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Abstract: Series arc faults cause the majority of household fires involving electrical failures or
malfunctions. Low-fault current amplitude is the reason for the difficulties faced in implementing
effective arc detection systems. The paper presents a novel arc detection and faulty line identification
method. It can be easily used in the low-voltage Alternate Current (AC) household network for arc
detection in the Non-Intrusive Load Monitoring (NILM). Unlike existing methods, the proposed
approach exploits both current and voltage signal time domain analysis. Experiments have been
conducted with up to six devices operating simultaneously in the same circuit with an arc fault
generator based on the IEC 62606:2013 standard. Sixteen time-domain features were used to maximize
the arc-fault detection accuracy for particular appliances. Performance of the random forest classifier
for arc fault detection was evaluated for 28 sets of features with five different sampling rates. For
the single period analysis arc, detection accuracy was 98.38%, with F-score of 0.9870, while in terms
of the IEC 62606:2013 standard, it was 99.07%, with F-score of 0.9925. Location of a series arc fault
(line selection) was realized by identifying devices powered by the faulty line. The line selection
was based on the Mean Values of Changes feature vector (MVC50), calculated for absolute values of
differences between adjacent current signal periods during the arc fault. The fault location accuracy
was 93.20% for all cases and 98.20% for cases where the arc fault affected a single device.

Keywords: arc fault detection; fault location; line selection; NILM; non-intrusive load monitoring;
series arc; smart grid; smart metering

1. Introduction

Arc fault, the phenomenon of plasma discharge, is the unintentional arcing condition
in the electrical circuit caused by insulation aging, loose wiring, or external damage. Arc
faults occur when there is discontinuity on the conductors. It is a serious problem in the
low-voltage network and a common cause of home fires. According to the French ONSE
(Observatoire National de la Sécurité Electrique), 25% of the fires in France are caused
by electrical sources [1]. American National Fire Protection Association (NFPA) report
indicates that the arc was the source of heat for 63% of home fires involving electrical
failure or malfunction from 2015–2019 [2]. A series and parallel arc fault circuit can be
distinguished [3] (Figure 1). During the latter (similar to the short circuit), overcurrent and
earth leakage manifest, triggering standard protection devices such as fuses and circuit
breakers. Unfortunately, the series arc is more challenging to detect. When it occurs on
a single line, the current decreases and the change amplitude is much smaller than for a
parallel arc. As the arc and the load form the series, the current magnitude on the line
decreases. Standards were formulated to prevent the consequences of arc faults, such as
American UL1699 [4] and European IEC 62606 [5]. They recommend the use of Arc Fault
Circuit Interrupters (AFCIs) and Arc Fault Detection Devices (AFDD), respectively. Their
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accuracy is limited in the case of a series arc fault. Some devices (e.g., motors, electronic
switching mode power supplies) generate series arcs during operation [6]. Further research
is needed to develop an effective and affordable method for detecting arc fault in series and
identifying the electrical network branch in which arc fault occurs, called line selection.

Figure 1. Parallel and series arc fault, L: Live, N: neutral, PE: earth.

The arc faults are present in low-voltage AC and DC networks. There is a wide research
area for DC series arc detection, especially in photovoltaics systems [7–16]. DC signals are
not periodic, so arc fault may not be easily detected via recognizable amplitude or frequency
signatures with pattern recognition techniques. Arc detection and location systems for
such systems often exploit spectral analysis with Short Term Fourier Transform [7,17] and
Wavelet Transform [9,16]. The use of Adaptive Local Mean Decomposition was proposed
in [10]. The lightweight convolutional neural network (CNN) for arc fault detection in PV
systems was described in [11]. Neural networks were also tested in [12,14,18].

For AC networks, the arc detection and location systems considered three main
concepts—mathematical models of the arc, physical characteristics of the arc, and analysis
of the characteristics of arc voltage and current signal. Due to the diversity of the arc faults,
their mathematical models required a large number of parameters and lacked accuracy [19].
Analysis of the physical arc’s characteristics was based on the corresponding light, heat, or
electromagnetic radiation [20–22]. These methods were applied in arc detection in medium-
voltage switchgear. Arc fault detectors in these methods detected high-intensity light that
occurred during the arc fault. This is impractical in a household low voltage network
because the wires are hidden in the wall, floor, etc., where an optical sensor cannot be used.
The usefulness of some series arc features was proven. Time domain features included
Zero Current Period (ZCP) [23–26], the ratio of the current rate of change to the RMS
value (CRC) [26], Maximum Split Difference (MSD) [23], and measures related to Euclidean
distance (E, MED—Maximum Euclidean Distance) between adjacent cycles [23–25]. The
original feature space was often transformed to increase the detection probability. Arc
detection accuracy of 99.1% and load identification of 99.3% were achieved using PCA
and SVM in [23], but it considered only the case of individually operating devices. In [24],
where up to 4 appliances operate simultaneously, the accuracy was 94.86%.

Load identification and line selection based on harmonic current disaggregation of
known appliances in operation accuracy was 90.91%. In [26], the distinguishability of
categories in the ZCP-CRC plane for the individual appliance operation is presented.
In [25] zero–current time proportional coefficient was combined and compared to the
empirical threshold to determine whether there was a series arc. Spectral Dispersion
Index analysis with adaptive threshold was exploited in [27]. The detection was up to
100%, but with a notable number of false detections and only one load operating at a time.
Gray-Level Co-Occurrence Matrix (GLCM) allowed for arc detection accuracy of 99% and
appliance identification accuracy of 98% (among 13 appliances) [28]. Multi-load scenario
was considered in [29], where wavelet transform, variational mode decomposition, and
Wigner-Ville distribution were exploited. The accuracy of arc fault detection was 99.0%,
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and line selection was 94.1%. In [30,31], neural networks were used for frequency analysis
with high accuracy achieved with no information if single or multi-load scenarios were
considered. Line selection method based recurrent neural networks (RNN) was proposed
in [32] with an accuracy of 98.7% achieved. The analysis involved a 7.5 kW three-phase
motor. Some of the cited references include additional features (such as harmonic content
in [24]). This study was limited to the analysis of time-domain features only.

The use of methods based on time-domain analysis simplified and accelerated the per-
formance of the detection system. Algorithms for arc fault detection in practical application
were implemented in real-time systems. The following paper proposes a novel method for
arc detection and line selection. The method consisted of a measurement part (data acqui-
sition), data pre-processing (feature extraction), and decision-making (arc fault detection
with random forest classifier and line selection with k-nearest neighbors algorithm). The
data processing approach was based on the NILM framework proposed in [33], where the
analysis was performed in the time domain. Periodicity of the network voltage signal was
exploited by dividing the signal into separate periods. It was assumed that the beginning
of each period was the time instant of the voltage’s fundamental component zero crossing.
From these periods, the array-like representation of the current and voltage samples vectors
was constructed. It enabled easy calculation of the proposed arc detection features and
current signal changes aggregation across consecutive periods during the arc. The mean
values of changes between the adjacent current periods, during which an arc fault occurred
in the last second (MVC50), had a repeatable character. This can be considered characteristic
for appliances on the fault network branch, despite these changes being discontinuous and
having aperiodic characteristics. It should also be noted that arc fault does not have to last
continuously. The proposed method enhanced the functionality of the NILM system [33],
as analyzed signals were collected at a single point of the electrical network.

Unlike other methods for series arc detection in AC networks, the proposed approach
used a voltage signal for the time domain analysis. Values of features extracted from the
voltage signal were more resilient to the load-specific changes in non-arc conditions than
features extracted from the current signal. This was essential for avoiding false detections.

The content of the paper is as follows. Section 2.1 covers the applied measurement
system for Data Acquisition (DAQ) and extracted dataset characteristics. A total of
16 tested arc fault features are defined in Section 2.2. Section 2.3 covers the proposed
algorithm for the identification of series arc fault location, including the calculation of
the MVC50 feature vector. Obtained results for arc detection and line selection are pre-
sented in Sections 3.1 and 3.2, respectively. Discussion and future prospects are presented
in Section 3.3. Section 4 summarizes the conclusions of the research.

2. Description of the Method

The proposed method was developed based on the uniquely prepared dataset and
consisted of two steps (Figure 2). The first one was the general detection of arc fault
occurrence in the analyzed circuit (arc fault detection section in Figure 2). It used 16 features
indicating the presence of an arc fault (see Section 2.2). The second step was the fault
location (arc fault location section in Figure 2). For each period k arc fault detection features
were calculated. On the basis of these features, detection of a series arc fault was performed
using a random forest classifier. If an arc fault was detected in period k, the value of the ALS
parameter (number of periods in which an arc fault was detected in the last second) was
stored in the VC table in modulo(k, 50) column. If in the last second more than 6 periods
with arc fault were detected (ALS >= 7) then MVC50 feature was calculated and the line
selection process with k-nearest neighbors was performed. This was done through the
identification of the appliance powered by an arc fault, hence the particular line. Device
identification was based on the novel MVC50 feature vector proposed in this publication
(see Section 2.3). The proposed method enhanced the functionality of the NILM system as
in [33]—analyzed signals were collected at a single point of the electrical network.
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Figure 2. Arc fault detection and location algorithm.

2.1. Experimental Setup, Dataset, and Data Processing

The experimental setup is shown in Figure 3. The measuring system (based on the
16-bit Advantech PCIE-1816 DAQ card) was adapted from [33]. Signals representing values
of the total current itotal(t) in the main power line ui(t) and the j-th socket (j ∈ (1, 6))
uj(t) were measured using the current transformers (indicated in Figure 3 as T0 and
Tj). The transformer Tu allowed for acquisition of utotal(t). Voltages and currents ui, ii,
i = {1, . . . , 6}were measured only for method verification and were not used in the actual
NILM system.

Experiments were conducted for six typical household appliances of different types.
Their characteristics (with the location identifier) are in Table 1. A total of 27 sequences
of switching each of them on/off were recorded for classifier training purposes. During
the test run, the series arc was generated using the arc generator (Figure 4) at a single
socket (locations 1–6) or in the main power line (location 7), affecting connected devices.
The arc fault generator is compliant with the IEC 62606:2013 standard [5]. In the case of
locations 1–6, only one appliance was powered via an arc fault generator by inserting it
between the power supply socket and tested appliances. At the same time, remaining
appliances could operate in the other 5 lines, without an arc fault. They were used as
masking loads, making the fault detection via itotal and utotal signals analysis more difficult.
An arc fault scenario on the main power line was realized by the arc generator working at
the circuit breaker in main power line (MCB, 7 at Figure 3).
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Figure 3. Experimental setup scheme.

Table 1. Characteristics of the tested electrical appliances.

Location Appliance Load Type Rated Power (W)

1 Computer SMPS 50
2 Bulb Resistive 60
3 Furnace Motor-resistive 1100
4 Hairdryer Motor-resistive 550
5 Vacuum cleaner Inductive 450
6 TV SMPS 40
7 Combinations of 1–6 - 40–2250

Figure 4. (a) Schematic setup of series arc fault generator and (b) photo of experimental equipment.

In every run, signals utotal and itotal were registered. At the third channel of DAQ
card, the signal representing ij was recorded (where j was the socket number with the arc
fault generator connected). These data were used for manual labeling feature vectors and
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comparison of single and multi-load scenarios. Up to 6 devices operated simultaneously
during 15 measured sequences, while only one device was operating in the remaining
12 sequences. Collected data were split into two datasets: the training (7 sequences) and the
testing (20 sequences). In the former, during 6 sequences, only one device was connected to
the faulty line. During the 7th run, up to 6 devices worked when connected to the faulty
line, while the arc fault generator was plugged into the main power line (location 7). The
test dataset consisted of sequences with up to 6 devices working simultaneously (at their
separate lines) and the arc fault generator plugged into different lines each time. If the
arc fault generator was plugged into locations 1–6, one device was powered via a faulty
line. At the same time, the remaining 5 appliances could operate normally via non-faulty
lines, acting as masking loads. This way the test collection contained sequences of devices
working in pairs, threes, fours, fives, and all 6. During data processing the signals utotal and
itotal were divided into separate periods for feature extraction (conversion to array notation
block in Figure 2). The procedure for transforming the signals utotal and itotal (i(n) and
u(n) in Figure 2, respectively) to array notation is described in [33]. The beginning of each
period k was the time instant t0k of the voltage’s fundamental component zero crossing
from negative to positive values. Proper selection of time instants t0k required lowpass
filtering of the original voltage signal utotal with the cut-off frequency of 70 Hz. Hence the
beginning of each period (t0k) was the same, regardless of the disturbances in the particular
power network. Table 2 summarizes the number of signal cycles included in the training
and test sets considering arc and non-arc cases and arc fault generator location.

Table 2. Summary of the number cycles in training and test datasets.

Dataset Type

Arc Fault Generator Location

1 2 3 4 5 6 7 All

Number of Cycles

traning 5028 8111 7074 6779 8394 10,107 18,523 64,016
training—arc 2532 5467 4358 3117 4952 4851 7572 32,849

training—nonarc 2496 2644 2716 3662 3442 5256 10,951 31,167
test 29,538 43,274 17,666 45,332 41,592 41,257 31,394 250,053

test—arc 12,468 21,357 8541 23,109 18,087 16,924 12,847 113,333
test—nonarc 17,070 21,917 9125 22,223 23,505 24,333 18,547 136,720

Signals utotal , itotal and ij from each sequence were transformed to 2D-arrays U I and
Iarc, respectively [33]. Each column there represents samples from the single 50 Hz current
period Ik with k = 1, . . . , K

Ik = [i1,k, . . . , im,k, . . . , iM,k] (1)

For fs = 250 kHz, it contained M = 5000 samples, identified by the index m.

2.2. Feature Extraction for Arc Fault Detection

The occurrence of a series arc in the appliance branch caused changes in the current
(and voltage signal observed, for instance, in [25]). Examples of such events are shown in
Figure 5.
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Figure 5. Current waveform for individually operating appliances with (orange line) or without (blue
line) presence of series arc fault. (a) computer, (b) bulb with marked flat shoulder effect, (c) furnace
with marked flat shoulder effect, (d) hairdryer, (e) vacuum cleaner, (f) TV.

A method of calculating the following signal features for every signal period used
an array notation of signals. The feature vector contained 16 positions: 7 pairs of features
for current itotal and voltage utotal signals and only 2 features for the overall signal itotal . A
total of 5 were used in the literature, while 11 were the original input of the authors to the
domain. The following were calculated both for current and voltage signal:

a. The sum of differences between adjacent periods from the array I [24]:

EI(k) =

∣∣∣∣∣ M

∑
m=1

(Ik+1(m)− Ik(m))

∣∣∣∣∣ (2)
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b. The modified sum E (2). Instead of the sum of differences between adjacent periods,
the absolute values of these differences were used:

EmodI(k) =
M

∑
m=1
|(Ik+1(m)− Ik(m))| (3)

c. The Maximum Euclidean Distance (MED) used in [23]:

MEDI(k) = max(

√√√√ M

∑
m=1

(|Ik+1+T(m)− Ik+T(m)|)2), where T = {1, 2, 3, 4}. (4)

It indicated the largest Euclidean distance between 5 consecutive adjacent cycles.
This can be a source of false detections in terms of the IEC 62606:2013 standard [5], in
which the arc fault status is activated only when at least 7 cycles are identified as an
anomaly within 1 s.

d. Euclidean Distance ED, without selecting the maximum distance across consecutive cycles:

EDI(k) = (

√√√√ M

∑
m=1

(|Ik+1(m)− Ik(m)|)2) (5)

e. Maximum Single Sample Distance (MSSD) was used:

MSSDI(k) = max(|Ik+1(m)− Ik(m)|), m ∈< 1, 2, .., M > (6)

f. Maximum Slip Difference (MSD) [23] characterized abrupt changes in the current signal:

MSDI(k) = max

∣∣∣∣∣
(

m+4

∑
m

Ik(m)−
m+9

∑
m+5

Ik(m)

)
/5

∣∣∣∣∣, m ∈< 1, M− 9 > (7)

g. The Maximum Change in a Cycle (MCC) without calculating ratio to RMS value was
more efficient:

MCCI(k) = max(|Ik(m− 1)− Ik(m)|) ∈< 1, 2, .., M). (8)

Two features from [23,26] were calculated only for the current:
h. CRC—the ratio of change between two consecutive samples to the RMS value from

the previous cycle, presented in [26]:

CRCI(k) =
max(|Ik(m + 1)− Ik(m)|)

Irms
, m ∈ < 1, 2, .., M) (9)

i. Zero Current Period (ZCP) represented the flat shoulder phenomenon characteristic
for resistive appliances in case of an arc fault occurrence (Figure 5b,c). The feature
was defined as the rate of all the samples in the current signal cycle whose absolute
value was smaller than the 5% of RMS value in the previous cycle (IRMS):

ZCP =
M

∑
m=1

km/M, km =
{

1, |km | < 0.05Irms
0, |km | ≥ 0.05Irms

(10)

The ZCP feature was efficient mostly for individually operating appliances. In the
case of a larger number of devices operating simultaneously (where only a part is powered
through an arc fault), the flat shoulder effect was reduced (Figure 6). There were current
waveforms for the same two periods—one with the presence of an arc fault (orange line)
and another without an arc fault (blue line). In Figure 6a, the analyzed signal was itotal ,
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including current signals suppressed by masking loads. The increase of ZCP in the case of
an arc fault occurrence was minimal here. In Figure 6b, the analyzed signal was i2, which
was sub-metered only for load 2 (bulb). There was an almost fourfold increase in the value
of ZCP when an arc fault occurred.

Figure 6. Comparison of current waveforms for bulb operating with masking loads (a) and without
masking loads (b) with (orange line) or without (blue line) presence of series arc fault. The arc-fault
generator was plugged into location 2 (bulb). On (a) in addition to the bulb, computer, hairdryer, and
furnace were operating. ZCP feature (10). value in case of operating masking loads ((a), analysis
of the signal itotal from Figure 3) increased from 0.0182 to 0.0188 after the occurrence of an arc fault.
When no masking loads were working in the background ((b), analysis of the signal i2 from Figure 3)
ZCP increased from 0.0238 to 0.0820.

Based on these features, 28 sets of features were created. Their purpose was to check
the influence of the sets of features on the classifier’s accuracy. They were applied to train a
random forest classifier with the number of trees n = 25. It was useful when operating in
measurement uncertainty conditions.

All analyzed feature sets (named as ‘#n’ with n ranging from 1 to 28) are presented in
Table 3. The inclusion of the feature to the set #n is denoted by ‘x’. The performance of arc
fault detection with particular sets of features is described in Section 3.1.

Set #1 contained all features except ZCP and CRC. These features were used only for
comparing with the literature references. Sets #2–#8 each included 6 of the 7 pairs of arc
fault detection features included in set #1. Each of sets #2–#8 was missing a different pair of
features included in set #1. Analysis of the results for sets #2 to #8 allowed us to evaluate the
impact of missing features compared to the results for set #1 (containing all features). Set #9
contained only 6 features calculated by finding the maximum differences between adjacent
periods or between consecutive samples (MSSD, MCC, MSD). Detection accuracy could
thus have been vulnerable to a decrease in sampling frequency. Set #10 consisted of features
calculated on the basis of differences between whole adjacent periods (E, Emod, MED, ED).
The accuracy for #10 was less sensitive to a decrease in sampling frequency than for set #9.

For features EI , MEDI , MSDI , CRCI and ZCPI (the time domain features already
proposed in the cited literature), sets of features #11–#13 were created. They correspond
to time-domain features used in the literature, such as #11 (MSDI , ZCPI , MEDI) [23],
#12 (CRCI and ZCPI) [26], and #13 (EI and ZCPI) [24]. Set #14 included all features from
literature (EI , MSDI , ZCPI , MEDI , CRCI). Sets #11–14 contained only features extracted
from the current signal. To verify the change in detection accuracy by using additionally
the voltage signal-based features (EU , MSDU , MEDU), sets #15–#18 were defined.
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To verify the possibility of arc fault detection based only on the current signal analysis,
sets #19 to #28 were created. They contained the same features as sets #1 to #10, but only
for the current signal.

Table 3. Analyzed sets of features.

Set Name
Feature Name

EI EU EmodI EmodU MEDI MEDU EDI EDU MSSDI MSSDU MCCI MCCU MSDI MSDU CRCI ZCPI

#1 x x x x x x x x x x x x x x
#2 x x x x x x x x x x x x
#3 x x x x x x x x x x x x
#4 x x x x x x x x x x x x
#5 x x x x x x x x x x x x
#6 x x x x x x x x x x x x
#7 x x x x x x x x x x x x
#8 x x x x x x x x x x x x
#9 x x x x x x

#10 x x x x x x x x
#11 x x x
#12 x x
#13 x x
#14 x x x x x
#15 x x x x x
#16 x x x
#17 x x x
#18 x x x x x x x x
#19 x x x x x x x
#20 x x x x x x
#21 x x x x x x
#22 x x x x x x
#23 x x x x x x
#24 x x x x x x
#25 x x x x x x
#26 x x x x x x
#27 x x x
#28 x x x x

2.3. Calculation of the MVC50 Feature Vector for Fault Location Identification

During an arc fault, the discontinuous and aperiodic characteristics changes were observed
in the signal. Examples of changes between two adjacent periods are in Figures 7 and 8 for the
current and voltage signals, respectively. For SMPS (Switched Mode Power Supplies), power-
supplied appliances such as a computer (Figures 7a and 8a) or a tv set (Figures 7f and 8f), these
changes were short-term spikes with high amplitude. For resistive devices, the changes had
the highest values near the voltage signal zero crossings (Figures 7b,d and 8b,d), which was
related to the flat shoulder effect.

Differences between adjacent periods were varying. For the current signal the sum
of absolute values of differences between the adjacent Ik vectors during an arc fault had
a repeatable character. We proposed the algorithm for calculating MVC50 feature vector,
allowing for the identification of the device powered via the arc fault line (arc fault location
section on Figure 2). Then analyzing the topology of the electrical network and knowing
the line powering the device enables locating an arc fault (line selection). Examples of
absolute values of differences between 50 consecutive Ik periods are shown in Figure 9. The
figure shows only the first half of the periods for better readability. It can be noted that the
changes in the current signal occurred only in part of the periods k and had varying values.

For each period k for which the algorithm detected an arc fault, the value of ALS (Arc
faults in Last Second, the number of periods for which an arc fault was detected in the most
recent second) was incremented, and the vector ∆Ik was calculated:

∆Ik = Ik − Ik−1 (11)

and stored in the VC (Values of Changes) array in i column, where i is equal to k modulo
50. If the arc fault was not detected, the value of ALS was decremented and the vector of
zeros ∆I0 (12) was stored in VC array i column, where i was equal to k modulo 50. The
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MVC50 feature vector was calculated only for the ∆Ik vectors from periods k in which the
arc fault was detected.

∆I0 = im = 0, m ∈ < 1, M > (12)

If the ALS value was greater than or equal 7 (which means that at least in 7 periods
during the last second, an arc fault was detected), the MVC50 feature vector was calculated
from the VC array and ALS. The minimum time required for running the line selection
procedure was 0.14 s (7 periods).

MVC50 k(m) =
50

∑
i=1
|VCi(m)|/ALS, m ∈ < 1, M > . (13)

Figure 7. Changes between adjacent cycles of current signal for individually operating appliances
with (orange line) or without (blue line) presence of series arc fault. (a) computer, (b) bulb, (c) furnace,
(d) hairdryer, (e) vacuum cleaner, (f) TV.
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Figure 8. Changes between adjacent cycles of voltage signal for individually operating appliances
with (orange line) or without (blue line) presence of series arc fault. (a) computer, (b) bulb, (c) furnace,
(d) hairdryer, (e) vacuum cleaner, (f) TV.
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Figure 9. Absolute values of differences between 50 consecutive Ik periods for computer powered
via a line with arc fault. Changes in the current signal occurred only in part of the periods k and had
a varying value.

For reducing the number of attributes in MVC50 vector from 5000 (the number of
samples in one cycle) to 50, the mean for every 100 values was calculated, resulting in the
MVC50−mean vector. Figure 10 shows MVC50 (Figure 10a) and MVC50−mean (Figure 10b)
vectors, calculated based on the data shown in Figure 9.

MVC50−mean(k) =,

(
m+99

∑
m

MVC50 k(m)

)
/100, m ∈ < 1, 101, . . . , 4801, 4901 > . (14)

Examples of vectors MVC50−mean for each tested device are shown in Figure 11.
Though values of MVC50−mean may have varied for the same device, the general char-
acteristic of changes was repeatable for devices on the fault line. These changes may have
depended, for example, on the size of the gap in arc fault generator, or the device type. For
SMPS power-supplied devices, such as a computer (Figure 11a) or tv set (Figure 11f), most
of significant values in MVC50−mean were concentrated around maximum absolute voltage
values. For resistive devices like bulb (Figure 11b), furnace (Figure 11c), and hairdryer
(Figure 11d), they were close to the point of zero crossing.
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Figure 10. MVC50 feature vector (a) and MVC50−mean (b) calculated for data from Figure 9.

Figure 11. Cont.
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Figure 11. Examples of MVC50−mean vectors for the occurrence of series arc on-line with particular
tested appliances for a different number of devices operating simultaneously (blue line—one device,
red line—two devices, black line—three devices) (a) computer, (b) bulb, (c) furnace, (d) hairdryer
(e) vacuum cleaner, (f) tv.

2.4. Evaluation Metrics

To evaluate the performance of the particular sets of features, a measure based on
mean absolute error (MAE) was adopted [24]:

Accuracy = 1−MAE× 100% = 1−
K

∑
k=1
|x̂k − xk| × 100%. (15)

where x̂k was the result of classification and xk was the ground truth for the k-th period out
of K identified ones. The accuracy was calculated for the single-cycle analysis and according
to the IEC 62606:2013 norm. The arc fault was detected only when at least 7 anomalous
cycles were identified within 1 s (50 cycles), which reduced the number of false detections
(False Positive -TP). Another type of misclassification was a False Negative (FN) when a
non-arc cycle raises the alarm. Correctly classified cases were divided into True Positives
(TP, correct identification of the arc fault cycle) and True Negatives (TN, correctly classified
non-arc cycle). The additional measures of the performance of the classification model
included recall, precision, and F-score were evaluated. The maximum value of F-score is
the best one. A decrease in precision indicated an increase in the number of false detections.
Missing arc fault cases were reflected by a decrease in recall values. A method ensuring
high accuracy of arc fault detection with a simultaneous low number of false detections
had to be characterized by a high F-score, which combined the properties of precision and
recall measures. Therefore, the F-score was used to select the most accurate set of features
for arc fault detection.
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3. Results and Discussion
3.1. Arc Fault Detection Results

Using the training and test data described in Section 2.1, the performance of the
proposed 28 sets of features for arc-fault detection, defined in Section 2.2, was evaluated.
They were applied to train a random forest with the number of trees n = 25. The value
of n =2 5 was a compromise between the accuracy and the complexity of the classifier.
Presented results were obtained from data collected at a high sampling rate ( fs = 250 kHz).
Additional experiments were conducted for a signal downsampled to 3.125 kHz, 6.25
kHz, 12.5 kHz, and 25 kHz to evaluate if it was still possible to detect arc using cheaper
acquisition hardware.

Results for a single cycle analysis are shown in Table 4, while outcomes according to
the IEC 62606:2013 standard are in Table 5. In both cases results were sorted in descending
order by F-score value for a sampling rate 12.5 kHz, which was considered practical and
affordable for potential real-world implementation in the NILM system.

Table 4. Arc fault detection results for single cycle analysis, sorted by F-score for 12.5 kHz
sampling rate.

Set Name

Sampling Rate [kHz]

3.125 6.25 12.5 25 250 3.125 6.25 12.5 25 250

Accuracy [%] 100·F-Score

#2 91.60 93.26 95.60 96.81 98.38 93.42 95.07 96.16 97.08 98.70
#1 91.51 92.82 94.12 96.37 98.55 93.12 94.42 95.92 97.07 98.86
#5 91.47 92.95 94.12 96.20 98.57 93.18 94.47 95.92 97.00 98.90
#3 91.22 93.22 93.97 95.72 97.94 92.92 94.67 95.81 96.79 98.55
#8 91.08 92.94 93.94 96.25 98.49 92.79 94.29 95.76 96.89 98.78
#10 92.79 94.05 95.23 96.15 97.19 93.76 94.90 95.76 96.48 97.76
#7 91.66 92.76 93.91 96.02 98.54 93.20 94.32 95.72 96.92 98.84
#18 91.60 92.83 93.91 94.69 96.76 93.13 94.31 95.67 96.09 97.86
#4 90.78 92.55 93.62 95.81 98.56 92.54 94.35 95.53 96.76 98.88
#15 91.39 92.32 93.12 94.90 97.18 92.62 93.43 94.93 96.04 97.68
#21 89.99 90.36 91.64 91.45 95.99 92.94 92.92 94.54 93.91 97.29
#25 90.07 91.03 91.67 91.19 98.29 92.83 93.75 94.44 93.40 98.70
#23 89.97 91.00 91.55 91.12 98.31 92.88 93.87 94.42 93.44 98.74
#20 90.23 91.25 91.55 92.43 97.79 93.03 94.16 94.38 95.08 98.23
#19 89.90 91.02 91.48 91.20 98.30 92.77 93.82 94.35 93.55 98.74
#22 89.82 90.41 91.30 91.09 98.29 92.64 93.00 94.13 93.37 98.70
#26 89.70 90.27 91.19 91.11 98.19 92.44 92.89 93.93 93.36 98.63
#14 89.57 90.29 91.04 91.02 95.81 92.58 93.34 93.86 93.30 97.06
#28 89.24 90.37 91.05 92.01 94.85 91.82 93.21 93.78 94.58 96.29
#6 82.97 89.04 92.58 95.73 98.55 82.55 89.59 93.46 96.19 98.83
#9 79.36 86.85 92.73 95.59 98.38 78.00 86.42 93.12 95.78 98.63
#11 88.25 88.57 90.07 90.36 94.65 90.81 91.06 92.85 92.48 95.93
#24 82.98 85.63 90.26 90.72 98.14 84.61 87.14 92.52 92.91 98.58
#27 78.35 85.62 89.11 90.40 98.01 80.22 87.65 91.53 92.14 98.38
#17 79.82 78.72 77.07 76.82 83.62 80.98 79.55 77.91 77.50 84.39
#13 76.70 76.01 75.35 75.57 81.33 78.20 77.30 76.47 76.40 82.30
#16 55.15 65.19 71.83 82.62 97.69 63.09 69.97 75.40 83.72 98.01
#12 55.66 60.38 63.46 69.32 82.40 56.19 60.95 63.53 69.29 80.82
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Table 5. Arc fault detection results for analysis in terms of IEC 62606:2013 standard, sorted by F-
score for 12.5 kHz sampling rate.

Set Name

Sampling Rate [kHz]

3.125 6.25 12.5 25 250 3.125 6.25 12.5 25 250

Accuracy [%] 100·F-Score

#2 93.07 95.24 97.89 98.44 99.07 93.89 95.90 98.18 98.85 99.25
#1 92.14 93.61 97.04 98.57 99.45 93.06 94.22 97.34 98.71 99.51
#5 92.38 94.25 97.06 98.52 99.44 93.26 94.80 97.24 98.65 99.51
#3 91.51 94.58 96.65 98.18 98.13 92.43 95.00 97.13 98.43 99.08
#4 90.86 93.62 96.62 98.30 99.40 92.08 94.26 97.12 98.47 99.49
#8 91.66 94.19 96.87 98.56 99.38 92.74 94.46 97.03 98.61 99.44
#7 92.39 93.96 96.71 98.53 99.39 93.06 94.31 96.95 98.61 99.46
#18 92.30 94.35 96.37 97.61 96.77 93.12 94.86 96.75 97.95 98.60
#10 92.80 94.82 96.32 97.24 98.10 93.31 95.24 96.63 97.69 98.61
#25 89.70 91.35 93.23 93.43 99.31 92.97 94.08 95.88 95.48 99.40
#23 89.70 91.42 93.05 93.53 99.42 93.03 94.31 95.84 95.64 99.47
#21 88.35 89.23 93.09 93.65 97.59 91.47 91.46 95.73 95.75 97.96
#19 89.09 91.20 92.93 93.54 99.25 92.41 93.90 95.72 95.69 99.35
#15 91.84 93.58 95.35 97.13 97.41 92.09 93.69 95.59 97.37 98.37
#14 88.66 90.22 92.68 93.29 97.39 92.61 93.89 95.58 95.27 97.94
#22 89.21 90.16 92.72 93.35 99.32 92.53 92.62 95.50 95.56 99.38
#26 88.76 90.09 92.62 93.24 99.22 92.11 92.80 95.38 95.31 99.32
#20 89.83 91.74 93.03 95.75 97.78 92.69 94.59 95.30 97.13 97.99
#11 86.73 87.26 91.21 91.91 95.97 90.01 90.58 93.99 93.45 96.19
#28 87.62 90.30 91.47 93.24 95.82 89.53 92.30 93.14 94.24 96.17
#24 79.32 81.71 90.82 92.73 99.37 82.93 84.07 92.96 95.00 99.49
#9 74.58 83.28 93.57 98.27 99.56 74.97 82.08 92.32 98.06 99.60
#27 74.42 84.36 89.67 92.38 98.90 79.86 87.31 92.32 94.49 99.03
#6 79.73 86.60 93.73 98.48 99.62 80.20 86.22 92.26 98.33 99.65
#17 71.85 71.50 70.36 70.83 78.35 76.52 75.69 74.84 75.03 80.79
#16 53.20 59.58 64.92 75.64 98.14 66.39 69.99 74.04 81.83 98.80
#13 64.52 65.33 65.50 66.68 75.83 72.59 72.38 72.39 73.02 79.00
#12 56.54 58.46 60.22 66.69 83.90 68.47 69.58 70.15 73.59 84.98

For the single-cycle analysis, and in terms of IEC 62606:2013 standard, the highest
F-score (as well as accuracy) with sampling rate 12.5 kHz was obtained for set #2, including
12 features: EI , EU , EmodI , EmodU , MEDI , MEDU , EDI , EDU , MSSDI MSSDU , MCCI and
MCCU . Their availability allowed for maintaining a high detection rate despite using
features that increased the risk of false detections (MED) and depended on the sampling
rate (MCC). As presumed, the application of the IEC 62606:2013 standard made reduced
the number of false detections — the corresponding scores were higher than for the single
cycle analysis.

Some sets with a high F-score for fs = 250 kHz performed much worse for lower
sampling rates (#6, #9, #24, #27—F-score above 0.99 for fs = 250 kHz and F-score below 0.93
for fs = 12.5 kHz). The common part for these sets of features was the inclusion of features
depending on the sampling rate (MCCI and MSSDI). The scores obtained for sets #9, #10,
#27, and #28 were interesting. Sets #9 and #27 were based on finding maximum differences
between adjacent (MSSD, MCC, MSD). That made them vulnerable to a drop in sampling
frequency. The accuracy (in terms of IEC 62606:2013, Table 5) decreased proportionally to
the sampling rate. Accuracy for set #9 decreased from 99.56% for fs = 250 kHz to 74.42% for
fs = 3.125 kHz, and for set #27 from 98.90% to 74.42%, respectively. For the best performing
set (#2), the accuracy obtained with the lowest fs was 93.07%.

Sets #10 and #28 were complementary to sets #9 and #10, including with regard to
features resilient to the fs drop. The accuracy of 92.79 for set #10 for single cycle analysis
(Table 4) with fs = 3.125 kHz was the highest of all.
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Confrontation between sets containing current and voltage features (#1–#10) with
the ones with only current pattern (#19–#28) showed that introducing voltage features
allowed an increase in the arc fault detection. The only exceptions were sets #6 and #24
(without the MED feature). Their results were comparable, despite the set #6 containing the
voltage-based features. Only current signal features (sets #19–#28) ensured high accuracy
for the highest sampling frequency (250 kHz). The high accuracy was obtained for set #27,
containing only 3 current-based features.

From sets consisting of features already proposed elsewhere (#11–#13) and based on
them (#14–#18), the best was set #18. It combined all current-based features (EI , MSDI ,
ZCPI , MEDI , CRCI used in [23,24,26]), and contained the corresponding features calcu-
lated for the voltage signal (EU , MSDU , MEDU). The accuracy obtained for the single-cycle
analysis was 96.76% and had an F-score of 0.9786. For the original sets used in the literature
(sets #11–#13), the best accuracy for arc fault detection was achieved in set #11, with an
accuracy of 94.65% and an F-score of 0.9593 for fs = 250 kHz. Extending this set with the
voltage-based features (set #15) resulted in an accuracy of 97.18% and an F-score of 0.9768,
respectively. The lowest score (82.4%) was obtained for set #12 (containing ZCP). For a
significant part of the classified samples, masking loads were working in the background.
Therefore, the effect measured by ZCP was weakened.

No analysis has been conducted on the computational complexity of the proposed
method. We conducted a test-calculation of proposed arc fault detection features set
#2 (12 features) for samples representing 140 s (7000 periods) of signal (sampling rate
250 kHz) that took 4.16 s on i5-8250U as the processor and running memory of 16 GB in
Matlab environment.

For the best-performing set (#2), extended tests were conducted with fs = 12.5 kHz,
according to the IEC 62606:2013 standard, including the location of detected arc faults
(Table 6). The most problems were caused on line 2, where the bulb was located. It was the
lowest power resistive device, causing the lowest changes in the signal during an arc fault
(Figures 7b and 11b). Most false detections were related to the arc fault occurring on lines
5 or 6 (vacuum cleaner and tv set, respectively). Such an issue was expected in the first
case, as arcing can occur during regular vacuum cleaner motor operation. The high false
positive rate for the tv set was less obvious, especially with the high performance obtained
for the other SMPS device (computer on line 1). The effect was not observed for higher
sampling rates.

Table 6. Arc fault detection in terms of IEC 62606:2013 standard results considering the location of
arc faults for sampling rate 12.5 kHz.

Measure
Arc Fault Location

1 2 3 4 5 6 7 All Cases

100·recall 99.95 97.97 98.89 98.88 99.86 99.81 99.81 99.41
100·precision 99.20 99.23 99.85 98.04 95.47 94.51 97.98 96.99

100·f1 99.57 98.59 99.37 98.46 97.61 97.09 98.89 98.18
accuracy [%] 99.62 98.81 99.17 96.36 96.63 97.55 98.58 97.89

3.2. Line Selection Results

Using the training and testing data described in Section 2.1, the performance of
proposed MVC50 feature vector, defined in Section 2.3 was evaluated. From the training
sequences (Section 2.1), 5000 periods k for which the arc fault occurred during at least
7 periods out of the last 50 were randomly selected for training data. The testing data
consisted of 2500 k periods from the test sequences (Section 2.1), for which the arc fault
detection algorithm (described in Section 2.2) for feature set #2 detected arc faults (for
single cycle analysis) in at least 7 of the last 50 periods. During the recording of these
periods, non-arcing devices operated in a steady state. Both types of vectors MVC50 and
MVC50−mean were calculated according to Section 2.3.
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For identification of the faulty line (line selection), the k-nearest neighbor algorithm
was used, with k = 6. For the arc fault occurrence in location 7, only cases with at least
2 devices working simultaneously were included. The assignment of appliances to power
lines is in Table 1. Features used for classification were based on MVC50−mean vectors
values. An additional two features were the mean and maximum value of MVC50−mean.

The confusion matrices for line selection are shown in Figure 12. Results of line
selection for all available cases are in Figure 12a with an overall accuracy of 93.2%. The
method was vulnerable to the occurrence of an arc fault on the main power line, resulting
in more than one device being powered through the arc. Some misclassifications were
between classes 3 (furnace) and 4 (hairdryer). Both are of motor-resistive type. A separate
analysis was performed for cases where the arc fault did not occur on location 7 (mainline)
—see Figure 12b, the overall accuracy was 98.2%. Almost all misclassifications were for
devices of the same type. SMPS-powered computer (line 1) was confused a few times
with an SMPS-powered tv (line 6). A noticeable number of misclassifications was between
resistive devices—bulb (line 2), furnace (line 3), and hairdryer (line 4). The overall results
showed that MVC50 allowed for effective identification of devices with a series arc fault or
powered through such a fault.

Figure 12. Results of line selection for all available cases (a) and only for cases where arc fault did not
occur on location 7 (main power line) (b).

The proposed faulty line identification method was highly accurate if an arc fault
occurred on a single appliance, or if one appliance operated on a faulty line. If the system
indicated the presence of an arc fault and, after switching on the next device, values of the
MVC50 vector increased, this device was powered through a faulty line.

The high accuracy of line selection was achieved for the single device arc fault, even
though, in multiple cases, more than one device was operating simultaneously. The
potential improvement includes the application of other classifiers (such as Support Vector
Machines or Fuzzy Inference Systems).

3.3. Discussion

The present research was carried out to evaluate the usefulness of the time domain
features in the arc detection and location. The topic was not widely covered in the literature,
making direct comparison difficult. The only method based strictly on time-domain features
is in [26], where CRCI and ZCPI were exploited. The latter was of limited use if not all
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operating appliances were powered via an arc fault. In [26] particular appliances were
operating individually and the data for faulty branch identification was synthetic.

Time-domain arc fault detection features were core elements for the methods described
in [23,24]. In methods from [23,24], in addition to time-domain features (MSDI , MEDI and
ZCPI in [23], ZCPI and EI in [24]), the information about the harmonic levels in the current
signal was also used. Our main concern about method described in [23] is that there is
no information about arc fault detection tests in the presence of masking loads. Based
on experiments the MEDI feature [23] is one of the most efficient for arc fault detection.
Multiload (up to 4 devices) and masking loads scenarios were considered in [24]. In 2 out of
3 scenarios the arc fault generator was plugged into the main power line. For fs = 3200 Hz
the fault detection accuracy achieved according to IEC 62606:2013 was of 93.12%, 94.23%,
94.86% for particular scenarios. In the conducted research the results were similar, where
scenarios involving an arc fault on the main power line accounted for less than 15% of the
identified examples (Table 2). Performance of the line selection approach from [24], based
on the current waveform superposition, was 90.91%. However, it has only been tested on
11 examples of an arc fault that lasted continuously for tens of seconds.

Conducted experiments showed superiority of time-domain features (including both
current and voltage signals) for the arc fault detection. The proposed MVC50 feature vector
allowed for the identification of the device operating on a faulty line even if multiple
masking loads operated in the background.

We see areas where we can lead our research further, so the presented method can be
improved. For instance, unknown devices may be considered for arc fault detection, though
the line selection method requires providing the training examples. The requirements for
registering the operation of the device in an arc fault condition are a disadvantage. A
method for determining the MVC50 vector based on the analysis of current waveforms
recorded without an arc fault should be developed. The proposed line selection method can
only identify the type of device powered via arc fault according to the observations from
Section 2.3. While conducting such a detailed analysis only for time domain features was
valuable and distinctive, the method may be extended to use frequency and time-domain
as well. Methods described in [29] should also be applied on our dataset. It is also planned
to integrate the described method into the NILM system implemented in our laboratory.
The proposed method is based on the analysis of current and voltage signals in the time
domain using array notation [33]. Accuracy of line selection may be improved by providing
information about operating devices. while detection and localization details could be
exploited by the NILM system.

4. Conclusions

The following study proposed a two-step method for series arc fault detection and
location of the fault, based on the MVC50 feature vector. Exploiting both current and
voltage signals, the time domain analysis led to the high detection accuracy of series arc
faults with low false detections. Features extracted from the voltage signal were especially
useful here. The method combined signal processing (for calculating features for classifiers)
with adaptive reasoning methods (random forest classifier for arc fault detection, k-nearest
neighbors algorithm for line selection).

Experiments were conducted with the simultaneous operation of up to six devices,
which is typical in the real-world cases. Overall, sixteen features for arc fault detection were
defined with five already described in the cited literature. These sixteen features (including
the eleven new ones) were used to build twenty-eight sets of features used for arc fault
detection. Performance for each set of features in arc fault detection was investigated for
five sampling rates: 3.125 kHz, 6.25 kHz, 12.5 kHz, 25 kHz, and 250 kHz. Based on an
analysis of 360,000 examples, the most useful set of the twelve features was identified.

Resilience of features to a decrease in the sampling rate was established. The MCC
feature (directly dependent on the sampling rate) allowed for the achievement of the highest
accuracy on sampling rate 250 kHz, but feature sets containing it performed much worse
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for lower sampling rates. For MED and MSSD high series, arc fault detection accuracy
was achieved for lower sampling rates to be expected in the cheaper NILM systems.

For the 250 kHz sampling rate, single period arc fault detection accuracy for the
selected set of features was 98.38%, with an F-score of 0.9870. The arc detection accuracy
in terms of the IEC 62606:2013 standard was 99.08%, with an F-score of 0.9921. For a
sampling rate affordable for NILM systems (12.5 kHz), single period analysis accuracy
was 95.60% with an F-score of 0.9616, and in terms of the IEC 62606:2013 standard, the
accuracy was 97.89% with an F-score 0.9818. Most undetected cases involved an arc fault
on the line powering the bulb, a low-power resistive device. False detections of arc faults
occurred mainly for the vacuum cleaner and tv set. Motors in the former generate series
arcs even during the normal operation. This was the reason for the limited accuracy of
known arc fault protection devices like AFDD and AFCI. Precision of 0.9547 for this device
and sampling rate of 12.5 kHz can be considered a remarkable result.

Location of the arc fault consisted of the identification of devices powered through
the faulty line and used the novel MVC50 feature vector. It was calculated from absolute
values of differences between adjacent current signal periods in the last second, during
which the arc fault was detected, and then was compared with current waveforms for each
appliance in arc conditions.

An accuracy of 93.20% was achieved for line selection in all cases, with 98.20% in cases
where arc fault did not occur on the main power line. Most misclassifications occurred
between devices of the same type. Resistive appliances were misclassified with resistive
ones, and SMPS-powered ones were misclassified with SMSP-powered ones. This indicated
the especially high ability of the algorithm for identification of the type of device powered
through series arc fault. The proposed fault line identification method was highly accurate
if an arc fault occurred on a single appliance or one appliance operated on a faulty line.
This is not necessarily a limitation for the practical application of the method. If the system
indicates the presence of an arc fault and after switching on an additional device, the
values of the MVC50 feature vector increase indicates that the device is powered through a
faulty line.

The proposed method can be used in the low-voltage Alternate Current (AC) network
to enhance the Non-Intrusive Load Monitoring (NILM) system with arc detection and loca-
tion functionality for the whole household. The method still has potential for improvement,
as a relatively simple classifier was used.
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