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Abstract: Unsteady pressure-pulsation-induced severe vibration and high alternating stress can cause
some unexpected results, including impeller crack and structural damage of the entire pumping
system. In the present paper, a review on pressure pulsations in pumps is carried out based on the
published studies. A comprehensive view on pressure pulsations from several aspects is discussed in
detail. The contents of the studies include the mechanism of rotor–stator interaction; a prediction
model and experimental and numerical investigations of pressure pulsations; unsteady rotating-stall-
induced pressure pulsations at off-design flow rates; the relationship between pressure pulsation and
the internal flow structure and cavitation; and the reduction in pressure pulsation caused by some
effective approaches. It is concluded that unsteady pressure pulsation in pumps is closely associated
with complex flow structures, for instance flow separation, cavitation, and rotating stall. The rotor–
stator interaction mainly dominates pressure pulsation characterized by the discrete components in
pressure spectrum. To reduce pressure pulsation, some effective approaches are proposed, such as
increasing the rotor–stator gap, staggered blade, and blade modification. Finally, several suggestions
for future works are given and discussed considering the current research. The review contributes to
better understanding of pressure pulsations in centrifugal pumps, and may also benefit engineers in
controlling pressure pulsations in some fields, such as pumps in nuclear reactor.

Keywords: pumps; pressure pulsations; rotor–stator interaction; internal flow structure; reduction of
pressure pulsation

1. Introduction

As important fluid machinery, pumps are widely used in both industry and daily life,
but they also consume large amounts of electric power [1]. Taking China, for instance,
Wang et al. estimated that power consumption by pumps accounts for almost 20% of the
total generated electricity [2]. Therefore, pumps are a crucial consideration in building an
energy-saving society, considering their significant energy consumption. Fu et al. note that
to address the increasing demand for energy saving, the stability and long-term operation
of the pump are very important in many fields [3]. For example, in power stations, if an
unexpected shutdown of the main feed pump occurs, significant losses will result. This
is more significant in the nuclear power plant, where the nuclear reactor coolant pump
is required to run safely for almost 60 years without any repair of the main hydraulic
components [4,5]. As for the safe operation of the pump, two main factors are discussed in
this paper, namely the mechanical and fluid dynamic effects. The problem of unsteady fluid
dynamics is attracting more attention. It is a phenomenon that leads to alternating forces
acting on the impeller and the volute, threating pump safety [6–8]. Furthermore, compared
with the mechanical factor, the phenomenon of unsteady fluid dynamics is complex and
more difficult to predict and analyze. Therefore, it should be emphasized to guarantee the
safe operation of the pump.

As a typical unsteady flow phenomenon, rotor–stator-interaction- (RSI) induced high
pressure pulsation is detrimental to the stable operation of the pump [9]. A corresponding
diagram can be seen in Figure 1. Rotor–stator interaction is considered the main cause of
intense pressure pulsations in pumps, and is a focus of research. With the blade sweeping
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the tongue or diffuser, the flow shedding from the blade trailing edge interacts with the
stator, and the corresponding non-uniform flow distribution is generated [10,11]. Such a
phenomenon is characterized by intense fluctuations in pressure and velocity. On some
occasions, if the resonant frequency of the structure coincides with the induced pressure
frequency, severe vibration phenomenon is caused [12,13]. Moreover, the alternating stress
on the impeller can lead to the blade cracking, and such a phenomenon is not rare, especially
for the turbine runner. Affected by rotor–stator interaction, some discrete components are
generated in the pressure spectrum. The blade passing frequency and its high harmonics
dominate the pressure spectrum, a phenomenon closely associated with the combination of
the blade and diffuser numbers [14]. Different blade and diffuser numbers determine the
predominant component in the pressure spectrum. Of course, without the stator, pressure
pulsation can also be generated due to non-uniform flow distribution at the blade outlet, but
the intensity is much weaker. For the impeller–volute matched pump, pressure pulsation is
characterized by the blade passing frequency, but for the impeller–diffuser matched pump,
pressure pulsation is more complex. Although theoretical analysis is proposed to predict
the dominant component caused by different rotor–stator matched numbers, the effect of
rotor–stator matched number on pressure pulsation still needs to be clarified, especially
through experiments.
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Figure 1. Diagram of rotor–stator interaction between the rotating impeller and stationary diffuser.

Pressure pulsation energy is easily affected by the flow rate of the pump. Usually, due
to the flow inlet angle changing, the uniformities of the internal flow distribution in the
blade channels and the jet-wake flow pattern at the blade outlet deteriorate, leading to the
pressure pulsation level increasing rapidly. Especially at low flow rates, flow separation
and even rotating stall occur, and pressure pulsation signals are deeply affected [15,16].

Many studies have been carried out considering unsteady pressure pulsations in
pumps, especially for rotor–stator interaction. Several topics have been investigated,
including the mechanism of rotor–stator interaction, the relationship between pressure
pulsation and flow structure, and the reduction of pressure pulsation. The numerical
simulation method is often applied to discuss and predict pressure pulsation characteris-
tics, and the RANS (Reynolds Averaged Navier–Stokes) method is commonly used [17].
Due to the inadequate ability of the RANS model to capture precise flow structures in
pumps, researchers are using more advanced numerical methods, such as DDES (Delayed
Detached Eddy Simulation) and LES (Large Eddy Simulation) to resolve the internal flow
structures [18]. In earlier studies, the RANS model was used by most scholars from the
comparison with the experimental data, and it was proven that the RANS could not ade-
quately predict flow structures and pressure pulsations for pumps in off-design working
conditions, and significant errors were caused. This is the reason that the more advanced
numerical method was adopted in recent years. Figure 2 shows the typical wake flow
pattern and the interaction with the diffuser in a reactor coolant pump using the LES
method. Experiments based on the fast frequency response transducer are used to clarify
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pressure pulsations, which are more effective to predict the non-linear harmonics of the
blade passing frequency [19]. The main purpose of pressure pulsation investigation is to
establish an effective approach to controlling and reducing the pressure pulsation energy
of the pump. To realize this purpose, the effects of design parameters and some special
structures of the pump are discussed in this work.
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Pumps can usually be divided into two main types: the centrifugal pump (with and
without diffusers) and the axial flow pump, as seen in Figure 3. The internal flow structures
of the two types show significant differences. In the axial flow pump, due to the tip
clearance existing between the impeller and the casing wall, leakage flow is likely to affect
the unsteady flow characteristics of the pump, including the related hump phenomenon
and even cavitation [20–22]. Recently, attention has been focused on leakage flow in the
axial flow pump in attempts to clarify the interacting mechanism between the main flow
and the leakage flow. For pressure pulsation, rotor–stator interaction is also the dominant
factor in the axial pump, and is identical to that of the centrifugal pump. So, in the current
paper, the review on the centrifugal pump is mainly conducted.
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During the past decades, many studies have been carried out considering pressure
pulsation in pumps, since high pressure pulsation has negative impacts on pump operation.
Numerical and experimental methods have been combined to clarify the corresponding
generating mechanism, pressure spectrum, and control method, etc. However, the pub-
lished works are not well summarized. Therefore, in the present paper, pressure pulsations,
mainly in centrifugal pumps, are reviewed, and the objective of this paper is to summarize
the current research results with regard to pressure pulsations from several aspects. More-
over, the corresponding shortages are discussed to clarify the direction for future works.
This paper is expected to provide a better understanding of pressure pulsations in pumps.
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The related topics of the current paper are summarized as follows.

a. Mechanism study of pressure pulsation, especially for rotor–stator interaction.
b. Numerical simulation and experimental methods with regard to pressure pulsations

to analyze pressure spectrum characteristics and investigate the factors affecting
pressure pulsations.

c. Typical rotating-stall-phenomenon-induced pressure pulsation at low flow rates, and
its identification based on pressure signals.

d. Relationship between pressure pulsation and the internal flow structure in the pump.
e. Reduction of pressure pulsation energy in pumps by some effective approaches.
f. Cavitation-induced pressure pulsation characteristics.

2. Mechanism Analysis on Unsteady Rotor–Stator Interaction
2.1. Rotor–Stator-Interaction-Induced Typical Frequencies

It is accepted that unsteady rotor–stator interaction is the predominant factor leading
to high pressure pulsations in pumps, which has attracted the most attention in terms
of theoretical, numerical, and experimental studies [23]. To explain the mechanism of
rotor–stator interaction in a turbine airfoil, Dring et al. considered that two combined
effects determined the interaction, namely the potential flow interaction and the wake
interaction [24]. If the axial gap is lower than the airfoil chord, flow unsteadiness in both
the upstream and downstream rows could be induced by the potential flow. Meanwhile,
the downstream effect is caused by the wake flow with a gradual far-field decay rate. Based
on this theory, Parker developed a quasi-steady solution for the potential flow interaction
between two rows with relative motion [25,26]. It is concluded that high pressure pulsation
is caused by the interacting rows with relative motion to the stationary rows. It means that
the interaction effect leads to intense flow fluctuation.

To depict rotor–stator interaction with the impeller periodically sweeping the stator,
an interacting mode was developed by Tanaka to analyze the vibration and dynamic
stress behaviors in a high head reversible pump-turbine, which is widely used in the fluid
machinery [27]. Figure 4 shows the diagram of interaction between the impeller and vanes
of a pump-turbine at various impeller positions [28]. Some fundamental components and
the harmonics are induced due to the rotor–stator interaction. The blade number of the
rotor is ZB, and the number of the corresponding stationary stator is ZV. The excited
frequencies could be calculated using the following equations.
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The resulting frequency exerted by the rotor on the stator is:

fs= nd · ZB · q (1)
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Likewise, the rotor experiences an alternating force from the stator with the frequency:

fr= nd · ZV · h (2)

where nd is the rotational speed, and q and h are positive integers. Usually, nd · ZB and
nd · ZV are regarded as the fundamental frequencies, and q and h are called harmonic
numbers.

The relationship between Equations (1) and (2) could be described in Equation (3):

ZB · q± N= ZV · h (3)

where N is the integer; it is also called the diameter mode.
Several combinations of q, h, and N could satisfy the equation, taking ZB = 7 and

ZV = 16 for instance. A list is presented in Figure 5 [29]. It is observed that for q = 9 and
h = 4, n = 1 is expected. It is usually considered that the most predominant component will
occur at the low diameter mode. This means that high pressure amplitude will locate at the
ninth harmonic of the blade passing frequency, namely 9ndZB, which is followed by the
second and fifth, etc.
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ZV = 16 [29].

For different diameter modes, the excited vibration patterns show significant differ-
ences. Figure 6 presents vibration modes (mode shape) at n = 1, 2, 3, and 4. The mode
shape rotates with the rotor rotating direction in the stationary reference frame when N
is a positive value, and it rotates against the rotor with the negative value [27]. During
the design, it is really important to avoid the possible resonance between the rotor–stator-
interaction-induced pressure excitation and the structural natural frequency. So the adopted
blade numbers should be calculated carefully [30].
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2.2. Theoretical Prediction of Rotor–Stator Interaction

By using a Fourier series to describe the periodic force caused by the rotor–stator
interaction, a theoretical method was proposed by Rodriguez et al. [29]. The corresponding
method took several effects into consideration, including the moving and stationary blade
numbers, the non-uniform fluid force, and the sequence of interaction. Compared with
the experimental results, it was observed that the method could predict the frequency and
amplitude.
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The periodic force could be calculated by Equation (4) [29].

Fn = ∑
i

Fi,n sin(iZVωt− φi,n) (4)

Here, ω is the rotation speed rad/s, Fi,n is the force amplitude, i, n is the ith harmonic
of ZVω at the nth blade, and φ is the phase.

Fn in the x-axis direction is given in Equation (5).

Fn,x = Fn cos(ωt + Ω0,n) (5)

Ω0,n is the initial angular of the nth blade, and Ω0 is the initial angular of the runner.

Ω0,n = n
2π

ZB
+ Ω0 (6)

After some transforms by mathematical methods, the final excitation in the x-axis is
shown in Equation (7).

Fn,x =
1
2

ZB

∑
n = 1

∑
i

Fi,n sin[(iZV ± 1)ωt− φi,n ±Ω0,n] (7)

Using the above functions, the excitation frequency and amplitude due to rotor–stator
interaction could be predicted.

As for rotor–stator interaction in the centrifugal pump with impeller–volute matched
type, the volute tongue could be regard as the stationary part with ZV = 1. In the general
centrifugal pump, the blade passing frequency fBPF will dominate the pressure spectrum.
To predict the amplitude at fBPF, the numerical simulation method could be used; however,
it consumes more time. Parrondo et al. developed an acoustic method to predict the corre-
sponding amplitude [31]. The parameters in the model were adjusted by the experimental
data. However, it assumed that the pressure distribution on the periphery of the volute
was uniform, which was not rigorous.

p(ϕ, t) =
N

∑
F = 1

[
PF

(
Sϕ

SF

)α

· e−j·(ωt−k·|ϕ−ϕF |−βF)

]
+ PB · e−j·(ωt−7ϕ) (8)

ω = 2π fBPF (9)

α = −(0.5 + kE) ϕ ≥ ϕF (10)

α = 0.5− kE ϕ < ϕF (11)

j =
√
−1 (12)

k = π fBPFD2/c (13)

where c is the sound speed, and Sϕ is the cross section area of the volute.
The above theoretical analysis is very useful for pump design. For the pump with

vaned diffuser, by using the Formula (3), it is easy to obtain the dominant frequency for the
typical impeller/diffuser match type, and the unsuggested blade match number should
be avoided. It is always assumed that with the unsuggested match number, high pressure
pulsation and even abnormal vibration will be caused. However, during the application, the
unsuggested impeller/diffuser match number is often used by the researcher, for instance
in one study, ZB = 4 and ZV = 12 were used, and no abnormal pressure pulsation was
excited [30]. Therefore, how the match number affects pressure pulsation still needs to be
clarified, especially by experiments.
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3. Experimental Investigation of Pressure Pulsations

To investigate unsteady pulsations in pumps, experimental methods are very impor-
tant, and should capture all the induced components in the pressure spectrum. Numerical
simulation could not predict these precisely, especially the non-linear frequency. During
pressure pulsation experiments, the fast frequency response transducer is the critical item
of equipment. Emphasis is placed on the following several topics: pressure pulsation char-
acteristics both for time domain signals and pressure spectra, influence of pump parameters
on pressure pulsation, effect of flow rate on pressure pulsations, and reduction of pressure
pulsations. Moreover, experimental results are also used to validate the CFD accuracy.

Early in 1982, Kojima et al. focused on pressure pulsations in an axial piston pump [32].
During the experiments, the semiconductor transducer was applied to extract unsteady
pressure signals, and mean pressure was obtained by the oscilloscope and dynamic pressure.
The results showed that discrete components were captured on the pressure spectrum,
and the 10th harmonic frequency was obtained. The flow ripple of the pump system was
caused by the low flow compressibility.

To comprehensively understand pressure pulsations in centrifugal pumps, Guelich
et al. investigated 36 tests with different pump configurations to clarify the level and
varying characteristics of pressure pulsations [33]. It was the first time that pressure
pulsations in centrifugal pumps had been discussed in depth. During the study, some
concepts and parameters were proposed to represent pressure pulsations, namely peak-
to-peak value ∆pp-p, amplitude ∆pa = 1/2∆pp-p and RMS amplitude as seen in Equations
(14) and (15). Moreover, the dimensionless treatment for pressure amplitude was also
introduced in Equation (16). During the research, the effects of the rotating speed, Reynolds
number, the system, and the gap between the impeller and diffuser on pressure pulsations
were carried out. After a statistical study of the 36 tested pumps, a safety criterion was
established to guarantee the safe operation of the pump considering the allowable pressure
pulsation level.

∆pRMS =
∆pa√

2
=

∆pp−p

2
√

2
(14)

∆pRMS/BB =
√

∑
n

∆p2
RMS

(15)

∆p∗ =
∆p

δu2
2/2

(16)

As for pressure pulsations in pumps, pressure spectra are always dominated by the
discrete components caused by the blade passing frequency and its harmonics. Moreover,
non-linear frequencies with the form of a fBPF ± b fn are also induced due to the interac-
tion between the blade passing frequency and the impeller rotating frequency, where a
and b are integers. In order to manipulate pressure spectrum, Akin et al. designed an
actively controlled flow pumping system to adjust the pressure spectral feature of wake
and wake–blade interaction [34]. The special actively controlled system could manipulate
perturbations of the inflow, the impeller, and the corresponding phase shift. It was found
that discrete components in the pressure spectrum could be changed by the system. In
proper selected perturbation conditions, pressure amplitude at the blade passing frequency
and its high harmonics and the inflow perturbation could be attenuated significantly. It
was the first time the pressure spectrum had been manipulated in the pump. Zhang et al.
also captured the non-linear components generated by the interaction between the blade
passing frequency and the impeller rotating frequency [35].

Due to the rapid rotation of the impeller, it is not easy to measure pressure pulsations
in the impeller of the pump. Guo et al. designed a unique mechanical system to measure
the pressure pulsations of the impeller matched with a diffuser [36]. Pressure transducers
were mounted on the pressure and suction sides as well as the hub disk. It was noted that
the fundamental blade passing frequency and its corresponding high harmonics were suc-
cessfully captured in the pressure spectrum. For the measuring points at different positions,
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pressure amplitudes at the blade passing frequency for the points at the pressure side of
the blade trailing edge were much larger compared with the other points, which increased
rapidly in off-design working conditions, as presented in Figure 7. Moreover, it validated
the finding that pressure distributions showed evident non-uniform characteristics at the
peripheries of the volute and impeller.
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To investigate the influence of rotating speed on pressure pulsations, Khalifa et al.
studied pressure pulsation at the blade passing frequency of a double volute pump [37].
Pressure signals at different flow rates and rotating speeds were obtained by the Omega
DPX101-250 high response dynamic pressure transducers, which are located on the pe-
riphery of the volute casing and the discharge pipe. It was found that the blade passing
frequency still dominated the pressure spectrum, even with the double volute. With the
rotating speed increasing, for the concerned measuring points on the volute, pressure
amplitudes rose rapidly, and the corresponding values were much larger than those at the
discharge pipe. This indicates that it is not reasonable to identify the pressure pulsations of
the pump using the point on the discharge pipe.

Parrondo et al. investigated the influence of operating point on the pressure pulsa-
tions of a centrifugal pump, and pressure signals at 36 different positions were extracted,
from shut-off condition to 160% of the best efficiency condition [31]. It was observed that
pressure pulsation level reached its minimum around the nominal flow rate, and in the
shut-off condition, the increment was nearly 8 times that at the nominal flow rate. On
the periphery of the volute, the angular distributions of pressure amplitudes at the blade
passing frequency showed a modulated pattern, which were characterized by the alter-
nating occurrence of the peak and valley caused by rotor–stator interaction. Based on the
experimental data, a simple acoustic model to predict pressure amplitude was proposed,
but it was not validated in other pumps.

Gao et al. investigated pressure pulsations of a low-specific-speed centrifugal pump
in detail using the high-frequency response pressure transducers, as seen in Figure 8 [38].
To evaluate pressure pulsation energy in a particular frequency band, the RMS method was
proposed, as seen the Equation (17), with An representing pressure amplitude at the typical
frequency. The results showed that components with frequencies higher than 3fBPF could
not be generated in the pressure spectrum for this pump type. For different measuring
positions, the points at the tongue region were mostly affected by the flow rate, as seen
in Figure 9. Moreover, the relationship between pressure pulsation and the internal flow
structure was also discussed.
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Figure 9. Typical pressure spectrum for the centrifugal pump (left figure) and pressure pulsation
energy versus flow rate at the points around the volute tongue (right figure) [38].

To investigate pressure pulsation characteristics in time-frequency domains, a spectral
analysis was proposed by Pavesi et al. to clarify pressure instabilities of a centrifugal pump
with vaned diffuser, including precursors and inception and evolution phenomena, as seen
in Figure 10 [39]. It was observed that the generated non-linear components in pressure
spectra experienced the appearing and disappearing processes in the time-domain with a
regular interval. A fundamental component at the frequency of St ∼= 0.664 was captured
for the point at the impeller discharge, which was probably caused by the pulsating wake
zone at the corresponding position.
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The different relative positive positions of the diffuser with respect to the volute have
a significant effect on pressure pulsations of the pump. Wang et al. focused on the influence
of the corresponding effect [40]. The results proved that the relative positive effect not only
affects the pump efficiency, but also pressure pulsations. When the blade trailing edge
of the diffuser aligns with the left corner of the volute outlet, pressure pulsation energy
is markedly attenuated. Thus, during the manufacturing, the relative position should be
carefully selected to decrease the pressure pulsation level.

Experiments can effectively reveal pressure pulsations in pumps. However, experi-
ments also have some limitations. For instance, most experiments use pressure transducers
to measure pressure signals, which are placed on the volute casing. However, pressure
signals within the blade channel are rarely measured and discussed due to the difficulty
of measuring setup. From this point of view, the CFD is more convenient, and pressure
signals at any position can be extracted to help us understand pressure pulsations in pumps.
Moreover, for the experimental signals, the FFT method is often used to obtain the pressure
spectrum, but it cannot obtain the time-frequency characteristics simultaneously. Corre-
spondingly, others have advanced signal processing approaches; wavelet transform and
short-time Fourier transform can be used, and more detailed information about pressure
pulsations can be clarified.

4. Numerical Simulation of Pressure Pulsations
4.1. Numerical Simulation Based on URANS Method

With the computer performance increasing rapidly, numerical simulation method is an
important approach to investigate pressure pulsations of pumps. The URANS (Unsteady
Reynolds Averaged Navier–Stokes) method is widely used to predict pressure pulsation
considering the low requirement of calculating resource. Many studies have been carried
out based on the numerical simulation method to capture pressure pulsation signals, and
also to clarify the relationship between geometrical parameters and internal flow structures.

To simulate pressure pulsations caused by the impeller–volute interaction of a centrifu-
gal pump, González used the standard k-ε turbulent model to predict pressure signals, and
measuring points were placed on the volute wall. It was validated that the k-ε turbulent
model could successfully capture the blade passing frequency [41]. From comparison
with the experimental data, it was observed that pressure amplitude at the blade passing
frequency agreed well with experiments at some points under the nominal flow rate. How-
ever, the calculation error increased significantly for major points under off-design working
conditions.

Barrio et al. investigated pressure pulsations and unsteady flow at the near tongue
region of a centrifugal pump. The total mesh number 7.65 × 105 was used, and a constant
total pressure at the inlet section, and at the outlet section, a variable static pressure
proportional to the exit kinetic energy was imposed at the boundary. Steady calculations
were conducted using a frozen-rotor interface. A convergence criterion was established at
a value of 10−5 for the scaled residuals. During the calculation, the k-ε turbulent model
was applied with a time step of ∆t = 1.6534 × 10−4 s [42]. Meanwhile, unsteady flow
distributions with the blade sweeping the tongue were depicted. It was believed that by
the currently used numerical approach, pressure pulsation due to rotor–stator interaction
could be predicted; however, differences were observed in off-design working conditions,
as seen in the position around ϕ = 20◦ in Figure 11. By combination analysis with the
flow evolution, it was noted that the flow pulsation was associated with the jet-wake flow
pattern and the secondary flow within the pump.

In centrifugal pumps, some fluid leaks from the impeller outlet region into the inlet
suction pipe through the wear ring clearance. Due to the mixing and interacting effects of
the leakage flow on the main flow, the uniform inlet flow condition at the impeller suction
is affected significantly, and has an evident influence on the internal flow structure and also
the pressure pulsation of the centrifugal pump. Thus, the corresponding effects induced
by leakage flow have attracted researchers’ attention. Li et al. numerically investigated a
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centrifugal pump with the wear ring clearance based on the SST k-ω turbulent model [43].
It was observed that the leakage flow reached more than 6% of the total flow rate at the
nominal flow rate, and it increased to about 9% at the low flow rate 0.2Qd. Pei et al.
analyzed a single blade pump with the front chamber [44]. Based on SST k-ω turbulent
model, Zhang et al. found that the asymmetric flow distribution was generated at the
impeller suction region, which was affected by the leakage flow from the wear ring clearance
at low flow rates. From comparison with experimental data, it was also observed that the
calculation error increased rapidly when the flow rate deviated from the nominal working
condition [35]. Alqarni et al. used the k-εmodel to simulate the nanofluid flow through a
3D annulus [45].
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By the numerical simulation method, it was possible for the researchers to clarify the
effects of different geometrical parameters on pressure pulsations. Spence et al. used the
standard k-ε turbulent model to investigate the effects of four parameters on the pressure
pulsations of a double volute centrifugal pump, namely the vane arrangement, the cutwater
gap, the sidewall clearance, and the snubber gap [46]. With different combinations, a total
of 33 cases were discussed in detail to illustrate the resulted effects. It was demonstrated
that the cutwater gap and vane arrangement were the strongest factors influencing pressure
pulsations, while the other two parameters were considered less important. The obtained
results were very useful in considering a pump design with low-pressure pulsation levels.

For the centrifugal pump with diffuser, the relative position of the diffuser with respect
to the volute tongue affected the pump performance through a phenomenon namely known
as the clocking effect. To capture the corresponding effect on pressure pulsations, Jiang
et al. used the SST k-ω turbulent model to investigate the clocking effects at five different
positions [47]. It was found that the clocking effect had little influence on the pressure
pulsations in the diffuser. By contrast, pressure pulsations in the volute were affected
significantly by the clocking effect. Finally, it was suggested that the volute tongue should
be located around the middle position of the diffuser channel to obtain better pump
performance.
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4.2. Advanced Numerical Approaches towards Pressure Pulsations

As for the conventional RANS method, it cannot capture the complex flow structures
with different scales due to its inherent physical limitations. To simulate pressure pulsations
in pumps, one important goal is to establish an effective and precise approach. A mixed
computational method, PANS, was proposed by Liu et al., considering both calculation
precision and the needed resources [48]. Pressure pulsations around the “S” curve condi-
tions of the pump-turbine were simulated. The results proved that the PANS method could
predict the relative peak–peak amplitude successfully, and it agreed with the experimental
data. Moreover, low frequencies in pressure spectrum could be captured due to the rotating
stall phenomenon.

Recently, researchers have tried to use the more advanced numerical simulation
methods, DES and LES, to predict unsteady pressure pulsations in pumps. Based on the
DDES method, Zhang et al. numerically investigated the typical unsteady flow evolution
of a low-specific-speed centrifugal pump, and the jet-wake flow pattern was depicted in
detail [49].

Pacot et al. used the LES approach to simulate the unsteady pressure pulsation of a
pump-turbine at pumping mode when the pump operated at off-design conditions [50]. It
was validated that the LES method could capture the stall frequency, its propagation speed,
and its flow field effectively, while the conventional URANS numerical method exhibited its
intrinsic limit. Zhang et al. also applied the LES method to discuss pressure pulsations on
the periphery of the volute in a centrifugal pump [51]. Li et al. compared the abilities of the
LES and URANS approaches to predict pressure pulsations of a pump-turbine operating
in pumping mode, and pressure pulsations were extracted at several positions. From the
comparison, it was validated that with the identical mesh number, large eddy simulation
could predict pressure pulsation better than the URANS approach, which overestimated
the pressure pulsation level, as seen in Figure 12 [52].
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For the pump with diffuser, the predominant component determined by the combina-
tion numbers of the impeller and diffuser occurs in the pressure spectrum, as discussed
in the mechanism analysis, which does not always locate at the blade passing frequency,
as proved by Wang et al. [40]. The author proved that for the impeller–diffuser matched
pump, some dominant component will occur at the other frequencies, not always the blade
passing frequency. However, this phenomenon is not easy to simulate and capture by the
numerical simulation approach, even by LES method. Ni et al. compared in detail the
pressure spectra produced by LES and experimental methods of an impeller—diffuser
matched nuclear reactor coolant pump [53]. The blade number was four, and the diffuser
number was twelve. From the theoretical analysis, it was concluded that the discrete peak
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at three times blade passing frequency, 3fBPF, dominated the pressure spectrum at the
typical position, as discussed by Rodriguez [29], which is also proved by the experimental
results [53]. However for the LES results, it was found that such a phenomenon could not
be predicted, as seen in Figure 13, probably due to the mesh number and time step. As for
the non-linear components in the pressure spectrum, no successful reports by CFD could
be found in the pumps. Thus, it was concluded more work was required to improve the
numerical simulation method to predict pressure pulsations precisely in pumps.

Energies 2023, 16, x FOR PEER REVIEW 13 of 30 
 

 

 
Figure 12. Comparison of peak-to-peak amplitudes of pressure pulsation signals by URANS and 
LES methods [52]. 

For the pump with diffuser, the predominant component determined by the combi-
nation numbers of the impeller and diffuser occurs in the pressure spectrum, as discussed 
in the mechanism analysis, which does not always locate at the blade passing frequency, 
as proved by Wang et al. [40]. The author proved that for the impeller–diffuser matched 
pump, some dominant component will occur at the other frequencies, not always the 
blade passing frequency. However, this phenomenon is not easy to simulate and capture 
by the numerical simulation approach, even by LES method. Ni et al. compared in detail 
the pressure spectra produced by LES and experimental methods of an impeller—diffuser 
matched nuclear reactor coolant pump [53]. The blade number was four, and the diffuser 
number was twelve. From the theoretical analysis, it was concluded that the discrete peak 
at three times blade passing frequency, 3fBPF, dominated the pressure spectrum at the typ-
ical position, as discussed by Rodriguez [29], which is also proved by the experimental 
results [53]. However for the LES results, it was found that such a phenomenon could not 
be predicted, as seen in Figure 13, probably due to the mesh number and time step. As for 
the non-linear components in the pressure spectrum, no successful reports by CFD could 
be found in the pumps. Thus, it was concluded more work was required to improve the 
numerical simulation method to predict pressure pulsations precisely in pumps. 

 
Figure 13. Comparison of pressure spectra between LES and experimental data of a nuclear reactor 
coolant pump [53]. 
Figure 13. Comparison of pressure spectra between LES and experimental data of a nuclear reactor
coolant pump [53].

In the published works [48–53], it was concluded that the URANS model has an
adequate ability to capture the dominant blade passing frequency of the pumps at the
rated flow rate, while for the low frequencies in the frequency band, the URANS model
was inadequate [42]. Moreover, when the pump operates at the part load conditions,
the capacity of the URANS model seems to be limited, and evident error is caused by
comparison with the experimental data, as validated by Gonzále et al. [41]. Thus, more
advanced numerical methods are needed, such as LES and DDES, which will resolve the
complex flow more precisely. However, the nonlinear components in pressure pulsations
are not easy to capture in the pressure spectrum, even when using the LES and DDES
methods [53], perhaps due to the limited temporal–spatial resolution. Thus, investigations
are still needed to simulate pressure pulsation precisely.

5. Rotating-Stall-Induced Pressure Pulsations in Off-Design Conditions

For centrifugal pumps working at off-design conditions, the significant flow separation
and the accompanied rotating stall phenomenon are generated within the pump at low
flow rates. Especially for the pump with diffuser, unsteady rotating stall is often observed
during pump operation, characterized by the “hump” shape in the head curve, as seen
in Figure 14 [54]. As an intense unsteady flow phenomenon, the induced stall cell will
propagate within the impeller or diffuser, causing significant pressure pulsation; moreover,
the typical stall frequency also results when the frequency is lower than the impeller
rotation frequency. Due to the great effect of the rotating stall on pressure pulsation, the
safe operation of the pump or even the pumping system is markedly affected. Thus,
the rotating-stall-induced pressure pulsation characteristic is emphasized to illustrate the
generating mechanism and the related consequences.
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5.1. Rotating Stall in the Pump with Impeller–Volute Matched Type

Ulum et al. experimentally investigated the rotating-stall-induced pressure pulsation
characteristics within the impeller of a centrifugal pump, as seen the Figure 15 [55]. Two
impellers with the blade numbers 6 and 7 were discussed. By pressure spectral analysis, it
was observed that the stall frequency of 2 Hz could be detected in the pressure spectrum,
which was about 5% of the impeller rotating frequency for the six-bladed impeller. When
the pump operated at different flow rates, it was noted that the stall frequency had no
direct relationship to the working condition. Moreover, it was noted that the blade number
significantly affected the stall frequency within the impeller. Heng et al. studied the rotating
stall in a radial flow pump with vaneless diffuser. During the experiments, the Brüel &
Kjaer (Type 4135) pressure transducers were used to obtain unsteady pressure pulsation
signals [56]. Moreover, the microphone was also applied. The results showed that the
dominant stall modes at various working conditions were not identical, and three stall
modes, characterized by four cells, two cells, and three cells, could be identified. Moreover,
the rotating stall characteristics were identical when the impeller rotated at two different
speeds.
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Zhang et al. numerically investigated the rotating-stall phenomenon of a centrifugal
pump with special slope volute based on standard k-ε turbulent model [57]. The low
frequencies were generated in the pressure spectrum when the pump operated at very
low flow rates. In the rotating stall condition, stall frequencies lower than 50% impeller
rotating frequency could be identified. Meanwhile, it seemed that the stall frequency
changed at different conditions for this special pump with the slope volute, and the stall
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cell was depicted by the relative velocity distribution within the blade channel. Zhao
et al. also numerically studied the pressure pulsation characteristics of the rotating stall
in a three-bladed pump at low flow rates [58]. To capture rotating-stall-induced pressure
pulsation signals, several monitoring points were directly mounted within one blade
channel. Pressure spectra were discussed in detail at various flow rates. Based on the
streamlines of relative velocity, the stall cell was captured, and the corresponding evolution
with the impeller rotating and propagation within the blade channel were also clarified.

The presence of volute and diffuser has a significant influence on the pressure pulsation
and flow structure of the pump due to rotor–stator interaction. To exclude the influence of
volute on rotating-stall-induced characteristics, Lucius et al. numerically investigated the
rotating stall in a centrifugal pump with an outlet domain, rather than the conventional
volute or diffuser. It was noted that the stall frequency at 7.3 Hz was detected in the
spectrum, and it was about 70% of the impeller rotating frequency [59]. Moreover, it
was suggested that in the blade channels, three stall cells were generated simultaneously,
leading to high amplitude at the harmonic 21 Hz.

5.2. Rotating-Stall-Induced Pressure Pulsations in Pumps with Diffusers

As for rotating-stall-induced pressure pulsation in pumps with diffusers, some studies
have been carried out. Sano et al. investigated the rotating stall in a pump with vaned
diffuser. In the diffuser channel, flow instabilities, including rotating stall, asymmetric
stall, and alternate stall, were obtained by the applied numerical approach [60]. It was
found that the propagation speed and temporal wave form of the obtained pressure signals
were affected by two rotating stall modes, namely the forward/backward rotating stall
modes. The stall frequency at 0.24fn was captured in the pressure spectrum, and three cells
existed at the same time. Using the large eddy simulation method, Pacot et al. predicted
the rotating-stall phenomenon of a pump-turbine in pumping mode [61]. The obtained
propagation speed of pressure pulsation and stall frequency showed high calculation
precision compared with the experimental data. Figure 16 shows the pressure spectrum in
the rotating stall condition. The propagation mechanism of the stall cell was clarified by
the flow field distribution, which was determined by the growth and decay of the stall cell.
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Using the CFD approach, the effects of rotating stall on pressure pulsation and internal
flow structure of a pump-turbine at the pumping mode were also investigated by Xia
et al. [62]. The results showed that high pressure pulsations were caused by the strong flow
separation at mid-span of the guide when the pump operated in the rotating stall condition.
To illustrate the typical flow distribution in the vane, the Q-criterion was applied to depict
the inception and evolution of the rotating stall. It was noted that that the method could
clarify the blocked effect of the stall cell on the vane channels as seen in Figure 17. Li et al.
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also used the CFD method to predict the evolution of the stall cell in a mixed flow pump,
and the transfer of the stall cell in the blade channels caused intense pressure pulsation [54].
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Rotating-stall-induced pressure pulsation is not usually a focus for researchers study-
ing pumps. Rotating stall always occurs at the low flow rates; especially for the centrifugal
pump, the stall condition may be lower than 0.4Qd. The commonly used centrifugal pump
will not operate at such low flow rates. Moreover, rotating stall is closely related to the
blade number and blade exit angle. During the pump design, it is not difficult to select the
appropriate parameters to avoid the rotating stall phenomenon. However, in some special
conditions, for instance with the low-specific-speed pump with many blades and when
working at low flow rates, rotating stall induces flow instability, and pressure pulsations
should be concentrated due to its effect on the stable operating of the pumping system.

6. The Relationship between Pressure Pulsation and Internal Flow Structure

Rotor–stator-interaction-induced pressure pulsations are generated by the effect of
the shed flow from the blade trailing edge striking the volute tongue or diffuser [63,64].
Even without the stator, pressure pulsation will also be excited due to the non-uniform
flow distribution at the blade outlet. Therefore, the internal flow structure is the original
source of pressure pulsations in pumps, and it determines the pressure pulsation level. The
combination effects of pump parameters and operating conditions together affect the flow
structure, which finally has a direct influence on pressure pulsations. For instance, at low
flow rates, flow separation and reverse flow structure are generated at the impeller outlet
region, leading to the pressure pulsation energy rising rapidly. The relationship between
the internal flow structure and pressure pulsation is an important research topic regarding
the pump. Many studies have been carried out to clarify and establish the corresponding
relationship between flow structure and the resulting pressure pulsation.

Using particle displacement velocimetry to compute pressure field, Chu et al. dis-
cussed the relationship between pressure pulsation and unsteady flow in an impeller–volute
matched centrifugal pump. The resulting noise characteristics were also determined [65]. It
was found that pressure pulsations and far field noise were determined by the non-uniform
flow shedding from the blade trailing edge and the subsequent impeller–volute interaction.
Meanwhile, the total pressure was dominated by the vorticity distribution and the large
vortex sheet resulting from the jet-wake flow pattern. The paper provides an in-depth
understanding of the internal relationship between the flow and the pressure pulsation in
the centrifugal pump.

Furthermore, Chu et al. depicted a detailed flow map with the blade passing the
volute tongue to discuss the relationship between pressure pulsations and unsteady flow
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distributions [66]. It was validated that pressure pulsated significantly when the blade
passed the volute tongue, and near the impeller, pressure reached its minimum when the
blade aligned with the volute tongue. From the vorticity distribution, it was found that the
vorticity sheet was generated around the interaction region, which was characterized by
the high turbulence level. At the blade trailing edge, high turbulence could be formed, es-
pecially when the blade was located near the tongue. Usually, intense turbulence indicated
high pressure pulsation energy, so the pressure pulsation was closely associated with the
corresponding flow distribution.

To discuss the relationship between flow distribution and pressure pulsation, Choi
et al. used hot-wire probes and pressure transducers mounted on the blade surface in a
centrifugal pump without volute to obtain velocity and pressure distributions simultane-
ously [67]. The results showed that unsteady passage flow was caused by the high flow
on the blade pressure side moving to the low-pressure region on the suction side. Due to
the moving effect, the roll-up flow phenomenon developed around the blade trailing edge.
Finally, the periodic pressure pulsation on the blade surface was caused by the unstable
passage flow.

From the above analysis, it is concluded that pressure pulsation in the pump is closely
related to the flow distribution at the blade outlet region and its subsequent interaction
with the tongue. With the development of CFD, the corresponding flow distributions could
be resolved and captured effectively to discuss the internal relationship between the flow
field and pressure pulsation.

Based on the CFD approach, Barrio et al. numerically investigated unsteady flow
distribution and its pulsation at the near-tongue area of the centrifugal pump at various
flow rates [42]. It was found that flow fluctuation was related to the relative position of the
blade with respect to the tongue due to the secondary flow and jet-wake flow structure in
the blade channel. Pressure distribution was affected significantly by the flow separation,
and it reached its maximum when the stagnation point aligned with the reference position.
A similar study was found in the work of Kadambi et al. [68]. Posa et al. also studied the
flow distributions and pressure pulsations of a centrifugal pump with different setting
angles versus flow rate [69].

Recently, LES and DDES methods have been applied by researchers to clarify the
relationship between the flow distribution and pressure pulsation. Just as discussed, the
wake flow and its interacting effect determined the pressure pulsation. Thus, more attention
has been focused on the wake flow shedding from the blade trailing edge and its striking
process in consequence.

Drawing on the LES coupled with the immersed boundary method, Posa et al. nu-
merically investigated the instantaneous flow distribution and its evolution process in a
centrifugal pump with diffuser [70]. During the research, the immersed boundary method
was used, and a total mesh number of 28 million was adopted to generate the entire com-
putational domain of the mixed flow pump. Moreover, different SGS models were used to
predict flow structures to clarify the calculation precision. As for boundary condition, the
author prescribed a uniform velocity at the inflow plane and used convective condition
at the outflow. From the results, it was observed that several significant vorticity sheets
were generated within the model pump, especially at the blade suction side, where a high
vorticity sheet was developed. Moreover, the unsteady evolution of the wake flow was
revealed, and it was found that the vortical structures formed on the blade consequently
shed in the wake with strong interaction with the blade suction side of the diffuser, as seen
in Figure 18. It was the first study focusing on and clarifying the detailed unsteady wake
flow in this particular pump. Some further studies on the pump have been carried out
considering the effects of pump parameters and operating conditions [71]. Kye et al. also
investigated the typical wake flow distribution and evolution using the LES method with a
large mesh gird [72].
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Ni et al. also used the LES method to discuss the pressure pulsation and unsteady
flow structure of a nuclear reactor coolant pump [73]. Pressure spectrum and wake flow
evolution were discussed in detail. The results showed that vortices with positive and
negative vorticity magnitudes shed alternately from the diffuser trailing edge, which
was similar to the Karmen vortex street. In the pressure spectrum, it was observed that
some components were induced by the shedding vortex. Moreover, the unsteady moving
process of the wake flow from the impeller through the diffuser channel was depicted, and
determined the blade passing frequency. Zhang et al. applied the LES method to simulate
the complex flow and pressure pulsation in a low-specific-speed centrifugal pump [51].
The interactions of the vorticity sheets with the volute tongue were illustrated at various
flow rates. For the measuring point located in the region with high vorticity magnitude,
high-pressure amplitude at the blade passing frequency was generated. This indicated
that pressure pulsations in pumps were closely associated with the corresponding vortical
distribution. The conclusion was also validated by the authors using the DDES method
with more mesh grid [49].

With the non-intrusive measuring technique developing, particle image velocimetry
technique (PIV) could be used to capture the complex flow structures within the pump and
reveal the intrinsic relationship of the flow-induced pressure pulsations, as seen in Figure 19.
Using the PIV technique, unsteady flow structure and its evolution in a centrifugal pump
operating at high-flow rate were investigated by Keller et al. [74]. The velocity, vorticity
distribution, and turbulent kinetic energy were analyzed together, and attention was
laid on the region around the volute tongue with intense rotor–stator interaction. From
the evolution of the vorticity sheet with the impeller passing the volute tongue, it was
evident that rotor–stator interaction was determined and dominated by the vorticity sheets
shedding from the blade trailing edge and its consequent impingement with the volute
tongue tip. Further and comprehensive analysis was carried out by Zhang et al., and
evolutions of wake flows at different flow rates were clarified [75]. It was found that three
interacting modes existed in the centrifugal pump at various flow rates. The obtained
experimental results meant that the pressure pulsation level in the pump was closely
associated with the wake flow at the blade trailing edge. Thus, by controlling the wake
flow, pressure pulsation energy could be reduced significantly, which would be very useful
considering the for low levels of pressure pulsation.
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It is well accepted that pressure pulsations were associated with the flow distribution
at the blade outlet, and the non-uniform flow field will lead to high pressure pulsations.
From the recent studies using the advanced numerical approach with numerous mesh grid
and optical measurement, it was validated that vortical structures are complex at the blade
outlet, and the evident wake flow and the resulting interaction are generated around the
RSI region. It is also inferred that by increasing the flow uniformity and controlling the
wake flow at the blade outlet, pressure pulsations will be alleviated. This assumption is
proven by recent works as discussed in the next section. The obtained results contribute
to a thorough understanding of flow field and its relationship with pressure pulsations in
centrifugal pumps.

7. Effective Approaches to Reducing Pressure Pulsations in Pumps

The most important research purpose with regard to pressure pulsations in pumps
is to find an effective way to control and lower pressure pulsation energy. High-pressure
pulsation characterized by the discrete components in the pressure spectrum will threaten
the safe operation of the pump [76,77]. For the pumps applied in the typical fields in-
cluding nuclear power stations, power stations, and the petrochemical industry, etc., the
requirements of pressure pulsation are becoming pretty strict. In pumps, high pressure
pulsation generates abnormal vibrations in some conditions, and has a negative effect on
the pump’s operation. Moreover, in extreme cases, the alternative forces caused by the
unsteady pressure pulsation leading to the cracking of the blade, especially at the blade’s
trailing edge, as discussed by Doshi et al. [78]. Therefore, how to control pressure pulsation
energy during the pump design is a critical factor that should be seriously considered by
the designer. Some effective approaches have been carried out by researchers.

7.1. Influence of Geometrical Parameters

The blade number is an important parameter influencing pump performance and
pressure pulsation. Yang et al. investigated the effect of the blade number on the pressure
pulsations of a pump turbine in pumping mode [79]. It was observed that by increasing
the blade number, pressure pulsation energy could be reduced evidently. The uniformity
of flow distribution at the blade exit could be improved by increasing the blade number,
resulting in the reduction in pressure pulsation level. The authors also discussed the effect
of the wrap angle on the pump performance [80].

Tao et al. investigated the effect of the blade thickness on the pressure pulsations of a
slurry pump [81]. When the blade thickness increased, pressure pulsation energy at the
near-tongue region was reduced; however, opposite and varying trends were observed for
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the points at the far region from the volute tongue. Spence et al. discussed the effects of
several parameters on pressure pulsations in a centrifugal pump. It was validated that the
gap between the impeller and the volute mostly affected pressure pulsation level [46]. The
blade outlet angle determined the direction of the discharge flow from the impeller and also
the subsequent interaction with the volute tongue. Yang et al. analyzed the corresponding
effects of several blade outlet angles on pressure pulsations [82]. The results showed that
the amplitude at the blade passing frequency was reduced when the blade outlet angle
increased. However, a negative effect was generated on the second-order blade passing
frequency.

7.2. The Gap between the Rotor and the Stator

The rotor–stator interaction is determined by the wake flow shedding from the blade
trailing edge and its impingement with the volute tongue [83–85]. Due to the gap between
the rotor and the stator, the intensity of wake flow will be alleviated when it moves through
the gap. Finally, increasing the gap is an effective and simple approach to reducing the
pressure pulsation level. However, due to the flow dissipation, a negative influence on
the pump performance will be generated if the gap is too large. Many studies have been
carried out considering the impact of the gap. Al-Qutub experimentally investigated the
effect of the gap on pressure pulsations in a double volute centrifugal pump. The gap ratio
compared with the impeller diameter increased from 1.4% to 5% [86]. The obtained results
are shown in Figure 20. It is evident that by increasing the gap, pressure amplitude could
be reduced for all the concerned flow rates, especially in off-design working conditions.
At the nominal flow rate, the decrement was about 35% at the 5% gap compared with the
smallest gap of 1.4%.
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Yang et al. analyzed the influence of the gap on pressure pulsations. The gap ratio
compared with the impeller diameter increased from 6.7% to 22.4% [87]. From the compari-
son of pressure amplitudes at the blade passing frequency, it was found that about a 50%
reduction could be obtained by increasing the gap. Similar results were also reported by
Solis et al. using the CFD approach [88]. Zhang et al. found that with the gap ratio lower
than 20%, pressure pulsation energy reduced rapidly [57]. When the gap ratio was larger
than 20%, pressure pulsation level decreased slowly with the gap increasing in a pump with
special slope volute. This suggests that a reasonable gap ratio range exists considering the
reduction in pressure pulsation energy. As recommended by Gülich, the gap ratio should
be controlled at lower than 10% for the conventional centrifugal pump. The effect is not
significant when the gap ratio exceeds 10%; moreover, the pump performance deteriorates
with a large gap [89].
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7.3. Modification of the Impeller

As the original source of rotor–stator interaction, the impeller plays an important role
in rotor–stator-interaction-induced pressure pulsations. Modifications of the impeller have
been investigated to reduce pressure pulsation energy.

The profile of the blade trailing edge significantly affects the wake flow. As for the hy-
drofoil, it has been validated that for the proper designed trailing edge shape, the intensity
of the vortex shedding from the trailing edge and the corresponding induced vibration will
be reduced [90,91]. In the hydraulic turbine, the effect of different blade trailing edge shapes
on flow-induced pressure pulsation and vibration has been comprehensively investigated,
and positive results obtained [92]. It is inferred that such modification will also have a
positive effect on reducing pressure pulsation in the pump. Some investigations in this
regard have been carried out. Gao et al. discussed the effect of the blade trailing edge
profile on pressure pulsations in a low-specific-speed centrifugal pump [93]. Five different
blade trailing edge profiles were compared. Using the numerical simulation method, it
was shown that the proper designed blade trailing edge profile could significantly decrease
pressure pulsation energy at the blade passing frequency. A decrement about of 7% could
be obtained, as seen in Figure 21.
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Furthermore, the obtained conclusion was validated by the authors from experiments
using the high-frequency response pressure transducers [94]. Based on the numerical
results, the best profile of EPS was selected for experiment. It was observed that for all the
concerned flow rates, the EPS profile could reduce the pressure pulsation energy. Moreover,
the complex flow distributions at the blade outlet region were also analyzed to clarify the
reduction mechanism from the internal flow aspect. Results showed that more uniform
flow distribution and low turbulent intensity accounted for the reduction.

Al-Qutub et al. used experiments to explore the influence of the V-shaped cut of the
impeller trailing edge on pressure pulsations in a centrifugal pump [95]. The results showed
that the V-cut could reduce the pressure amplitude for all flow rates, a phenomenon caused
by the increase in the gap between the impeller and the volute. Moreover, the authors also
investigated some other cut types, including the S-cut and C-cut [96]. Wu et al. analyzed
the influence of modifying the blade trailing edge on the performance of a mixed flow
pump [97], proving that the reasonable blade trailing edge improved the pump performance.
Moreover, the uniformity of flow distribution at the blade outlet region could be improved,
which is beneficial for reducing the pressure pulsation level. For the modification of the
diffuser trailing edge, Ni et al. investigated several modifications of the diffuser trailing
edge in a nuclear reactor coolant pump, and the positive effect on lowering the pressure
pulsation level could be obtained [73].
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7.4. Special Designed Impeller and Volute

To reduce pressure pulsation energy, the special designed impeller and volute are
investigated. For the impeller, the splitter blades are often used, which improve uniformity
of flow at the impeller outlet region. Finally, the resulting pressure pulsation will be affected.
Kergourlay et al. discussed the pressure pulsation and flow field affected by the splitter
blades in a centrifugal pump [98]. It was noted that by using the splitter blades to the
impeller, the velocity and pressure distributions on the periphery of the impeller became
more homogeneous. Pressure signals were captured by the dynamic pressure transducers.
From comparison with the original impeller, it was validated that adding the splitters
could markedly reduce pressure pulsation. The corresponding effect was also discussed by
GöLcü et al. [99], Li et al. [100], and Solis et al. [82], and the identical conclusion could be
obtained.

Recently Chen et al. discussed the effect of the twisted inlet vice blade on the pump
performance and pressure pulsation. It is believed that the special designed impeller has
an effective influence on improving the pump performance [101]. With the objective of
controlling the rotor–stator interaction in the centrifugal pump, a special slope volute was
proposed by Zhang et al. [102]. The volute tongue did not face the impeller, thus the flow
discharged from the impeller did not strike the tongue directly and intensely, leading to
low-pressure pulsation. By experimental comparison, the special slope volute was shown
to have a positive effect on decreasing the pressure pulsation energy of the pump, as seen
in Figure 22. Meanwhile, the pump performance deteriorated with the use of the special
slope volute, but this was not significant at the nominal and low flow rates.
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As for the reduction of pressure pulsations, many methods are proposed, but some
approaches may be limited and not universal [103]. For instance, by changing the geomet-
rical parameters, the effect may be related to the special pump model. The most effective
approach to reduce pressure pulsations for any pump is to increase the gap between the
impeller and the stator, which has been validated by many studies. It is also a very conve-
nient method for the pump designer, having little effect on the pump performance when
the gap is not too large. Moreover, the large RSI gap also has a positive effect on reducing
radial force on the impeller, and benefits the shaft stability. Thus, if the centrifugal pump
vibrates intensively, cutting the impeller outlet is a powerful approach to generating lower-
flow-induced vibration if the pump performance can be guaranteed after the trimming of
the impeller.
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8. Cavitation-Induced Pressure Pulsations

Cavitation, the important unsteady flow phenomenon in fluid machinery, has a neg-
ative effect on the performance, including on the head, efficiency, cavitation damage,
vibration, and noise [104,105]. With a single cavitation bubble, during its collapse, a sig-
nificant high-frequency signal will be emitted. With the occurrence of cavitation around
the hydrofoil and in the fluid machinery, cloud cavitation, sheet cavitation, and vortex
cavitation, etc. may be generated. Many studies have been carried out on the relationship
between unsteady cavitation and induced pressure pulsations. Ji et al. proved that for
complex cavitation around the hydrofoil, the cavity volume acceleration is the main source
of the pressure fluctuations around the cavitating hydrofoil as seen in Figure 23 [106].
Moreover, the effect of different cavitation stages on pressure pulsations has also been
discussed [107–109].
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As for cavitation in pumps, Jens Friedrichs investigated the relationship between
cavitation and pressure pulsations. The optical measurements of cavitation structures
and pressure pulsating signals were acquired. The results showed that when the rotating
cavitation occurred in the centrifugal impeller, a very low frequency was excited, much
lower than the shaft rotating frequency [110]. Xu et al. discussed the effect of cavitation on
pressure pulsation in a mixed-flow pump with vaned diffuser. It validated that with the
occurrence of cavitation, the dominant frequency of pressure pulsation changed. Moreover,
by increasing the tip clearance, cavitation will deteriorate significantly [111]. Sun et al.
investigated the cavitation–vortex-pressure pulsation interaction in a centrifugal pump
based on the numerical simulation method, and the results showed that pressure pulsations
were associated with the cavitation instability, especially at the cavity rear [112]. Zhang
et al. used the pressure transducers to measure the pressure signals of a low-specific-
speed centrifugal pump, and the relationship between the cavitation stage and pressure
pulsation energy was revealed [113]. The results showed that cavitation affected pressure
pulsation at the blade passing frequency even before the critical point, and it fluctuated
and then dropped rapidly around the critical point. The obtained results were similar
to those involving cavitation-induced noise and vibration, as validated by Rus et al. in
Figure 24 [114]. From this perspective, pressure signals can also be used to detect cavitation
status in pumps.
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9. Conclusions and Future Works
9.1. Conclusions

Unsteady pressure pulsations play an important role in the stable operation of pumps.
In the present paper, a literature review on pressure pulsations in pumps was carried out
from several topics. Some conclusions are summarized here.

In this review paper, pressure-pulsation-generating mechanism, numerical and experi-
mental investigation, cavitation-induced pressure pulsations, and reduction of pressure
pulsations, etc., were discussed.

Pressure pulsations are related to the flow distribution within the pump and the
rotor–stator interaction. The internal flow structures, including flow separation, rotating
stall, and cavitation, affect pressure pulsations, which also means that the pump’s working
condition determines the pressure pulsations. Numerical methods and experiments are
often combined to investigate pressure pulsations in pumps, and the advanced DES and
LES methods are used by many researchers to clarify flow field and pressure pulsations,
considering the precision of these methods compared with URANS.

Considering the need for low-pressure pulsation to guarantee the stable operation of
the pump, some effective approaches could be used to reduce pressure pulsation energy,
which could be applied during the pump design to avoid unexpected damage caused by
high-pressure pulsation, especially the method using the large RSI gap.

Pressure pulsations in centrifugal pumps are the focus of much research in this field,
and many works have been carried out. In this paper, the issue pressure pulsations were
reviewed from several aspects. Especially with regard to the reduction of pressure pulsation,
although many works have been undertaken, a comprehensive review has been lacking. In
this paper, the existing effective methods are summarized. It is believed that the paper will
contribute to a better understanding of pressure pulsations in pumps, and will be beneficial
for the reader and pump designer in this field.

9.2. Future Works

As for pressure pulsations in pumps, though many studies have been carried out,
some in-depth future works are still needed to give a comprehensive understanding of
pressure pulsations.

A satisfactory theory regarding rotor–stator interaction taking the working condition
and geometrical parameters into consideration is still lacking. Using the theoretical method,
we still cannot currently predict the pressure pulsation during pump design.
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By high-frequency response pressure transducers, many experiments have been car-
ried out to extract pressure signals on the volute wall or diffuser channel. However,
experiments on pressure pulsations in the impeller are rarely conducted due to the im-
peller’s rotation, and few results could be found. Thus, studies on pressure pulsations
within the impeller need to be facilitated by the design of a reasonable measuring system.

CFD is an important and useful technique for revealing pressure pulsation characteris-
tics in pumps. For the general impeller–volute matched pump, pressure pulsations can be
predicted effectively by the RANS, DDES, or LES methods. However, for the non-linear
components and high harmonics of the blade passing frequency in the impeller–diffuser
matched pump, the current CFD method lacks the adequate ability. Thus, predicting it
precisely is still a problem that should be solved.

The relationship between the geometrical parameter and pressure pulsation is not
established. This leads to difficulty for the pump designer in designing a pump with
low-pressure pulsation. The corresponding relationship needs to be revealed in order to
establish low-pressure pulsation design criteria, which will be very useful for designing
pumps with low-pressure pulsation.
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Nomenclature

Q Pump flow rate, m3/h
H Pump head, m
ω Pump rotating speed, rad/s
nd Rotating speed, r/min
ns Specific speed, (rad·m3/4)/s3/2

ZB Blade number of the rotor
ZV Blade number of the stator
D1 Impeller inlet diameter, mm
D2 Impeller outlet diameter, mm
D3 Volute inlet diameter, mm
D4 Volute outlet diameter, mm
b2 Impeller outlet width, mm
∆D Gap between the rotor and the stator, mm
N Diameter mode
fr Frequency on the runner, Hz
fs Frequency on the stator, Hz
fn, fR Impeller rotating frequency, Hz
fBPF Blade passing frequency, Hz
F Force amplitude, N
∆pp-p Peak-peak value, Pa
∆pRMS RMS value, Pa
u2 Tangential velocity at the impeller outlet, m/s
A Pressure amplitude, Pa
A* Pressure coefficient
St Strouhal number
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∆t Time step during CFD, s
cp Pressure coefficient
Q-criterion Q-criterion to identify the vortex
Φ Flow coefficient
θ, ϕ Angle of point, ◦

|Wn| Wavelet magnitude
Ψ Amplitude coefficient
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