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Abstract: The article presents an induction generator connected to the power grid using the AC/DC/AC
converter and LCL coupling filter. Three-level inverters were used in the converter, both from the
generator side and the power grid side. The algorithm realizing Pulse Width Modulation (PWM) in
inverters has been simplified to the maximum. Control of the induction generator was based on the
Direct Field-Oriented Control (DFOC) method. At the same time, voltage control has been used for this
solution. The MPPT algorithm has been extended to include the variable pitch range of wind turbine
blades. The active voltage balancing circuit has been used in the inverter DC voltage circuit. In the
control system of the grid converter with an LCL filter, the number of measurements was limited to the
measurement of power grid currents and voltages. Synchronization of control from the power grid side
is ensured by the use of a PLL loop with the system of preliminary suppression of undesired harmonics.

Keywords: induction generator; Direct Field-Oriented Control (DFOC); three-level inverter;
Sinusoidal Pulse Width Modulator (SPWM); Maximum Power Point Tracking (MPPT)

1. Introduction

In times of energy crisis, various renewable energy sources are an extremely welcome
alternative to conventional energy sources. In particular, small wind, hydroelectric, biomass,
and biogas power plants are becoming increasingly popular in distributed generation sys-
tems [1,2]. They are often based on squirrel cage induction machines [3,4]. It is a cheaper
solution than synchronous generators with electromagnetic excitation or permanent mag-
nets, which are preferred mainly in the high-power range [5]. In addition, the induction
machine, which keeps improving all the time [6], is also more straightforward, easier to
operate, and more reliable. This is particularly important in the case of more demanding
operating conditions or less qualified operators, such as on agricultural/animal farms [7,8].

An interesting case of using a squirrel cage induction machine as a generator is the
Self-Excited Induction Generator (SEIG) system. Although the principle of the SEIG has
been known for several decades [9,10], research in this area continues all the time [11–14].
The SEIG, first of all, it does not require an external power supply to excite the magnetic
field and operates independently. Therefore, given its low price and high reliability, it is an
attractive alternative generation system for use in stand-alone/island (off-grid) power sys-
tems. Furthermore, the sometimes-occurring need to enable the switching of an induction
machine from off-grid to on-grid mode can be implemented either through algorithmic [15]
or hardware solutions using power electronic converters, depending on the configuration
of the target power system.

In the simplest case, an induction machine operating as an on-grid generator can be
connected directly to the grid [4,16]. The connection does not require synchronization with
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the grid (this is an important issue), and the start-up of the generator is like that of an
induction motor. However, producing and delivering electricity to the grid is possible in
this case only above a certain wind speed. Furthermore, it is not possible to electrically
control the active power. In addition, when the machine is directly connected to the power
grid, there is a demand for reactive power. This, of course, degrades the quality of electricity
near the generator installation. Therefore, to improve the quality of electric power, there is a
need to compensate for reactive power. For this purpose, battery capacitors are commonly
used and possibly thyristor static compensators [4,17,18]. However, these approaches
cannot satisfy the required power quality standards associated with connecting new power
sources to the grid [19,20].

Currently, various novel electronic systems are used to prevent the negative impact
of on-grid energy sources on the power grid [21–25]. In particular, AC/DC and DC/AC
converters eliminate problems associated with injecting reactive and distorted currents
into the grid. Near-sinusoidal currents with very low harmonic distortion are achieved by
adequately controlling transistors and using small T-type Inductive–Capacitive–Inductive
(LCL) coupling filters. The use of transistor power converters on the generator and grid
sides has simultaneously enabled full conversion of generated power [4,26–28]. It also
allowed the control of the active power given to the power grid. At the same time, an
essential feature of systems with AC/DC/AC converters has become the possibility of their
autonomous operation for dedicated consumers. This can occur in the event of a power
outage from the grid or after self-excitation of the generator without grid involvement [27].
However, autonomous operation, widely considered in a great many publications, includ-
ing [4,9–18], is not the subject of this article and will not be discussed.

An additional functionality of using converters is also the ability to control the reactive
power. This solution also extends the wind speed range for which the power plant is able to
transmit energy to the grid. The scope extension applies to lower and higher wind speeds
at which currently existing systems have to be disconnected. Additionally, because the
system has full conversion of electrical energy, it was possible to implement the tracking of
the maximum power generated by the generator in a wide range of wind speed.

There are many methods to track the maximum power [4,29–34]. However, the most
common are three basic MPPT algorithms. The first of these is an algorithm based on the
known dependence of the wind turbine power in function of the angular speed PG(ωm) [27].
The second one is based on the optimal speed ratio of the λopt turbine, but it requires the
measurement of wind speed [30–33]. The third one is the incremental algorithm, which,
without knowing the turbine parameters, continuously searches for operating conditions
with maximum power for a given wind speed [34].

In the literature on the subject, including the work cited above, the research results
on induction generators are primarily presented in relation to single problems. However,
in the present study, the main goal is to cover the application problems of the squirrel
cage induction machine as a generator cooperating with the power grid in a multifaceted
manner, particularly in application to small-scale wind power plants.

In the proposed solution, three-level inverters were used, allowing the connection
of both machines and local medium-voltage grids of the lower range. A simple control
algorithm was developed for these inverters which does not require arrays or trigonometric
functions. The algorithm is also easily adaptable for a larger number of voltage levels.
These features greatly simplify the hardware implementation of the controller. In parallel,
using Cascaded Delayed Signal Cancelation (CDSC) in combination with PLL resulted in
better filtering of the fundamental harmonic of the line voltage required for synchronization
and prediction in the control system.

To achieve high-quality sinusoidal current generated to the grid, a lossless LCL filter
(without damping resistors) is used at the output of the inverter. In these cases, addi-
tional feedback from the measured state variables of the filter is typically implemented.
This requires additional sensors. The authors estimated voltage across capacitors and



Energies 2023, 16, 63 3 of 23

output current as an alternative to measurements. This reduced the number of required
measurements and indirectly improved reliability as well.

In addition to the previously indicated improvements, the current solution for high
wind speeds implemented a limitation of generated power by changing the angle of the
wind turbine blades while the maximal power is maintained. In addition, the control
system on the generator side uses forward feedback, making it possible to mitigate and
accelerate transient processes in the event of rapid changes in wind speed. However, the
active autonomous voltage balancing system on the capacitors used in the DC circuit not
only improved the operation of three-level inverters, but also allows simple connection to
the TN grid system.

2. Model of Wind Turbine

The induction generators in wind power plants are driven by wind turbines with
different rotation axis arrangements. The case modeled in this article refers to the turbine
with a horizontal axis of rotation. For this turbine, the mechanical power is given by (1).

Pm = 0.5ρAV3
wCp(λ, β) = 0.5ρπR2

bV3
wCp(λ, β) (1)

where: Cp(λ,β) is the wind turbine power coefficient, Vw is the wind speed, and ρ is the air
density (assumed ρ = 1.225 kg/m3).

The power coefficient Cp(λ,β) in (1) is given by the empirical relation (2) [30].

Cp(λ, β) = 0.5176(116λi − 0.4β− 5)e−21λi + 0.0068λ

where : λi =
1

λ+0.08β −
0.035
1+β3 λ = ωT Rb

Vw

(2)

where: λ is the turbine blade tip speed ratio, β is the turbine blade setting angle, ωT is the
angular speed of the turbine, and Rb is the turbine rotor radius.

In the simulation system, the wind turbine model described above was used to drive
an induction generator. For the purposes of simulation tests, the dimensions of turbine
blades Rb = 3 m and gearbox G = 5 were arbitrarily adopted (small wind power plant).
The maximal power factor for the adopted model (2) was Cp(λ,β) = 0,48 for λ = 8.1. The
determined values refer to the zero setting angle of the turbine blades β = 0. Figure 1 shows
the turbine power coefficient Cp(λ,β) for five different turbine blade pitch settings.
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Figure 1. Power coefficient Cp(λ,β) as a function of the turbine speed ratio for five values of the
setting angle.

However, Figure 2 shows the power of the turbine described above as a function of
the angular velocity of the induction generator for different wind speeds with zero blade
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angle adjustment. The diagram of maximum power is shown on the background of these
characteristics. This waveform is described in Equation (3).

Pmax = cβK(ωG/G)3 (3a)

cβ =

(
λopt0

λoptβ

)3
Cp
(
λoptβ, β

)
Cp
(
λopt0, 00

) where K = 0.4223 (3b)

Equation (3a) for cβ = 1 describes the generator’s maximum power PGmax for zero
adjustment of the blade angle, β = 0. When the value of power generated exceeds the
power rating of the generator PN, the setting of the angle of the blades changes. To ensure
the operation of the generator with the maximum power coefficient Cp(λ,β) under the new
conditions, the coefficient cβ is also changed in accordance with the relation (3b).
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Equation (3a) is the basis for the implementation of the maximum power point tracking
method. The tracking method based on the above equation will be used in the further part
of the article in simulations of the wind farm system with an induction generator.

3. Multilevel Inverters Connecting the Generator to the Power Grid

At present, AC/DC/AC converters are commonly used in systems with full energy
conversion [26,27]. Until recently, they were implemented on the basis of two-level inverters.
However, multilevel inverters are increasingly being used [35,36]. An increased number of
levels allowed them for better shaping of output currents at the same average number of
joins of elements.

In the connection system of the induction generator to the power grid, three-level
inverters were used from both the generator and the power grid side [33]. The types of
inverters which were taken into consideration included: Neutral Point Clamped (NPC)
inverter, and Neutral Point Piloted (NPP) inverter. Although the NPC inverters contain
more elements, they have been accepted for further simulation studies. In the DC circuit,
active balancing of voltage unbalance [37] was applied.

The scheme of a three-level inverter used in simulations on the generator and power
grid side, with the active voltage balancing system, is shown in Figure 3.
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4. SPWM Modulator of Multilevel Inverter

A simple algorithm based on Sinusoidal Pulse Width Modulation (SPWM) has been
used to generate control signals for a multilevel inverter. It is implemented independently
for each phase.

At the initial stage, the set signals of phase voltages are modified by adding to them a
waveform (4) that allows increasing the output voltage of the inverter. ukom =

max(uare f ,ubre f ,ucre f )+min(uare f ,ubre f ,ucre f )
2

uxre f = uxre f − ukom x = a, b, c
(4)

The obtained modified signals are compressed to a range of ±2 using the UDC inter-
mediate circuit voltage (5).

ux = 2
uxre f
UDC

x = a, b, c (5)

In the next processing step, the signals were shifted by adding a constant component
to them with a value of 2. As a result of this operation, unipolar signals in the range of
values from 0 to 4 (6) were obtained.

upx = ux + 2 x = a, b, c (6)

Signals processed this way are analyzed in two ranges, in the range of values 0–2 and
2–4. In each of these intervals, the SPWM is implemented independently. In the range of
values from 2–4, signals are generated for the upper transistors of each inverter branch T1a,
T3a, T5a and in the range of values from 0–2 for the lower transistors T2a, T4a, T6a. The
other inverter transistors are controlled by complementary signals T1b, T3b, T5b and T2a,
T4a, T6a according to Figure 3.

The durations of the control signals for a single switching cycle of the transistors are
calculated twice in advance of the half cycle after the prediction has been applied to the set
signals. They are performed at the beginning and in the middle of the switching cycle. The
control signals obtained in this way may be asymmetrical with respect to the center of the
switching cycle. The implementation of the control described above, however, halves the
delay in the system response to changes in the set point and load in relation to the single
calculation of the signal duration only at the beginning of the switching cycle.

Simple mathematical relations, without trigonometric functions, significantly reduced
the calculation time. In the initial phase, the implementation of the algorithm was limited
to determining the range of the offset value of the set signal. The calculation procedure
is started only after the preparation phase. In the case when the value of the set point
signal is in the second range, the initial offset value should be subtracted before making the
calculation. This operation is not required when the signal value is in the first range (7).

urx =

{
upx − 2 2 < upx < 4

upx 0 < upx < 2
x = a, b, c (7)
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Eventually, the calculation of the delay times of the switching signals of the transistors,
in relation to the beginning and the middle of the switching cycle, are performed based on
dependencies (8).

Ta = (1− 0.5urx)Tp x = a, b, c (8)

where: Tp is half of the interval TPWM, and urx is the reduced value of the set voltage.
The switching delay time determined on the basis of the above dependence applies

only to one transistor from the complementary pair in the phase. At that time, the transistor
from the second complementary pair can be switched on for the time equal to half of the
connection cycle (second interval) or off for the time equal to half of the connection cycle
(first interval) (9). It depends on the actual value of the set signal.

[
Txi

Tx(i+1)

]
=


(1− 0.5urx)Tp

0

Tp

(1− 0.5urx)Tp

2 < upx < 4

0 < upx < 2
(9)

where: [x,i]∈<a,1;b,3;c,5>.
Figure 4 shows the waveforms of transistor control signals realized using the presented

algorithm. They present the determined operating state of the three-level inverter.
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The above algorithm can be easily adapted for controlling the operation of inverters
with a larger number of levels.

5. Field-Oriented Generator Control with Direct Orientation of the Vector (DFOC)

In the power plant system, the generator is a squirrel cage induction machine with the
rated data in Appendix A.

Direct coupling of such a generator with the power grid is possible, but only in a
very narrow range of angular velocities. In order to extend the speed range for which the
generator will be able to supply energy to the power grid, a solution with full conversion
based on the AC/DC/AC system was used. It forced the necessity of also using the
converter on the generator side. In order to unify control systems and create the possibility
of using medium-voltage generators in the future, three-level inverters were used.

The generator-side inverter control algorithm was based on field-oriented control
with indirect field vector orientation with voltage control. It is relatively simple and
allows setting the electromagnetic moment of the generator load. This is the starting point
for the implementation of the MPPT algorithm. The cage induction motor model in the
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synchronous system of the rotor flux is described by the voltage–current vector Equation
(10). After separation into the real and imaginary part, it allows determination of the rotor
flux ψr, the slip pulsation ωr, and the electromagnetic torque me (11).

Tr
d
→
ψ r
dt + (1 + jTrωr)

→
ψr = Lm

→
i f Tr =

Lr
Rr

(10)

ωr = Rr
Lm
Lr

i f q
|ψr | γψr =

t∫
0
(pbωm + ωr)dt

Tr
dψr
dt + ψr = Lmi f d me =

3
2 pb

Lm
Lr
|ψr|i f q

(11)

where: Rr rotor resistance, Lr rotor inductance, Lm main inductance, pb number of pole
pairs, ψr rotor flux, ωr slip pulsation, ωm mechanical angular velocity, me torque.

Equation (11) describes the induction machine in a synchronous system. It also makes
it possible to calculate the set component values ifd*, ifq* of the inverter output current.
These current components were calculated for the assumed value ψr* of the rotor flux and
the set value me

* of the electromagnetic torque. To enable wider use of the machine as the
generator, the rotor flux was assumed equal to the rated flux. On the other hand, the set
moment was calculated in the MPPT system, based on the current angular speed ωm of the
generator shaft. As a result of this procedure, relations (12) were obtained. They allowed
determination of the inverter control in a further calculation step.

ωr[k] = Rr
Lm
Lr

i f q [k]
|ψr [k]| ωsψr[k + 1] = pbωm[k] + ωr[k]

γψr[k + 1] = γψr[k] + Tsωsψr[k]

me[k] = 3
2 pb

Lm
Lr

ψr[k]i f q[k]

ψr[k + 1] = ψr[k] + Ts/Tr(Lmi f d[k]− ψr[k])

(12)

Figure 5 shows the inverter control algorithm from the generator side using the method
based on dependence (12).

i f d
∗[k] = KP_ψr

[(
ψr
∗[k]− ψr[k]

)]
+KI_ψr

k
∑

m=0

[(
ψr
∗[m]− ψr[m]

)]
i f q
∗[k] = KP_me

[(
me
∗[k]−me[k]

)]
+KI_me

k
∑

m=0

[(
me
∗[k]−me[k]

)]
(13)
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In the presented block diagram, the generator is controlled in a coordinate system that
rotates synchronously with the rotor flux vector ψr. Here, on the basis of the set values
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of the rotor flux ψr* and the motor torque me*, the set currents ifd* and ifq* in the d–q axes
are determined by means of PI type controllers in Equation (13). Next, on the basis of the
set values of currents ifd* and ifq*, the set values of the output voltages ufd* and ufq* of the
converter are also determined by means of PI type regulators in Equation (14).

u f d
∗[k] = KP_i f d

[(
i f d
∗[k]− i f d[k]

)]
+KI_i f d

k
∑

m=0

[(
i f d
∗[m]− i f d[m]

)]
u f q
∗[k] = KP_i f q

[(
i f q
∗[k]− i f q[k]

)]
+KI_i f q

k
∑

m=0

[(
i f q
∗[k]− i f q[k]

)]
(14)

6. Predictive Control of the Power Grid Converter

The AC/DC/AC system’s output converter works with the power grid directly. Its
basic task is to supply energy generated by the generator to the grid. Thanks to the extended
control algorithm, it can also act as a reactive power compensator.

In general, the grid voltage can be strongly distorted and contain higher harmonics
with significant amplitudes. In the simulation tests, two harmonics were taken into account:
5 h with a value of 5% of the fundamental value of the harmonic and phase of 30◦ and
7 h with a value of 3% of the fundamental value of the harmonic and phase of −20◦. The
condition of proper cooperation with the power grid is a good synchronization of the
control system with the basic voltage harmonic. This goal was achieved using the PLL
algorithm. However, when the network voltage is distorted, good synchronization is not
sufficient to obtain the nearly sinusoidal voltage waveform with small content of higher
harmonics. In order to perform the above task, the LCL filter was used in the inverter
coupling system with the power grid, and the prediction in the control algorithm was
applied [28,38–44]. The use of the filter in conjunction with the prediction has improved
the shape of the grid current by reducing the content of higher harmonics below 1%.

The equivalent filter scheme is shown in Figure 6. It has a high damping factor of
60 dB/dec for frequencies above the resonant frequency. By appropriate selection of the
resonant frequency, the modulation signal can be very effectively suppressed. However, it
is a third-order filter and oscillations may occur in the output current, which must also be
effectively suppressed.
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Equation (15a–c) describe the LCL filter in a continuous form.
a) Ls

d
→
i s

dt +
⇀
i sRs =

→
u c −

→
u s

b) L f
d
→
i f

dt +
→
i f R f =

→
u f −

→
u c

c) C f
d
→
u c
dt =

→
i f −

→
i f

(15)
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When switching to a discrete form, a description based on averaged momentary
values of the grid voltage, inverter, and capacitor was used. Finally, the predictive control
algorithm with the model was described using four-vector Equation (16).

→
u f [k + 1|k + 2] =

→
u c[k + 1|k + 2]

+(
→
i f [k + 2]− A f ∗

→
i f [k + 1])/B f

→
i f [k + 2] =

→
i s[k + 2] + (

→
u c[k + 2|k + 3]

−A f ∗
→
u c[k + 1|k + 2])/B f

→
u c[k + 2|k + 3] =

→
u s[k + 2|k + 3]

+(
→
i s[k + 3]− As ∗

→
i s[k + 2])/Bs

→
u c[k + 1|k + 2] = Ac ∗

→
u c[k|k + 1]

+Bc ∗ (
→
i f [k + 1]−

→
i s[k + 1])

(16)

where: x[k+1|k+2] is average value of the quantity in the time interval k+1 to k+2, x[k+1] is
value of the quantity at time k+1.

For a third-order filter, the prediction of two advance steps is required. In order to
implement the control in the above equations, the grid current values were replaced with

their set values:
→
i s[k + 2] =

→
i
∗
s [k + 2] and

→
i s[k + 3] =

→
i
∗
s [k + 3]. The remaining values

were determined based on Equation (17).

→
u c[k− 1|k] = →u s[k− 1] + (

→
i s[k]− As ∗

→
i s[k− 1])/Bs

→
u c[k|k + 1] = Ac ∗

→
u c[k− 1|k] + Bc ∗ (

→
i f [k]−

→
i s[k])

→
i s[k + 1] = As ∗

→
i s[k] + Bs ∗ (

→
u c[k|k + 1]−→u s[k|k + 1])

→
i f [k + 1] = A f ∗

→
i f [k] + B f ∗ (

→
u f [k|k + 1]−→u c[k|k + 1])

(17)

In the grid converter control system, the voltages on the capacitors and the converter
output currents are not measured. However, these values are calculated. The average
voltages

→
u c[k− 1

∣∣∣k] on the capacitors for the previous sampling period are estimated
on the basis of the average values of the power grid voltage and the grid current in the
previous sampling period. Then, based on the prediction, its values for the present moment
are determined. In contrast, the converter output currents are calculated based on the
prediction in the previous sampling period. The coefficients occurring in Equation (17)
were determined based on the equations of the filter state and, assuming the constancy of
the element parameters, they can be calculated based on the dependence (18).

As = 1− exp(−Ts/Te) Bs = (1− As)/Rs

A f = 1− exp(−Ts/Tf ) B f = (1− A f )/R f

Ac = 1− exp(−Ts/Tc) Bc = (1− Ac) ∗ Rc

Te = Ls/Rs Tf = L f /R f Tc = C f Rc

(18)

In Equations (16) and (17), the average grid voltage was used for the intervals [k|k+1],
[k+1|k+2], and [k+2|k+3] and the currents from the moment of measurement [k]. The
averaging refers to half of the switching cycle of transistors. The coefficients in the equations
include such parameters of the coupling system as the filter inductances Ls and Lf, filter
resistances Rs and Rf, as well as capacitance Cf and resistance Rc = ESR.
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The voltage values of the power grid at the time [k+1], [k+2], and [k+3] were determined
by summing (21) rotated vectors, basic (19) and higher harmonics (20), and grid voltage.
On the other hand, the size of the rotation angle of the vector components depends on their
pulsation ωPll1h, ωmh, and sampling time Ts.

→
u sPll1h[k + n] =

→
u sPll1h[k](cos(ndγPll1h) + j sin(ndγPll1h))

where : dγPll1h = 2PI fPll1hTs n = 1, 2, 3
(19)

→
u smh[k + n] =

→
u smh[k](cos(ndγmh) + j sin(ndγmh))

where : dγmh = 2PI fmhTs m = 5, 7, . . . n = 1, 2, 3
(20)

→
u s[k + n] =

→
u sPll1h[k + n] + ∑

m

→
u smh[k + n]

where : n = 1, 2, 3 m = 5, 7, . . .
(21)

The components of the current isαβ and ifαβ for time [k+1] (17) are determined based
on prediction with the model of coupling circuit, Figure 6.

The set value of the current was determined based on the definition of instantaneous
powers for the first harmonic, given by Hirofumi Akagi (22) [45,46].{

p∗[k] = usαPll1h[k]i∗sα[k] + usβPll1h[k]i∗sβ[k]

q∗[k] = usβPll1h[k]i∗sα[k]− usαPll1h[k]i∗sβ[k] (22)

It refers to the actual time [k]. However, in relations (16), values of currents are also
required for times [k+2] and [k+3]. Assuming that the power grid current should have the
sinusoidal waveform, the required quantities can be easily obtained. For this purpose, the
rotation of the reference current vector is carried out twice and three times, determined for
the instant [k] based on the dependence (22), by the angle determined from the fundamental
harmonic voltage of the power grid frequency fPll1h of network voltage and the sampling
interval Ts (23).

→
i
∗
s [k + n] =

→
i
∗
s [k](cos(n ∗ dγPll1h) + j sin(n ∗ dγPll1h))

where : dγPll1h = 2PI fPll1hTs n = 2, 3
(23)

Figure 7 shows a block diagram of the grid converter control algorithm based on the
presented dependencies.
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7. Synchronization of Control to the Voltage of the Power Grid

As mentioned earlier, the control of the converter, which is connected to the power
grid, requires precise synchronization with the voltage waveform. In the presented sys-
tem, this process takes place in two stages. In the first stage, thirty-two positive-order
and thirty-two negative-order higher harmonics are attenuated using a cascaded system
CDSC(vαβ)2,4,8,16,32,64 [47–52]. A valuable feature of this system is that it does not introduce,
or introduces a negligibly small value of, phase shift of the input waveform first harmonic.

The second stage is proper synchronization with the fundamental harmonic of the
power grid voltage. Figure 8 shows the implemented synchronization system.
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8. Wind Power Plant System

Figure 9 shows a complete block diagram of a wind power plant connected to the
power grid by three-level inverters. The connection between the power plant and the
power grid is constituted by an LCL filter with the parameters given in Appendix B. In
the DC circuit, there is a voltage balancing system on capacitors Cf1 and Cf2. Between the
control systems, generator, and power grid inverter, feed-forward power feedback has been
used. It speeds up the transient processes in the converter system at wind changes.
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9. Laboratory Tests of a Wind Power Plant

The tests of the system were carried out by simulation using the software package
PLECS version 4.4.3, and the limited physical experiment. From this package, only library
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elements of the main circuit were used for modeling. These elements include: model of
induction motor, transistors, inductances, and capacitances, as well as current, voltage, and
speed measurement systems. The control algorithm was written in the C programming
language. After compiling, in the form of a dynamic library *.dll, it was attached to the
main program modeling system. The control algorithm is called from the main program
every 50 µs (20 kHz) similarly as in the real system as part of the interrupt service. However,
the frequency of switching of transistor keys is halved and in the tested system it is 10 kHz.

The procedure presented above was dictated by the fact that in the case of experi-
mental implementation, the tested algorithm can be easily transferred to a microprocessor
controller with minor modifications to adapt it to the hardware equipment. The laboratory
research process carried out in this way will reproduce the working conditions of the real
system fairly reliably.

During the simulation tests, the wind was modeled changing in the cycle from 6 m/s
to 9 m/s and further to 11 m/s and from 11 m/s to 9 m/s, finishing at 6 m/s with phases
of constant speed value. The operation of the system for the above test scenario is given
in Figure 10, which shows the assumed changes in wind speed Vw and the corresponding
changes in angular speed ωG and power PG of the generator, as well as in power PS
supplied to the power grid.
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Figure 10. Assumed changes in wind speed Vw (a) 12, 8, −8, −12 [m/s2]; (b) 24, 24, −24 −24 [m/s2]
and corresponding changes in angular velocity ωG, generator power PG, and power grid PS.

Figure 11a shows the waveforms of generator power PG as a function of its angular
speed ωG, while Figure 11b presents the waveform of wind turbine power coefficient
Cp(λ,β). These two waveforms were obtained for different wind speeds at a constant
turbine blade pitch β = 0◦. Power values at which changes start, after changes in wind
speed, allow conclusions on the good implementation of the maximum power point
tracking in steady states.
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Figures 12 and 13 show changes in wind speed Vw, angular speed ωG, and power of
generator PG as well as of power PS supplied to the power grid. The presented waveforms
refer to the case of a wind speed increase from 9 m/s through 12 m/s up to 14 m/s, and a
decrease within the same range. When the wind speed exceeded 11 m/s, the generated
power was higher than the rated power of the generator. In order to limit the power, the
angle of the wind turbine blades’ setting was changed from β = 0◦ to β = 10◦ to reduce the
generated power. Despite this change, the wind power plant continues to work with the
tracking of the maximum power point by correcting the coefficient cβ in accordance with
Equation (3b). On the basis of the waveform, Figure 10 shows the efficiency of the system,
which, for a predetermined wind velocity Vw = 11 m/s and an angle β = 0◦, was η ∼= 91.2%.
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Figure 13. Waveforms of generator power PG (a) and turbine power coefficient Cp(λ,β) (b) for
changing wind speed Vw and blade angle equal to β = 10◦.

Figures 14 and 15 show the transient processes occurring in a wind power plant during
a linear change in the turbine blade angle setting in the range from β = 0◦ to β = 15◦, at
constant wind speed. In the initial phase of changes in β, a slight increase in generator
angular speed ωG is observed, but then it decreases to the final steady-state level below the
initial speed. As a result, the power factor Cp (λ,β) decreases (Figure 15b) from the optimal
value for the set wind speed Vw = 11 m/s and angle β = 0◦ to the optimal value for the
angle β = 15◦. Therefore, the power PG generated and PS supplied to the power grid are
also decreasing (Figures 14 and 15a).

Figure 16 shows voltage uabG and current iaG waveforms on the generator inverter side.
The waveforms on the left refer to the change in wind speed in the range from 6 to 9 m/s,
while on the right side the wind speed varies from 9 to 6 m/s. The center waveforms show
the steady state of the generator at wind speed of 11 m/s. Despite the wide range of wind
speed variations, the converter work is correct. The converter passes without disturbance to
the three-level mode when the wind speed increases and vice versa to the two-level mode
while reducing the wind speed. The obtained waveforms indicate the correct operation of
the system in various conditions.
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Figure 16. Waveforms of generator voltage uabG, and currents iafG, ibfG at changing (a), (c) and
constant wind speed equal to 11 m/s (b).

The proposed simplified algorithm of the three-level inverter modulator works cor-
rectly. This is confirmed by the simulation results obtained. Switching processes of
transistors are ordered and there is no uncontrolled switching in them as evidenced by
voltage waveforms.

In all of the above cases, the generator current is close to sinusoidal with a low content
of higher harmonics (Figure 16). Higher harmonics generate pulsating torque and increase
the loss of the induction generator so they lack a positive effect on the system.

Figure 17a shows the setpoints and measured quantities in the direct control system
for the rotor flux and electromagnetic torque of an induction generator. Figure 17b, on the
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other hand, shows the corresponding setpoints and measured values of the stator current
components in a coordinate system rotating synchronously with the rotor flux.
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Figure 17. The waveforms of: (a) the set rotor flux ψrz, the set driving torque of a wind turbine mez

and estimated values ψr and electromagnetic torque of generator me; (b) the set current components
in the d and q axes and their measured values.

Figure 18 shows the voltage waveforms uabf of the converter connecting the system
to the power grid, the power of the induction generator PG, power supplied to the power
grid PS, and reactive power QS. In the lower part of the figure the waveforms of the power
grid current ias and the output current of the inverter iaf are shown. The waveforms were
obtained during the sequence of wind speed changes from 6 m/s by 9 m/s to 11 m/s and
in the opposite direction of changes ending with the wind speed of 6 m/s.
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Figure 18. Waveforms of the generator’s phase-to-phase voltage uabf, power output PG, power
supplied to the grid PS, reactive power QS, grid current ias, and inverter current iaf.

In the waveforms, an increase in the current can be observed at the moment of setting
reactive power. Figure 19 shows in detail the steady state of the power plant operation at a
wind speed of 11 m/s with a load determined from the operation of the MPPT system. To
fully illustrate the system’s capabilities at time t = 4.6 s, the reactive power of QS = 5 kVar
was applied to the grid converter control system (Figure 18). This caused temporary
additional switching of the inverter transistors. They are clearly visible in the output
waveform of the uabf inverter (Figure 19). They cause immediate displacement of the ias
current grid phase (Figure 19). However, a fast change in the output current phase does
not lead to oscillations. Thanks to the use of advanced control, it was possible to avoid
unfavorable oscillation phenomena in the output current of the multilevel inverter.
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current ias of the grid, and inverter current iaf for change in reactive power.

Despite the strong distortion of the power grid voltage, which includes 5 h with a
value of 5% and 7 h with a value of 3% of the fundamental value of the harmonic, the
current waveform ias is close to sinusoidal with the content of higher harmonics below 1%
(Table 1). The content of higher harmonics of the power grid current has not changed much
with the changes in load and type of control (where: fG—generator voltage frequency).

Table 1. The content of higher harmonics.

Type of System Ps [kW] fG [Hz]
Content of Higher Harmonics

THD_IG% THD_US% THD_If% THD_IS%

With all measurements
5.5 37.39 0.83 5.83 5.26 0.18

10.0 45.40 0.61 5.76 2.68 0.05

Without measurement uc
5.5 37.41 0.83 5.83 5.29 0.18

10.0 45.40 0.61 5.83 2.68 0.05

Without measurement uc, if
5.5 37.39 0.83 5.83 - 0.695

10.0 45.40 0.61 5.83 - 0.37

In the presented waveforms, the correct operation of the proposed simplified modula-
tors can be also observed in the case of a converter connected to the power grid (Figure 19).
Lack of asymmetry of the output voltages of the three-level inverter proves the proper
operation of the balancing voltage in the DC voltage circuit. Figure 20 shows the voltage
and current waveforms after connecting the system to the power grid. In spite of the
strongly deformed voltage waveform, the obtained current is close to sinusoidal.

Based on the simulation tests performed, the correct operation of the small wind
power plant system was observed. The power plant’s control algorithm efficiently tracks
the point of maximum power, both in the case of changes in wind speed and changes in the
angle of setting the wind turbine blades.

Figure 21 shows an example of experimental results from testing an induction genera-
tor on the test stand shown in Figure 22. In particular, Figure 21a documents the sinusoidal
waveform of the line current despite the high distortion of the grid voltage. These results
confirm the efficiency of a simplified three-level inverter modulator without the use of
arrays and trigonometric functions, as well as the immunity to voltage distortion in the
real power supply network.
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measuring the capacitor voltage, (c) without measuring the inverter current and capacitor voltage.
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Figure 21. Selected experimental waveforms of voltage and current in the investigated generator
system (Figure 9): (a) voltage and current of the induction machine during the start-up, (b) voltage
and current of the induction generator, and DC link voltage at steady state, (c) output voltage and
current of the grid inverter, (d) voltage and current of the power grid for reactive power.
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10. Conclusions

The article presents a complete control algorithm for the AC/DC/AC converter con-
necting the induction generator with the power grid. The algorithm for controlling the
DC/AC converter from the power grid does not use measurements of output currents or
voltages on the LCL filter capacitors. These values are estimated on the basis of measure-
ments of power grid currents, voltages, and filter parameters.

The application of the converter with the proposed control algorithm provided near-
sinusoidal currents of the power grid. Thanks to the LCL filter coupling the system
with the power grid and the predictive control, the content of higher harmonics in the
output current below ~1% was obtained, despite the assumption of high voltage distortion
(Figures 19 and 20) and limiting the number of measurements of the input quantities.
Correct operation of the system was also achieved with the proposed modulator for the
multilevel inverter. The system also performs the function of a reactive power compensator
thanks to the possibility of controlling the phase of the current in relation to the grid voltage.

However, to control the AC/DC converter from the induction generator side, the
algorithm of direct rotor flux and torque control was used. The current distortion on the
generator side is slightly higher (Figure 21a) and this is due to the lack of an additional
coupling filter (Figure 9). This lack is partially compensated by the relatively high induc-
tance of the induction motor. The low content of higher harmonics of the current does not
significantly affect the pulsation of the generator’s load torque and increasing losses.

Original simple algorithms of modulators do not require trigonometric functions or
arrays for calculations. This reduced the time needed to calculate the switching times of
inverter transistors. The use of full processing of the produced energy extends the use of
an induction generator to a range of lower wind speeds.

The article proposes a modification of the maximum power point tracking method.
It concerns the range of higher wind speeds, in which a change in the angle of the wind
turbine blades’ setting is required. The modification was implemented by introducing the
correction factor cβ to the dependence (3). This enabled the use of an induction generator
with a maximum power factor Cp for wind speeds varying within wide limits.

In the studies, the presented system was characterized by high efficiency, which for
different loads and operating systems is shown in Table 2.
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Table 2. Total efficiency of generator systems.

With all Measurements Without Measurement uc Without Measurement uc, if

Ps [kW] η % η % η %

1.6 91.02 91.02 91.07

5.5 92.74 92.74 92.67

10.0 91.77 91.77 91.75

The promising results of the system test encourage further work. The high complexity
of the control algorithm presented in the article requires the use of a microprocessor con-
troller with high computing power. Therefore, all the required computational procedures
were also written in the “C” programming language with a minimal number of instructions.
This guarantees relatively short control times in the real system.

The proposed system was characterized by fewer measurements than are required in
typical systems. By using estimation and prediction, the number of measurement channels
was reduced by four. At the same time, the system did not show oscillations or a significant
increase in the content of higher harmonics in the power grid current. The efficiency of
the system also did not noticeably deteriorate. At the same time, the reduced number of
measurements increases reliability and reduces implementation costs. The applied control
method does not require additional damping resistances in the LCL coupling circuit. At
the stage of practical implementation of the control, the requirements for the selection of a
microprocessor controller are also fully acceptable.

The squirrel cage induction machine (SEIG) used in the presented generation system
is an efficient, less expensive, and fully functional alternative to PMSG in application to
small-scale residential power plants. Currently, implementation work is underway to start
production of the developed solution with a capacity of 10-50kW for widespread use in
rural households.
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Abbreviations

SEIG Self-Excited Induction Generator
AC/DC AC to DC converter
DC/AC DC to AC converter
MPPT Maximum Power Point Tracking
NPC Neutral Point Clamped inverter
NPP Neutral Point Piloted inverter
SPWM Sinusoidal Pulse Width Modulation
PWM Pulse Width Modulation
DFOC Direct Field-Oriented Control
CDSC Cascaded Delayed Signal Cancelation
PLL Phase Locked Loops
THD_IG Total Harmonic Distortion of the generator current
THD_IS Total Harmonic Distortion of the power grid current
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THD_If Total Harmonic Distortion of the inverter current
THD_Us Total Harmonic Distortion of the power grid voltage
PI Proportional–Integral controller
ESR Equivalent Series Resistance
GI Induction Generator
SMA Smoothing Moving Average
Symbols
C(λ,β) wind turbine power coefficient
λ speed factor
β blade angle
Vw wind speed
ρ air density
ωm angular velocity of the induction generator
cβ reduced power factor
A surface area swept by wind turbine blades
Rb dimensions of turbine blades
G gearbox
PGmax maximum power of the generator
uxref phase reference voltages x = a, b, c
ukom common voltages
UDC DC link voltage
ux normalized phase control voltage x = a, b, c
upx unipolar phase control voltage x = a, b, c
urx determination of the voltage ranges of the set phases x = a, b, c
Tp period of PWM
Txi switching period of transistors of individual phases [x,i]∈<a, 1; b, 3; c, 5>
Tr electrical constant of the rotor circuit
Lr inductance of the motor rotor
Rr resistance of the motor rotor
Lm main inductance of the motor
ωr slip pulsation
ψr rotor flux vector
ifG generator current vector
ifd, ifq components of the generator current vector in the d–q system
pb number of generator pole pairs
me electromagnetic moment of the generator
Rs, Rf filter inductance resistances
Ls, Lf filter inductances
Cf filter capacity
Rc equivalent series resistance
us, uc, uf voltage of the power grid, capacitor, grid inverter
is, ic, if currents of the power grid, capacitor, grid inverter
Te, Tf, Tc time constants of the filter
Ts sampling time constant

Appendix A. Induction Motor (Generator)

1. Type: BBC QV 160M4AA
2. Nominal parameters:

PN [kW] U1N [V] I1N [A] f1N [Hz] nN [rpm] 2p [-] cosφN

11 400 22.5 50 1438 4 0.83

3. Electrical parameters:

Rs [Ω] Lσs [mH] Rr [Ω] Lσr [mH] Lm [mH] J [kgm2]

0.3223 1.99 0.4762 3.4 69.69 0.194
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Appendix B. LCL Filter

Electrical parameters:

Rf[Ω] Lf[mH] Rs[Ω] Ls[mH] Cf[µF]

0.1 2.0 0.05 1.0 10.0
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15. Górski, D.A.; Iwański, G. Asynchronous Grid Connection of a Cage Induction Generator Excited by a Power Electronic Converter.
IEEE Trans. Energy Convers. 2021, 36, 63–70. [CrossRef]

16. De Mello, F.P.; Feltes, J.W.; Hannett, L.N.; White, J.C. Application of Induction Generators in Power Systems. IEEE Trans. Power
Appar. Syst. 1982, PAS-101, 3385–3393. [CrossRef]

17. Vanço, W.E.; Silva, F.B.; Monteiro, J.R.B.A.; de Oliveira, C.M.R.; Gomes, L.C. Theoretical-Experimental Analysis of the Induction
Generator in the Use of Distributed Generation. IEEE Lat. Am. Trans. 2021, 19, 396–403. [CrossRef]

18. Abdin, E.S.; Xu, W. Control design and dynamic performance analysis of a wind turbine-induction generator unit. IEEE Trans.
Energy Convers. 2000, 15, 91–96. [CrossRef]

19. Strzelecki, R.; Benysek, G. Power Electronics in Smart Electrical Energy Networks; Power Systems; Springer: Berlin/Heidelberg,
Germany, 2008.

20. Moreno-Muñoz, A. Power Quality Mitigation Technologies in a Distributed Environment; Power Systems; Springer: Berlin/Heidelberg,
Germany, 2007.

21. Nguyen, A.T.; Lee, D.C. Sensorless Control of Variable-Speed SCIG Wind Energy Conversion Systems Based on Rotor Flux
Estimation Using ROGI-FLL. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 7786–7796. [CrossRef]

22. Mishra, R.; Saha, T.K. Virtual Power-Based Control for Operation and Grid Synchronization of Induction Generator. IEEE Syst. J.
2021, 15, 2168–2175. [CrossRef]

23. Hazra, S.; Bhattacharya, S. An Active Filter-Enabled Power Architecture for Oscillating Wave Energy Generation. IEEE J. Emerg.
Sel. Top. Power Electron. 2017, 5, 723–734. [CrossRef]

24. Wiik, J.A.; Fonstelien, O.J.; Shimada, R. A MERS type series FACTS controller for low voltage ride through of induction generators
in wind farms. In Proceedings of the 13th European Conference on Power Electronics and Applications, Barcelona, Spain,
8–10 September 2009.

http://doi.org/10.1109/ACCESS.2019.2930413
http://doi.org/10.1109/JPROC.2014.2378692
http://doi.org/10.1109/TIA.2020.2964231
http://doi.org/10.1109/ACCESS.2020.2975638
http://doi.org/10.1109/TIA.1977.4503433
http://doi.org/10.1109/T-AIEE.1939.5057921
http://doi.org/10.1109/TPEL.2021.3062694
http://doi.org/10.1109/TEC.2006.875432
http://doi.org/10.1109/TEC.2020.3011546
http://doi.org/10.1109/TPAS.1982.317510
http://doi.org/10.1109/TLA.2021.9447688
http://doi.org/10.1109/60.849122
http://doi.org/10.1109/JESTPE.2022.3207904
http://doi.org/10.1109/JSYST.2020.3005874
http://doi.org/10.1109/JESTPE.2016.2613081


Energies 2023, 16, 63 22 of 23

25. Guazzelli, P.R.U.; dos Santos, S.T.A.; de Castro, A.G.; de Andrade Pereira, W.C.; de Oliveira, C.M.R.; de Almeida Monteiro, J.R.B.;
de Aguiar, M.L. Decoupled Predictive Current Control With Duty-Cycle Optimization of a Grid-Tied Nine-Switch Converter
Applied to an Induction Generator. IEEE Trans. Power Electron. 2022, 37, 2778–2789. [CrossRef]
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(In Polish)

39. Holmes, D.G.; Martin, D.A. Implementation of a Direct Digital Predictive Current Controller for Single and Three Phase Voltage
Source Inverter, IAS 96. In Proceedings of the 1996 IEEE Industry Applications Conference Thirty-First IAS Annual Meeting, San
Diego, CA, USA, 6–10 October 1996.

40. Kouro, S.; Perez, M.A.; Rodriguez, J.; Llor, A.M.; Young, H.A. Model Predictive Control: MPC’s Role in the Evolution of Power
Electronics. IEEE Ind. Electron. Mag. 2015, 9, 8–21. [CrossRef]

41. Falkowski, P.; Sikorski, A. Finite Control Set Model Predictive Control for Grid-Connected AC—DC Converters with LCL Filter.
IEEE Trans. Ind. Electron. 2018, 65, 2844–2852. [CrossRef]

42. Hu, J.; Shan, Y.; Guerrero, J.M.; Ioinovici, A.; Chan, K.W.; Rodriguez, J. Model predictive control of microgrids–An overview.
Renew. Sustain. Energy Rev. 2021, 136, 110422. [CrossRef]

43. Wojciechowski, D.; Strzelecki, R. Predictive Control of Active Filter System with LCL Coupling Circuit. In Proceedings of the
2010 International Power Electronics Conference, Sapporo, Japan, 21–24 June 2010.

44. Kasprowicz, A. Voltage and frequency stabilisation system of self-excited induction generator. Przegląd Elektrotechniczny 2016, 92,
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