be faulty. Additional investigation by the
operation team is needed.

� The fault of Tchwl propagates to the predicted benchmark value of Eb, but the residual
between Eb and Em is still within the threshold of E. This case indicates the measured
Em is affected by Tchwl fault, and, as a results, the false fault symptom of E is dependent
of Tchwl. Thus, the electric power E is not faulty. This condition that applies to multiple-
dependent faults was not presented so far in any publication.

Rule B. If the fault symptom is not detected Symp(E) = 0, then variable E is normal.

4. Case Study
4.1. Information of Cooling Plant

Measurements from a central cooling plant of Loyola campus of Concordia University,
Montreal are used in this paper for the method development and validation. The cooling
plant includes two centrifugal water-cooled chillers that operate in parallel (Figure 2) under
three scenarios: (1) only Chiller 1 (CH#1) works; (2) only Chiller 2 (CH#2) works; and
(3) chillers CH#1 and CH#2 work simultaneously [31,32]. Chillers use low-pressure R-123
refrigerant. They are identical at design conditions (Table 1).
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Table 1. Design conditions.

Variable Symbol Value

Evaporator cooling load (kW) Qev,des 3165
Chiller coefficient of performance (-) COPdes 5.76
Electric power input to chiller (kW) Edes 549.5
Chilled water leaving temperature (◦C) Tchwl,des 5.6
Chilled water return temperature (◦C) Tchwr,des 13.3
Condenser water leaving temperature (◦C) Tcdwl,des 35.0
Condenser water return temperature (◦C) Tcdwr,des 29.4
Cooling tower load (kW) QCT,des 4540
Volumetric flow rate of chilled water (L/s) Vchw,des 72.6
Volumetric flow rate of condenser water (L/s) Vcdw,des 131.5

BAS records the cooling plant operation every 15 min, and the raw measurements are
assigned into three groups based on the three-scenario status. The measured variables from
BAS are listed Table 2. Each of the three data groups is further divided into two datasets,
i.e., working days and weekend/holidays.

The pre-processing verified the raw data quality [30]. Obvious abnormal values
(e.g., negative values of Vchw when the chiller operates normally), as well as data under
transient condition (e.g., chiller start-up) were removed. Outliers that exceed Chauvenet’s
criterion [32] were removed. After the data pre-processing, it was noticed that chiller CH#2
under working days contains the most available measurements (445 measurement data
from 11 July 2013 to 26 July 2013). Hence, the chiller CH#2 was selected for the case study.
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Table 2. Measurements from the central cooling plant available from BAS for this study.

Variable Symbol

Relatively humidity of outdoor air (%) RHoa

Outdoor air temperature (◦C) Toa

Chilled water leaving temperature (◦C) Tchwl

Chilled water return temperature (◦C) Tchwr

Condenser water leaving temperatures (◦C) Tcdwl

Condenser water return temperature (◦C) Tcdwr

Chilled water volumetric flow rate (L/s) Vchw

Power input to chiller (kW) E
Saturated refrigerant temperature in evaporator (◦C) Tev

Refrigerant pressure in evaporator (kPa) Pev

Saturated refrigerant temperature in condenser (◦C) Tcd

Refrigerant pressure in condenser (kPa) Pcd

4.2. Benchmark Model Training and Testing Results

The training data set of normal operation, composed of first 326 measurement data
(73% of the whole data set) recorded by BAS every 15 min, from 11 July 2013 to 24 July 2013,
are used for the identification of each model parameters with the least squares method
(LSM) (Equations (1)–(3)). The remaining 119 measurement data points (27% of the whole
data set) are used for the models testing. The benchmarking grey-box models are developed
using Python (version 3.9.12) [33] with open-source libraries (e.g., Scikit-learn [34]). The
derived benchmark models for the three target variables are summarized in Table 3.

Table 3. Derived benchmarking grey-box models based on measurements of case study.

Target Variable Derived Benchmarking Grey-Box Model

E (kW) Eb = 22.60
(
Tchwl − Tchwl

)
− 0.92 Vchw + 22.09 mev,re f + 162.49

COP (-) COPb = 0.80 Tchwl + 0.03 Vchw + 37.81 PLR − 1.64 mev,re f − 5.02

Tcdwl (◦C) Tcdwl,b = 0.47 (Tchwr − Tchwl) + 0.02 Vchw − 0.09 mev,re f + 0.01 E + 0.90 Tcdwr + 0.63

Graphical relationships between benchmarking and measured values of the three
selected target variable (Figures 3–5), and the performance metrics (Equations (4)–(8)) of
benchmarking models, calculated over the testing data set, show good prediction per-
formance (Table 4). Results from the augmented and sliding window techniques, not
presented in this paper, indicated the three benchmarking models are robust.

Table 4. Performance metrics of benchmarking models over testing data set.

Model
Performance Metrics

r RMSE CV (%) MBE NMBE

E (kW) (Equation (1)) 0.98 20.76 6.07 3.98 0.01

COP (-) (Equation (2)) 0.86 0.34 6.69 −0.02 0.00

Tcdwl (◦C) (Equation (3)) 0.98 0.25 0.76 0.02 0.00
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The derived models compare well with the actual response of chiller CH#2. For
instance, when Tchwl increases, the control system would increase the electric power input
to the chiller to maintain the setpoint of Tchwl (Table 3).

The overall uncertainty of measurements was calculated as composed of bias and
random errors [35,36] (Table 5). The values that are not available are marked with “NA”.
The threshold ε that is used in the fault detection is equal to the overall uncertainty.

Table 5. Uncertainty of measurements and threshold values derived from the training dataset.

Item Average Bias Error Standard
Deviation

Random
Error

Overall
Uncertainty Threshold ε

Toa (◦C) 21.88 0.41 5.21 0.48 0.63 0.63

Tchwl (◦C) 7.19 0.34 0.08 0.01 0.34 0.34

Tchwr (◦C) 11.50 0.36 1.83 0.17 0.40 0.40

Tcdwl (◦C) 32.70 0.46 1.64 0.15 0.49 0.49

Tcdwr (◦C) 28.62 0.44 0.37 0.03 0.44 0.44

Vchw (L/s) 91.15 4.56 2.64 0.25 4.56 4.56

E (kW) 324.67 16.23 106.68 9.91 19.02 19.02

COP (-) 5.02 NA 0.68 0.06 0.48 0.48

mev,ref (kg/s) 10.83 NA 4.96 NA 0.68 0.68

5. Artificial Faults

Detailed records of known equipment faults in existing HVAC system are usually un-
available for research purpose. The building operation team, due to potential disturbances
in the operation and occupants’ discomfort, does not easily accept insertion of artificial
physical faults in the operation of existing HVAC systems. Several publications present the
insertion of numerical artificial faults in the computer simulation models. For instance, a
fixed bias of 1 ◦C was added to the chilled water return temperature sensor in TRANSYS



Energies 2023, 16, 210 12 of 20

simulator to generate data with a fault [37]. A bias fault of 10 ◦C and a drifting fault of
0.9 ◦C/h were injected into simulation results for fault detection using the neural network
model [38].

Since there are no faults recorded by the BAS during the chiller operation of this case
study, numerical artificial faults are inserted in the measurement data file: (i) the increase
in bias error of the chilled water leaving temperature, and (ii) the reduction in refrigerant
mass flow rate at the evaporator.

5.1. Artificial Fault of the Measured Chilled Water Leaving Temperature

A bias of 5 ◦C increase is inserted into the testing dataset for Tchwl over eight-time
steps, starting at 13:15:00 on 26 July 2013 and ending at 15:00:00 on 26 July 2013 (Figure 6).
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and ending at 15:00:00 on 26 July 2013.

All the four symptoms (Symp(Tchwl), Symp(E), Symp(COP) and Symp(mev,ref)) are suc-
cessfully detected (Figures 7–10) and they all start from 13:15:00 on 26 July 2013, and end
at 15:00:00 on 26 July 2013, which is the same time interval as the artificial Tchwl fault. The
FDD model performance metrics are listed in Table 6.

Table 6. Model performance metrics for artificially inserted Tchwl fault, derived from test dataset from
25 July 2013 to 26 July 2013.

Assessment Metrics
Symptoms

Symp(Tchwl) Symp(E) Symp(COP) Symp(mev,ref )

AC (%) 100.0 79.0 89.1 100.0
HR (%) 100.0 100.0 100.0 100.0
FAR (%) 0.0 22.5 11.7 0.0
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HR values for the four symptoms (Symp(Tchwl), Symp(E), Symp(COP), and Symp(mev,ref))
are all 100%. Thus, all the dependent fault symptoms during the period of artificially
inserted Tchwl fault, are successfully detected.

Some measurements exceed the threshold ε(E) in fault-free time for E (Figure 8), which
results in a relative lower value of AC = 79.0% in terms of Symp(E) (Table 6). These singular
points might be due to changes of return chilled water temperature, before the second
chiller is turned on. Therefore, such abnormal measurements are not considered as fault
symptoms. Same conditions are also noticed in fault detection of Symp(COP) (Figure 9).

As Symp(Tchwl), Symp(E), Symp(COP) and Symp(mev,ref) are detected simultaneously,
the variables Tchwl, E, COP and mev,ref appear to be faulty according to fault diagnosis rules.
Additional investigation by the operation team is needed.

5.2. Artificial Fault of the Measured Refrigerant Mass Flow Rate

The refrigerant mass flow rate at the evaporator is reduced by 40% due to a fault
starting at 13:15:00 on 26 July 2013 and ending at 15:00:00 on 26 July 2013 (Figure 11).
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Symp(E), Symp(COP) and Symp(mev,ref) are successfully detected with high HR values
of 100% (Table 7). All symptoms start at 13:15:00 on 26 July 2013 and end at 15:00:00 on
26 July 2013 (Figures 12–14), which is the same time interval of artificial mev,ref fault.

Table 7. Model performance metrics for artificially inserted mev,ref fault, derived from test dataset
from 25 July 2013, to 26 July 2013.

Assessment Metrics
Symptoms

Symp(E) Symp(COP) Symp(mev,ref)

AC 78.99% 89.08% 100%
HR 100% 100% 100%
FAR 22.52% 11.71% 0.00%
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The impact of artificial fault of mev,ref propagates to the two variables of Eb and COPb,
which sequentially leads to the detection of Symp(E) and Symp(COP). The impact of artificial
mev,ref fault on itself is also identified as Symp(mev,ref) is detected.

In this example, the fault symptoms of E, COP, and mev,ref are detected. According
to fault diagnosis rules, the three variables E, COP, and mev,ref are faulty. Additional
investigation by the operation team is needed.
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6. Conclusions and Future Work

This paper is a contribution to multiple-dependent FDD of chillers using benchmark-
ing grey-box models along with measurement data from BAS of an existing building.

The benchmarking grey-box models for Eb, COPb and Tcdwl.b, are accurate (Table 4).
Results of two case studies using artificial faults of Tchwl and mev,ref indicate the proposed
model for MDFDD works well by detecting the symptoms of target variables with high hit
rate and isolating the source faults successfully. Authors are aware about some limitations
of the present work. BAS recordings have a time interval of 15 min, which is not enough
for the detection of faults under transient regimes. The proposed method could miss the
impact of shorter-time disturbances. Measurement data in this paper only use data over
one month (July 2013). Work is currently in progress to explore the chiller operation with
measurement data over the whole cooling season.

Although one regressor variable fault (e.g., Tchwl) might have impact on other re-
gressors such as Vchw or/and mev,ref, this paper considers only the significant impact on
the target variable (e.g., E). The impact on other regressor variables is neglected. Future
work should consider the combined effect of (i) abnormal values of physical variables and
(ii) impact on other regressor variables.
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Nomenclature

BAS building automation system
COP coefficient of performance
CV coefficient of variance of the RMSE
C specific heat capacity at constant pressure, kJ/(kg·K)
E electric power input to the chiller, kW
FDD fault detection and diagnosis
FN false negative
FP false positive
hdis refrigerant enthalpy at the compressor discharge, kJ/kg
hll refrigerant liquid line enthalpy, kJ/kg
hsuc refrigerant enthalpy at the compressor suction, kJ/kg
mev,ref refrigerant mass flow rate at the evaporator, kg/s
MBE mean bias error
MF multiple faults
MDF multiple dependent faults
MDFFD multiple dependent fault detection and diagnosis
MSF multiple simultaneous faults
NMBE normalized MBE
NA not available
PLR part load ratio
Qev evaporator cooling load, kW
r Pearson coefficient
RHoa outdoor air relative humidity, %
RMSE root of mean square error
TN true negative
TP true positive
Tcd saturated refrigerant temperature at the condenser, ◦C
Tcdwl condenser water leaving temperature, ◦C
Tcdwr condenser water return temperature, ◦C
Tchwl chilled water leaving temperature, ◦C
Tchwr chilled water return temperature, ◦C
Tdis compressor discharge temperature, ◦C
Tev saturated refrigerant temperature at the evaporator, ◦C
Toa outdoor air temperature, ◦C
Vcdw condenser water flow rate, m3/s
Vchw chilled water flow rate, m3/s
Greek symbols
ε threshold
ρ water density, kg/m3

Subscript
chw chilled water
cd condenser
cdw condenser water
ev evaporator
m measured variable
b benchmarking predicted variable
ref refrigerant
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