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Abstract: Massive growth in global electrical energy demand has necessitated a genuine exploration
and integration of solar and wind energy into the electrical power mix. This incorporation goes a
long way in improving the cumulative generated power capacity of the power system. However,
wind and solar photovoltaic (PV) are intermittent in nature, making the provisioning of a good
maximum power tracking (MPPT) scheme necessary. Furthermore, the integration is characterized
by synchronization challenges and introduces various modes of power system oscillations as it is
converter-driven. This greatly affects the overall stability of the integrated power mix. Consequently,
various technological models have been designed to address these challenges ranging from MPPT
schemes, phase-lock loop (PLL), virtual synchronous generator (VSG), power system stabilizers (PSS),
flexible AC transmission system (FACTS), coordinated control and artificial intelligence (AI). In this
work, a multi-machine power system model is reviewed for integration stability studies. Various
technical solutions associated with the integration are also reviewed. MPPT, PLL, VSG, PSS, FACTS,
coordinated control, and various optimization technique schemes used for damping controller design
are discussed.

Keywords: phase-lock loop (PLL); virtual synchronous generator (VSG); maximum power point tracker
(MPPT); damping controller; power system stabilizer (PSS); flexible AC transmission system (FACTS)

1. Introduction

International demand for electric power is growing phenomenally due to the continu-
ous growth in the world population. The pursuit for improved power energy production
and its reliable delivery to end users have mandated the need for exploring hygienic and re-
newable energy sources, particularly solar and wind, to augment and in some cases replace
the conventional fossil-based electrical energy generation systems [1,2]. Consequently, en-
suring that this thriving energy demand is met from safe, secure, and environment-friendly
resources has become one of the top priorities for world leaders, researchers, and energy
investors. Thus, evaluating the exploration and integration of non-conventional renewable
sources into the electrical power mix is receiving the desired global attention [3,4]. In terms
of international installed capacity, the three leading renewable energy competitors are
hydro, solar, and wind energy [5]. However, penetration of renewable energy into the grid
cannot take the place of conventional power generation as there are maximal allowable
limits. In [6], an analysis of stability effects and limits of high penetration of renewables
using two case studies was conducted. In case one, 70% of the power supply was from the
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conventional grid and 30% from renewables, here rotor angle stability was maintained. In
case two, 72% of the power supply was from renewables and 28% from the conventional
grid and it resulted in high angular instability.

Solar photovoltaic (PV) power generating system is an established and financially
viable renewable energy solution that is postulated to attain a status of fulfilling almost
about 28% of the world’s total energy demand by 2040 [7]. It is a hygienic, noise-free,
profuse, and eco-friendly energy source that has attained mind-blowing satisfactoriness
in personal and commercial applications [5,8,9]. Accordingly, momentous technological
advances and cost reductions in solar photovoltaic (PV) modules have led to the large-scale
adoption of PV-based power generators. Thus, it is widely considered a viable, striking,
and promising solution to be espoused in meeting the global energy demand [10]. The two
major implementations of a solar PV system are the off-grid and on-grid PV systems [5].
The former is a power generating system that operates in isolation from the main power
grid while the latter is normally integrated into the main grid system. The topology for
an on-grid PV system consisting of arrays of PV modules, LC filters, step-up transformers,
and power electronics converters is shown in Figure 1.
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Figure 1. Topology of solar PV grid-connected system [10]. 

With respect to wind energy systems, it is one of the most widely utilized and readily 

available non-conventional renewable energy sources available for both individual and 

commercial exploitation. Its high energy conversion rate, economic viability, and other 

social benefits make it a virtuous energy solution for large-scale applications [15]. The 

wind energy system generates electricity through a wind energy conversion system. It 

entails the usage of the mechanical force of the fast-moving wind to drive a wind turbine 

Figure 1. Topology of solar PV grid-connected system [10].

Power electronic converters play a central role in the integration of PV-based gen-
erators into AC power grid systems. They are required for converting the DC output of
the PV modules to AC power for reliable incorporation. Furthermore, a transformer is
used in stepping up the low AC voltage into a medium AC voltage to feed power into a
medium-voltage power transmission line. Additionally, a good photovoltaic (PV) system is
equipped with a maximum power point tracker (MPPT) for tracking the maximum power
point [11–14]. Depending on the solar design, the power output from the system is fed
to the load while the excess power if available is willed to the grid for an increase in the
power installed capacity.

With respect to wind energy systems, it is one of the most widely utilized and readily
available non-conventional renewable energy sources available for both individual and
commercial exploitation. Its high energy conversion rate, economic viability, and other
social benefits make it a virtuous energy solution for large-scale applications [15]. The wind
energy system generates electricity through a wind energy conversion system. It entails the
usage of the mechanical force of the fast-moving wind to drive a wind turbine connected
to an induction generator for electrical power production. Generally, wind turbines are
complex machines in which numerous technologies are assembled and combined. They
are specifically designed to operate in challenging environmental and operating conditions
including unpredictable loads due to gust wind, humidity, air pressures, and so on [16].
Based on the induction generator selection and configuration of the wind generating
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systems, they can be broadly classified into four categories. The squirrel cage induction
generators are categorized as type I, while the wound rotor induction generators are type II.
Control resistors, gearboxes, and slip rings are some of the major components of Type I and
Type II systems. Capacitors are also incorporated for reactive power supply to the induction
generator and the grid. In Type III wind energy systems, a doubly fed induction generator
(DFIG), gearbox, an inverter (DC/AC), and a rectifier (AC/DC) constitute the power
generating system. A permanent synchronous generator (PMSG), a rectifier (AC/DC), an
inverter (DC/AC), or grid-side converter, and a gearbox make up the type IV wind-based
power generating system [17–21].

Currently, doubly fed induction generator (DFIG)-based wind turbines are gradually
displacing the traditional synchronous generators in various power system applications [22].
According to [17], high wind energy grid integration requires a thorough consideration
of established grid codes, policies, monitoring strategies, and energy storage systems.
For reliable grid–wind synchronization, a phase-lock loop (PLL) is employed in tracking
the phase of the voltage terminal of a grid-connected wind turbine to achieve a good
connection [23].

However, wind energy installation can be either onshore (land) or offshore (ocean).
Owing to the vast land required to implement onshore wind farms and the development
of an HVDC-adopted transmission system, the offshore wind system is gaining momen-
tum [24]. Figure 2 shows a parallel connected HVDC offshore wind system.
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Renewable energy sources (RESs) are often used in integrated systems at their max-
imum power points and are connected to the grid through converters [25]. High-tech
advancements in power electronic converters have greatly influenced the large-scale adop-
tion of grid–wind-integrated energy systems [26]. Nonetheless, integrating this converter-
driven renewable energy solution into the electrical grid causes several technical issues,
particularly power system oscillations, which generally impair the overall power trans-
mission capability of already-installed transmission lines [27,28]. These oscillations are
basically of various electromechanical modes based on their frequency range of occurrence.
The local mode (0.7–2.0 Hz) and inter-area modes (0.1–0.8 Hz) have been extensively stud-
ied [29]. Consequently, the overall stability of the integrated power system is affected owing
to the numerous nonlinear dynamic devices and components involved in the renewable
energy system (RES) grid integration [30]. In this regard, electrical power grid system
stability can be seriously threatened if the resultant oscillations caused are not properly
dampened [28]. Thus, solving power system oscillation problems is of great interest to the
electrical power industry.

Power system stabilizers (PSSs) are the most often used technology in electrical power
systems to dampen electromechanical oscillations and increase the stability of the power
system. By modifying the voltage reference of the automatic voltage regulator (AVR) in
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response to the feedback of rotor speed or frequency deviation from the rated value, power
system stabilizers inject a stabilizing signal into the generator’s excitation system. The
goal of this stabilizer is to restore the rotor speed of the generators to their rated value [31].
The PSS may not always in some cases provide appropriate damping for the inter-area
modes. Thus flexible AC transmission systems (FACTSs) introduced by Hingorani are an
intriguing alternative because, when used in conjunction with a power oscillation damping
(POD) controller system, they can add extra damping to the inter-area oscillation modes in
addition to improving the performance of the power system [29]. Due to the robust nature
of RES-integrated electric power systems, robust damping controller like FACTS controller,
and PSS are combined and coupled to grid synchronous generators [27].

Power system oscillations can be extremely severe and difficult to manage. This
calls for a robust design of damping controllers that can effectively address the various
oscillation modes to achieve the desired stability. However, damping controller design is
an optimization-centered process that requires the exploitation of various optimization
algorithms [32]. The damping of power system oscillations with damping controllers mostly
depends on the tuning strategy adopted in obtaining the optimal parameters [33]. Time
integral performance criteria for calculating the integral error of the damping controller [32]
and the eigenvalue-based stability analysis on the multi-machine test system are employed
to evaluate the performance of damping controllers.

Furthermore, with the evolution of artificial intelligence and the continuous penetra-
tion of RESs into the electric power grid, artificial intelligence damping controller systems
have been proposed by [34–36]. These intelligent controllers are capable of learning and
adapting to any system they are applied to, and improving the system’s performance.
However, applying several damping controller combinations ineffectively in power sys-
tems may further disrupt the system. This is because of the interaction of the controllers
which might create system destabilization. Normally, a transient stability study for various
system disturbances can be used to evaluate the design. Therefore, the stability issues in
RES-integrated power systems may be resolved by properly designing damping controllers.
The formulation of the objective function, which makes use of a variety of power system
indicators, is crucial in efficiently damping oscillations in the power system. Creating an
objective function that effectively moves the eigenvalues into a more stable region of the
complex s-plane is essential for stability analysis. Angular stability is measured using the
damping ratio and damping factor that is calculated from the real and imaginary eigen-
values of complex power systems. The eigenvalues are moved to the left of the complex
s-imaginary plane’s axis to increase stability [37]. A time integral performance criterion for
figuring out the integral error of damping controllers can also be used in stability analy-
sis [32]. The time error objective functions are used to decrease the rotor speed deviation
error for angular stability.

Over the years, several controller design studies have been carried out [38–41]. The
objective function was formulated using a variety of approaches by the authors. A crucial
component of controller design is the objective function which must be appropriately
designed to ensure that the damping achieved by the applied damping scheme is suitable
and sufficient. Prior to this work, there has been no research that has critically evaluated
objective function formulation for the design of a damping controller in a RESs-integrated
power grid system. It is crucial to find the best objective function approach for a reliable
design that guarantees stability in a multi-machine-integrated renewable energy source
power system. The widely acknowledged optimization technique for designing damping
controllers is the application of metaheuristic, heuristic, and other artificial intelligent
techniques [42–44]. These methods perform well for the PSS design problems. Considering
renewable sources, the overall optimal solution can have a big impact and the solution
might be limited to local optimal points.

The application of damping controllers to these renewable energy sources is not
yet governed by grid codes. However, because RESs are now more widely used, it is
critical to assess how well damping controllers work with RESs. The majority of inverters
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need a phase-lock loop (PLL) to synchronize with the grid. A PLL is unable to reduce
oscillations in the power system since it is dependent on the frequency produced by the
synchronous generators. As a result, system instability and a loss of synchronism with the
grid are frequently the results. Research has established the virtual synchronous generator
(VSG) concept as a means of addressing the stability issue while supporting the inertia
of the power system. A VSG imitates the dynamic behavior of an actual synchronous
generator [45]. The study in [46] proposed that to improve system stability, the inverter
output is controlled using pulse width modulation with the frequency and voltage of an
infinite bus as input signals.

This review provides a thorough overview of power system oscillation to advance fu-
ture work on developing effective damping controllers for RESs-integrated power systems.
Detailed explanations are provided for the overview of developments in solar and wind
renewable energy sources. Further described are the types of power system oscillations
and their basic principles. Different damping controllers are shown, and the controller
design is streamlined using two alternative approaches for formulating the design objective
functions. A review of optimization methods taken into account by earlier researchers
is also discussed. This study concludes with some recommendations for enhancing the
effectiveness of future damping controller design in an integrated RES power system, as
well as suggestions for additional research.

2. Review Methodology

The focus of this review is on the application of optimization techniques in damping
controller design for a multi-machine power system with solar, wind, and hydro renewable
energy sources. In line with the review focus, books, journals, and conference proceedings
on Scopus scientific database were adopted. After examining the title, abstract, keywords,
paper’s contents, and findings of the searched works of literature, relevant ones were
chosen. The choice was based on the impact factor, citations, and the review process. To
also carry out a recent review, articles published from the year 2016 to date were prioritized
for citation.

Findings were organized into sections: the review starts with the review of syn-
chronous machine modeling and a summary of recent developments in renewable energy
sources, such as solar and wind. In section two, maximum power tracking and integration
to the grid are discussed. Power system stability and oscillations, also known as electrome-
chanical oscillation, are explained in section three. The stability study of various damping
systems is discussed in the fourth section. In Section five, the construction of damping
controllers for linearizing non-linear systems is discussed, also a thorough analysis of
the eigenvalue-based objective function is provided. In the sixth section, a comparison
of single and multiple objective functions is presented. Discussions on the advantages
and limitations of some optimization techniques used for damping controller design are
explained, and the review provides key recommendations for future development on
oscillation damping in RES-integrated power systems.

3. Solar, Wind, and Their Hybridization Integration for Multi-Machine Power System
Controllers Optimization
3.1. Renewable Energy Sources (RESs) and Integration with Multi-Machine Power System
3.1.1. Synchronous Machine Modeling

A multi-machine test system has synchronous machines interconnected with each
other. The test system in this review is a reference benchmark model for analyzing and
controlling oscillation dynamics in power systems. The synchronous machine modeling
involves representation with Differential Algebraic Equations (DAEs) as follows:



Energies 2023, 16, 24 6 of 32

For m number of machines representing the synchronous grid machine, its volt-
age regulator, known as an automatic voltage regulator, is modeled as described in
Equations (1)–(19) [47]:

T′d0i

dE′qi

dt
= −E′qi −

(
Xdi − X′di

)
Idi + E f di (1)

T′q0i
dE′di
dt

= −E′di −
(

Xqi − X′qi

)
Iqi (2)

dδi
dt

= ωi −ωs (3)

2Hi
ωs

dωi
dt

= TMi − E′di Idi − E′qi Iqi −
(
Xdi − X′di

)
Idi Iqi − Di(ωi −ωs) (4)

TAi
dE f di

dt
= −KAiE f di + KAi

(
Vre f i −Vi

)
(5)

TEi = E′di Idi + E′di Idi +
(

X′qi − X′di

)
Idi Iqi (6)

where
The notation meaning of the various parameters as seen in [47]:

i = ith synchronous generator;
T′d0 = daxis open− circuit time constants;
T′q0 = q− axis open− circuit time constants;
E f d = Field voltage;
Xd = Synchronous transient and sub− transient d− axis reactances;
Xq = Synchronous transient and sub− transient q− axis reactances;
ωs = Synchronous speed;
ω = Rotor speed;
TE = Electrical torque;
TM = Mechanical torque or power output;
Vre f = Excitation voltage reference;
KA = Static excitation gain;
δ = Generator rotor angle;
H = Inertia constant;
D = Damping coefficient;
Rs = Armature resistance;
Vq= q-axis component of generator terminal voltage;
Vd = d− axis component of generator terminal voltage;
Iq = q− axis component of stator current;
Id = d− axis component of stator current;
E′q = Transient EMF due to flux linkage in q− axis damper coil;
E′d = Transient EMF due to flux linkage in the d− axis damper coil.

In Equation (4), electrical torque is used;
Algebraic equations of a synchronous machine stator are:

Vdi = −Rsi Idi + X′qi Idi + E′di
Vqi = −Rsi Iqi − X′di Idi + E′qi

(7)

Algebraic equations of all stators in the synchronous machines of a power system in
matrix form are:

Vd = −Rs Id + X′q Iq + E′d (8)

Vq = −X′d Id − Rs Iq + E′q (9)



Energies 2023, 16, 24 7 of 32

where
Vd = [Vd1 . . . Vdm]

T , Vq =
[
Vq1 . . . Vqm

]T (10)

E′d =
[
E′d1 . . . E′dm

]T , E′q =
[

E′q1 . . . E′qm

]T
(11)

Id = [Id1 . . . Idm]
T , Iq =

[
Iq1 . . . Iqm

]T (12)

Rs = diag([Rs1 . . . Rsm]) (13)

X′d = diag
([

X′d1 . . . X′dm
])

(14)

X′q = diag
([

X′q1 . . . X′qm

])
(15)

Considering an infinite bus system, m number of machines and n number of loads,
the power system network equations are as follows: Is

IG
IL

 =

VSS VSG VSL
VGS VGG VGL
VLS VLG VLL

Vs
VG
VL

 (16)

with m machines, the loads in the power system can be described as constant impedance,
hence keeping the load impedance zero. Reduction order reduces the elements that are
load related from the admittance matrix of the lines network.

Equations (17) and (18) interface the machine and the network:

Tδ

(
Id + jIq

)
= IG (17)(

Vd + jVq
)
= VG (18)

Tδ = diag
([

ej(δ1− π
2 ) . . . ej(δm− π

2 )
])

(19)

the above differential algebra equation determines the power system’s nonlinear behavior,
and the ordinary differential equations use a solution loop to solve the DAEs presented
using the ordinary differential equations (ODEs), as shown in Figure 3.
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3.1.2. SOLAR

Solar thermal collectors or photovoltaic (PV) solar systems can be used to harness
solar energy, which is a form of renewable energy [48,49]. Harnessing solar energy through
thermal collectors is performed by concentrating sunlight in a solar thermal power system
which results in a temperature rise of the heat sinks, and causes them to produce steam. The
steam is used in turbines to generate power. However, substantial installations are required
for the solar thermal power system to generate enough power. In a photovoltaic (PV) solar
system, photons from the sunlight are used to energize the semiconductor-embedded free
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electrons and leads to the production of electrical energy. PV solar systems are harnessed
through solar panels that operate on various conditions and are frequently employed on
roofs or in a large land mass to form solar farms or mini-grids [50]. Figure 4 shows a Solar
PV Conversion system.
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Figure 4. A Solar PV Conversion system [51].

Solar energy generation depends on solar irradiance, that is the radiant energy the sun
emits in the form of electromagnetic radiation. Solar irradiance has the strongest association
with PV power production and is directly correlated with the amount of solar energy that
can be harnessed [50]. Solar irradiance of a particular area can only be forecasted due to
variations in solar radiation. Moreover, natural variation in solar irradiance at ground level
presents a substantial barrier to the widespread use of solar energy [52]. To successfully
manage solar energy production operations, a reliable forecast approach is needed. Recently,
researchers have deployed various artificial intelligent approaches [53,54] to forecast solar
energy generation.

PV solar system installation has increased massively over the years, particularly in 2020.
PV solar system installations globally were estimated at 139 GW, and this increased the global
total installed capacity to 760 GW, for both on-grid PV solar systems and off-grid PV solar
systems [55]. Figure 5 presents the solar PV installations globally from 2010 to 2020.
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3.1.3. WIND

Wind energy is one of the most developed and rapidly expanding forms of renewable
energy worldwide. It is also one of the most sustainable energy sources capable of ensuring
alternative energy security [56,57]. Due to increased adoption, research is ongoing in
different areas of wind energy systems. However, wind energy generation relies on the
installed location’s topography, weather conditions, and wind speed. Thus, wind energy
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may not always provide the same amount of electricity as conventional energy sources
such as hydro and gas due to the inconsistent nature of wind speed. Therefore, wind
energy systems are integrated into the power grid system. The stability of the power
grid system can be affected by the integration of the wind energy system [57–59]. Wind
energy generation is achieved through a wind energy conversion system (WECS), the four
categories of generators used for variable wind speed conversion in wind energy systems
are electrically excited synchronous generators (EESG), squirrel-cage induction generators
(SCIG), permanent magnet synchronous generators (PMSG), and doubly fed induction
generators (DFIG) [60]. However, compared with EESG and SCIG, DFIG and PMSG have
gained greater attention due to their higher energy conversion efficiency and quick control
capability. Both systems occupy almost equal market shares in global wind energy installed
systems [61]. The DFIG wind energy system consists of a gearbox that connects a wind
turbine to the DFIG wind energy system and converts mechanical energy from the turbine
to electrical power [62]. Figure 6 shows the DFIG system. The three-phase winding rotor
used in DFIG allows for a wide range of variable speeds. Thus, variable speed control
changes the converter’s active and reactive power rotor current flow. However, frequent
maintenance of brushes and multiple-stage gearbox in the DFIG system is required to
reduce the possibility of machine failure.
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The permanent magnet synchronous generator (PMSG) creates an excitation field
using permanent magnets rather than coils. Moreover, because PMSG has fewer moving
parts than electrically excited generators and DFIG, PMSG requires less attention. Due to
its superior energy conversion efficiency and a longer lifespan than EESG and SCIG, PMSG
with a fully rated power converter is one of the best options for variable-speed generation,
even though it has a high capital cost [63]. The synchronous generators (SGs) require
controllers to efficiently maximize the amount of wind energy from wind to meet grid
integration requirements. Thus, before sending electricity to the grid, PMSG is connected to
a frequency converter that comprises a converter for the machine (rotor-side converter) and
one for the grid (grid-side converter). The rotor-side converter regulates the operation of
the PMSG. This converter can either be a diode-based rectifier or a pulse-width modulated
voltage source converter. On the other hand, the grid-side converter controls the direct
current link voltage by exporting active power to the grid network and can only be a
pulse-width modulated voltage source converter. Figure 7 shows the PMSG wind energy
conversion system.

Depending on where they exist, wind energy systems can be classified as either
onshore (on land) or offshore (at sea). Due to higher uniform wind speeds in deep oceans,
offshore technology has been slowly gaining traction in recent years. Compared with
the onshore wind energy system, offshore wind energy system often has higher capacity
ratings [64]. The integration of offshore wind energy systems can be justified as a benefit
of renewable energies of ocean and wind because the oceans cover more than 70% of the
Earth’s surface.
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Figure 7. A permanent magnet synchronous generator (PMSG) wind energy conversion system [63].

In terms of global wind energy installed capacity, a tremendous achievement was
recorded in the year 2020. About 93 GW of the wind energy system was installed glob-
ally with more than 86.9 GW of the installed wind energy capacity onshore and about
6.1 GW offshore. This 93 GW addition brought the total installed wind energy system
close to 743 GW worldwide [55]. Figure 8 presents wind power global capacity and annual
additions for 2010 to 2020
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Figure 8. Wind power global capacity and annual additions [55].

Conventionally, siting of wind energy systems is majorly onshore due to the ease of
construction and maintenance compared with offshore wind energy systems [65]. These
days, interest in the offshore wind energy system is increasing due to strong and steady
sea winds [66]. Europe is presently leading in offshore wind power plant development.
As of 2018 total global installed offshore wind capacity was 22,045 MW, with about 80%
concentrated in Europe [67]. The electrical power generated from offshore wind energy sys-
tems is transmitted from the offshore substations to the onshore grid substations. A direct
high-voltage current (HVDC) or high-voltage alternating current transmission line connects
wind energy systems to offshore grid substations [68]. These offshore grid substations
usually run at a medium voltage and low frequency. The electrical power is transferred
from the offshore grid substations to the power system grid network using high-voltage
AC transmission cables [68].

For reduced transmission cost and improved efficiency, the study in [65] proposed
a rectifier (AC/DC) interfaced converter for medium voltage direct current to displace
the conventional AC transmission. This DC high-temperature superconducting cable can
transmit around three times as much power as an equivalent AC cable [69]. Moreover,
improved efficiency is due to several DC operation characteristics, such as high dc critical
current and dielectric material. DC cable’s electrical breakdown strength is almost twice
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that of an AC cable and its electrical resistance is more than 100 times lower than that of a
traditional AC cable. Consequently, it results in a very low electrical loss [69].

3.1.4. Hybrid

In various countries, there has been a significant transformation in the power sector
over the years due to increased wind and solar power penetration. In 2020, about 20% of at
least nine countries’ total electricity generation was from solar and wind energy. Table 1
shows the total electricity generation distribution of the top countries with a high share of
solar and wind energy.

Table 1. Top countries in 2020 with a high share of solar and wind energy in their total electricity
generation [55].

Country Solar Energy
(Gigawatt-Hour (GWh))

Wind Energy
(Gigawatt-Hour (GWh))

Gross Total Electricity
Generated from

All Sources

Percentage of Electricity
Generated through

Solar and Wind

Denmark 1181 16,353 27,907 62.83%

Uruguay 525.5 5437.7 13,470.5 44.27%

Ireland 0.093 4300 10,238.317 42%

Germany 50,600,000 130,963,000 558,000,000 32.54%

United Kingdom 12,800 75610 312,760 28.27%

Portugal 1269 12,067 49,342 27.03%

Greece 3898 9323 42,229.90 32.48%

Spain 15,273.607 54,333.98 250,387 27.8%

Australia 22,288 22,196 221,957 20.04%

Netherlands 8,056,000 15,269,000 118,920,000 19.61%

Honduras 1044.78 707.2028 9292.817 18.85%

Belgium 4300 10,800 81,200 18.6%

Sweden 805 27,589 159,635 17.79%

3.2. Wind–PV Maximum Power Tracking and Integration to the GRID
3.2.1. Maximum Power Point Tracking (MPPT)

Generated power from renewable energy sources such as wind and solar is intermittent
and inexact [70]. For improved efficiency, a maximum power point tracking (MPPT) control
algorithm is incorporated into the system to track down the maximum available power
from renewable energy sources [71]. Different MPPT algorithms for reliable power tracking
to extract maximum power from PV and wind energy sources were analyzed and studied
in [72,73].

In PV-based grid integration, the MPPT control scheme implements an algorithm to
extract the desired power from the PV arrays [74]. The control scheme allows an adaptation
between the PV and the loads so that the electrical energy generated corresponds to its
maximum value and is transferred directly to the grid [8]. Depending on the control
algorithm of the solar MPPT design, its major operation entails taking the PV array’s
measured voltage, current, and adjusting the pulse width modulation (PWM) duty cycle
for the PV side controller switching devices via a voltage controller. The perturb and
observe (P and O) control technique is the most widely implemented solar MPPT algorithm
because of the ease of its execution and the appropriate convergence it offers. However,
the P and O-based MPPT approach has a delayed response time under abrupt changes in
solar irradiation and poor tracking effectiveness, resulting in a decreased ability to harvest
energy. Hence, other solar MPPT control algorithms are investigated in [75,76].
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In wind-based energy systems, the indirect speed controller is used to track wind speed
peaks. The objective of such control is to maximize the power obtained by the wind when
wind speed fluctuates, either below or surpassing its rated value. Consequently, a good
control algorithm is required to maintain a good balance between the maximum extraction
of wind power and the overall safety of the system [77]. A pitch control system interfaces
the wind control strategy and the wind turbine to tap the maximum wind speed [78].

In a hybrid power system consisting of PV and wind, the complexity in the imple-
mentation of reliable control is greatly affected by the MPPT control algorithm adopted, as
each of the algorithms has exclusive boundaries. A well-designed MPPT control system
for monitoring wind speed from wind, solar sources, and also the convergence time, is
discussed in [79]. However, individual MPPTs for each wind speed source are needed,
affecting the cost and size of implementing a hybrid control system for MPPT. Therefore, an
artificial neural network (ANN) single MPPT control strategy called the Radial Basis Func-
tion Network is considered a reliable MPPT solution for overcoming the above drawbacks.
It offers increased maximum power tracking [80].

3.2.2. Phase-Lock Loop (PLL)

One of the most crucial difficulties in managing power converters connected to the grid
is synchronization. PLL synchronizes the energy transfer between the grid and the power
converter and evaluates the phase angle of the basic vector of the AC mains voltage in real-
time. Recently, some proposed control algorithms use phase-locked loops to track the utility
voltage phase angle and frequency [80]. Functionally, a PLL links the renewable energy
source to the grid-connected power system. Hence, the PLL’s phase-tracking performance
affects the power system’s overall dynamic performance [81].

The PLL performs phase and frequency tracking to synchronize the reference signal
with the grid voltage and reduce unwanted frequency changes. This loop reacts swiftly and
precisely to re-synchronize the two signals each time it notices a difference in angle [82].
Various PLL control techniques have been proposed in converter-based power-generating
systems such as PV and wind [83]. Proportional resonant controllers and stationary frame
proportional integral regulators are some of the standard PLL techniques used for grid
synchronization. Practically, the dynamic interaction with the Voltage Source Converters
lead to inaccurate PLL synchronization as the grid-side voltage and phase angle are always
required [84]. Figures 9 and 10 show the conventional synchronous reference frame PLL
and the proposed PLL-based controller, respectively.
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3.2.3. Converters

The grid-side converter (GSC) regulates the reactive power flux between the converter,
the electrical grid, and the DC-link voltage. In DFIG-based wind energy system, the rotor-
side converter (RSC) controls the active and reactive power flow between the stator and
grid. To achieve the desired result, the operation of these converters control is by a cascaded
control loop, as shown in Figures 11 and 12 [85].
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3.3. Power System Stability and Oscillations

Significant work has been carried out in recent years to increase the power stabil-
ity of electrical power systems. A stable electrical power system maintains equilibrium
and is mostly disrupted by load, disturbances, and power generation changes [86]. Gen-
erally, an increase in installed solar and wind energy affects the rotor angle, frequency,
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voltage, resonance, and converter-associated stability of the power system as shown in
Figure 13 [87].

With respect to power system oscillations, integrating renewable energies has brought
about spontaneous low-frequency oscillations [88].

Rotor angle and voltage stability are of two categories small signal and transient
stability. The first oscillations in the system following a significant disruption, such as
transmission network short circuits or the loss of a generating unit, are classified as transient
stability [89]. Small-signal stability on the other hand is confined to restoring steady-state
operation following the appearance of minor disruptions due to slight variations in loads.
This review focuses on rotor angle stability issues caused by power system oscillations.
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Power system oscillations or electromechanical oscillation occurrences have always
been a challenge in renewable-integrated power systems, which affect the stable operation
of the integrated power grid. Analysis of electromechanical oscillation involves two cate-
gories, i.e., the frequency and damping performance [91]. Electromechanical oscillation
frequency can reflect its potential causes and type. At the same time, the electromechan-
ical oscillation’s damping performance is a characteristic of its damping rate [92]. In a
power system grid with a weak damping rate, damping controllers improve the system’s
damping performance.

In RESs with converter-interfaced generation such as solar PV, its lack of inertia
reduces the power system inertia, in proposing several techniques to provide such inertia
services power system oscillations need consideration [93]. These techniques involve two
approaches. In the first approach, the converter is synchronized to the grid using a phase-
locked loop (PLL), thus exchanging additional power, proportional to the time derivative
and frequency [94]. The converter in the second approach emulates the inertia property of
a synchronous generator (e.g., virtual synchronous generators VSGs) [95].

3.4. Stability Analysis of Different Damping Schemes

Power system oscillation incidents occur spontaneously. Thus, the system is designed
with automated control and appropriate detecting systems to dampen these oscillations.
This review discusses different types and modeling approaches to improve system oscil-
lation damping. Earlier studies on various damping schemes have been used to reduce
power system oscillations, damping controller scheme classification into five main types
including virtual synchronous generator damping, PSS damping, FACTS damping, coordi-
nated damping, and most recently, artificial intelligence (machine learning)-based damping.
Figure 14 shows the different classification schemes and damping controller devices under
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different schemes while Table 2 Provides a summary of the fundamental purpose of various
damping schemes and their limitations.
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Table 2. Provides a summary of the fundamental purpose of various damping schemes and
their limitations.

Damping Scheme Fundamental Damping Purpose Limitation

Virtual synchronous generator Provides damping over intra-area and
inter-area modes of oscillations

Requires a reliable energy storage system
for its reliable operation

PSS Provides damping over intra-area (local)
modes of oscillations

Efficiency is low over inter-area modes
of oscillation

FACTS Provides damping over inter-area modes
of oscillations

Efficiency is low against intra-area modes
of oscillation

Coordination control (PSS+FACTS) Provides damping over intra-area and
inter-area modes of oscillations

Destabilizes the system if the design if
there is no proper coordination

Artificial Intelligence

Reduces the parameters to be tuned
compared with PSS and FACTS and

provides damping over intra-area and
inter-area oscillation modes

Not easy to implement

3.4.1. Damping Schemes

The total power system inertia reduces when more renewable energy sources (RESs)
are integrated and fewer conventional generators are used [96]. Virtual synchronous
generation is an important concept geared towards frequency stabilization as it injects
appropriate active power into the grid when required to balance the inertia requirement
of the power system [97]. Whether inertia energy is obtained from extra sources or the
capacitors in the VSC, the VSG depends on the energy storage system (ESS) to provide the
required inertia support [98]. The VSG is a promising solution to the problem, and many
research efforts have been devoted to this area. Power oscillation of a PMSG-based virtual
synchronous generator was studied in [98] where both the machine-side and the grid-side
converters of the PSMG are controlled as a VSG. However, parameter alternating methods
are suggested to update the key parameters of VSG following the operational status of
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power systems to enhance the dynamic performance of VSG in real-time. Figure 15 shows
a schematic of a virtual synchronous generator (VSG).
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PSS-Based Damping

De Mello and Concordia established the PSS concept in 1969 as a crucial power
system component to tackle the power oscillation challenge. According to the synchronous
machine theory, the excitation system can adjust and vary the output power generated. PSS
adds an input signal to the synchronous generator’s excitation system [100,101], and an
extra phase-locked synchronization torque to the speed deviation of the generator, thereby
controlling the system’s stability by dampening the power system oscillations. In addition
to effectively damping local oscillations, a correctly designed PSS can also dampen inter-
area oscillations [28]. Previous research explained oscillation damping by designing PSS
for a single machine [102–104], for multi-machine systems [105–107], and a RES-integrated
power system [108,109]. Figure 16 shows the internal structure of a lead–lag PSS.
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FACTS-Based Damping

Power electronic converters’ voltage, current, and switching frequency have increased
considerably over the past few decades. This increase in switching frequency, voltage,
and current led to the development of several FACTS devices [110]. FACTS devices, as its
name suggests, allow for a voltage or reactive power injection at a bus while providing
flexibility on otherwise inflexible network parameters of a transmission line. The primary
use of FACTS is not to dampen oscillations but to improve the transmission line’s power
transfer capability [111]. Although its damping function has drawn attention from re-
searchers and industry. Since then, various research has been conducted on FACTS-based
damping [112–116] in power systems.
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FACTS device classification is according to the way they are connected to the power
system which includes: (i) shunt-connected examples are static VAR compensator (SVC),
and STATic COMpensator (STATCOM); (ii) series-connected devices examples are thyristor-
controlled series compensator (TCSC), Static synchronous series compensator (SSSC), and
gate-controlled series capacitor (GCSC); (iii) shunt- and series-connected devices examples
are unified power flow controller (UPFC) and (iv) series–series connected devices example
interline power flow controller (IPFC). Various FACTS devices have been used as damping
controllers in a renewable-integrated system to dampen oscillations, Figure 17 shows the
distribution of FACTS-based damping controllers used in a renewable-integrated system.
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Figure 17. FACTS utilized damping controllers in a renewable grid-integrated system based
on publications.

Figure 17 Shows the distribution of FACTS-utilized damping controllers in a renewable
grid-integrated system from the year 2014 to 2022.

As shown in the figure, SSSC usage is approximately 34% and has the highest applica-
tion as a series FACTS-based damping controller. STATCOM recorded 18% usage, which
represents the highest application as a shunt FACTS-based damping controller. Figure 18
shows the functional diagram of SSSC, STATCOM, and IPFC.
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Coordination Control Damping

PSS and FACTS are combined to dampen various electromechanical oscillation modes
effectively. However, this combination of damping controllers needs precision; otherwise,
the entire power system stability may be negatively affected [117,118]. The collaborative
design of PSS and FACTS has been the subject of numerous studies [119–123]. Design-
ing a reliable damping scheme to address oscillations is the goal of damping controller
coordination schemes.

Artificial Intelligence

The damping strategy for artificial intelligence (AI) has been the subject of recent
research [124–127]. These intelligent controllers can learn from the system where there are
deployed and adapt to improve the system’s overall performance in damping oscillations.
A neuro-fuzzy controller (NFC) in form of a fuzzy logic controller (FLC) and artificial neural
network (ANN) was employed in [35] to replace PSS, and it offered superior features to the
traditional PSS and FACTS damping controllers. The learning and adaptation properties of
FLC and ANN were combined to create the NFC structure. The simplicity of this controller
structure and model-free design is its primary feature. A Sugeno type two input NFC
structure is shown in Figure 19 and its coupling to an ST1A excitation system is shown in
Figure 20.
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3.5. Damping Controllers 

The oscillation damping controller is the major component in the damping schemes 

of an integrated renewable system. The damping controller decides the switching control 

in the damping scheme. In the previous literature, researchers have proposed different 

types of damping controllers. FACTS- and PSS-based damping schemes were proposed 

[129] and [130], respectively, while neural networks and fuzzy controllers were discussed 

in [131,132].  

3.5.1. Trimming and Linearization of a Nonlinear Power System 

Though the power system is nonlinear, the design of the damping controller follows 

the linear control theory. Thus, the trimming and linearization of the power system are 

reviewed by modeling them using ordinary differential equations (ODE) [132]. Nonlinear 
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3.5. Damping Controllers

The oscillation damping controller is the major component in the damping schemes
of an integrated renewable system. The damping controller decides the switching
control in the damping scheme. In the previous literature, researchers have proposed
different types of damping controllers. FACTS- and PSS-based damping schemes were
proposed [128] and [129], respectively, while neural networks and fuzzy controllers were
discussed in [130,131].
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3.5.1. Trimming and Linearization of a Nonlinear Power System

Though the power system is nonlinear, the design of the damping controller follows
the linear control theory. Thus, the trimming and linearization of the power system are
reviewed by modeling them using ordinary differential equations (ODE) [132]. Nonlinear
ODE determines the dynamics of a power system as discussed in Equations (20)–(25) [131]:

.
x(t) = f (x(t), u(t)) (20)

y(t) = g(x(t), u(t)) (21)

where f and g = nonlinear parameter functions;

y = output vector;
u = the input vector;
x = state vector, represented as:

x =



x1
x2
x3

...

xn


u =



u1
u2
u3

...

un


y =



y1
y2
y3

...

yn


f =



f1
f2
f3

...

fn


g =



g1
g2
g3

...

gn


(22)

The system states at equilibrium and the input vectors are as follows:

x0 = f (x0, u0) = 0 (23)

The small deviation following a perturbation from the system equilibrium and ex-
panding using Taylor’s series around the equilibrium and input vectors, the final linearized
state space equations can is:

.
x(t) = Ax(t) + Bu(t) (24)

y = Cx(t) + Du(t) (25)

A = state matrix;
B = input matrix;
C = output matrix;
D= feedback matrix.

A linear time-invariant system state is obtained by forming nonlinear ordinary
differential equations about a set point. Linearization is carried out to check local
stability and understand power system dynamics and speed up power system simulation.
Figure 21 presents the procedure of trimming and linearization. Moreover, there are
toolboxes in MATLAB®/SIMULINK® for linear controller design, for example the power
system toolbox (PST) developed by Rogers [132], PSAT [133], MatDyn [134], Matpower,
and MatSim [47]. Researchers use these toolboxes in damping controller design to
analyze power system oscillation.
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3.5.2. Eigenvalues

In linearized systems, the locations of eigenvalues on the s-plane, are used to evaluate
the stability of a system and are represented in Equation (26):

(λi = σi ± jωi) (26)

where σi represents the real part and ωi represents the imaginary part of eigenvalues.
The above equation is the state matrix A from the linearized model.
Where λi = eig(A) can represent the eigenvalues of a linearized system, i.e., the

state matrix (A). In MATLAB®, a function eig calculates the eigenvalues. Figure 22 shows
stability criteria for eigenvalues are represented in the s-plane
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If all the eigenvalues are on the left side of the s-plane, then the system is deemed
stable. In contrast, if there is any eigenvalue on the right side of the s-plane, then the system
is not stable. Shifting the eigenvalues to the left side of the s-plane is the major function of
optimization algorithms in the design of damping controllers.
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3.6. Review of Objective Function Formulation

Robust damping controller design involves the application of objective functions with
different formulations. In the integral time error-based function the objective function is to
minimize the rotor speed deviation error (∆ω) using the various integral error functions.
The index value should either be a positive or zero value and the system with the lowest
index should be regarded as the best.

In eigenvalue analysis, shifting the eigenvalues to the left side of the s-plane is the
main focus of the objective function, singular objective function and multiple objective
functions are the two major classifications used in defining the objective function. Thus,
these objective functions are represented by damping factors and ratios which are the real
(σi) and imaginary (ωi) parts of eigenvalues. Equations (27) and (28) show the mathematical
expression for the damping factor and damping ratio, respectively.

Damping factor σi = real(λi) (27)

Damping ratio ζi = −
σi√

σ2
i + ω2

i

(28)

Figure 23a–c show the objective function definition approaches in terms of damping
ratio and factor.
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3.6.1. Singular Objective Function

When defining a singular objective function, the target of the mathematical formulation
is to achieve either minimization or maximization of the damping ratio or damping factor
in various oscillation modes [135–137]. The damping ratio determines the oscillation decay
rate and thus is maximized for faster oscillation attenuation through optimization of the
controller parameters.

3.6.2. Multiple Objective Function

Multiple objective function combines the damping factor and ratio in its definition.
Oscillation settling time is increased through damping ratio maximization while reduction
in oscillation overshoot is achieved via the damping factor. Thus, combining both in
the definition is termed multiple objective function. This combination forms a D-shaped
stability area, and the goal of this multiple objective function is to relocate the eigenvalues
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to the D-shape area. Mathematical details of singular and multiple objective function
definition approaches are presented in Table 3.

Table 3. Objective function definition approaches.

Definition Type Equation Objective

Singular
objective function

Max{real
(

λij

)
} Minimization

Min
(

ζij ) Maximization
n
∑

i=1

(
1− ζij

)
Minimization

Multiple
objective function

np
∑

j=1
∑

σij≥σ0

(σ0 − σ0)
2 + a

np
∑

j=1
∑

ζij≤ζ0

(ζ0 − ζ0)
2 Minimization

−max
(

σij

)
+ minζij) Maximization

3.7. Optimization Techniques for Damping Controller Design

Over the years, many optimization algorithms have been evaluated and adopted in
the design of damping controllers [138,139]. These algorithms may be grouped into (i)
traditional, (ii) meta-heuristic (heuristic), (iii) or a combination of two or more techniques.
In this regard, researchers studying electrical power systems are increasingly embracing
the application of heuristic and meta-heuristic techniques in damping controller design.

Natural behaviors serve as the basis for heuristic algorithms. The techniques employ
a stochastic method to find the best solutions based on a defined objective function. Com-
paratively, meta-heuristic algorithms also mirror natural behaviors and are formulated by
further enhancing heuristic algorithms for more effective performance. In diverse research
efforts, these strategies have been categorized in a variety of ways. Figure 24 represents
shows a broad classification of some meta-heuristic algorithms.
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Nevertheless, some of the prevalently explored meta-heuristic algorithms in powers
system stability studies are discussed in this sub-section.

3.7.1. Particle Swarm Optimization Meta-Heuristic Algorithm

This is a swarm-based meta-heuristic technique that imitates the behaviors of swarm-
ing organisms such as fish or birds. This optimization technique mimics the fish schooling
and bird flocking behavior and has been used in damping controller design [105,140,141].
Nevertheless, one of the major challenges with particle swarm optimization (PSO) is its
stagnation in the local minima [142]. An improved PSO is presented in [142–144] for
tackling the local minima trials.

3.7.2. Genetic Algorithms

Genetic Algorithm (GA) is an evolutionary-based meta-heuristic algorithm that im-
itates the evolution of living things in an ecosystem. This technique explores genetic
mutations and crossover. GA is explored in [145] to enhance oscillation damping by tuning
the PSS and STATCOM parameters. However, this optimization approach has some draw-
backs, including performance degradation and pre-convergence, especially when used to
solve multi-dimensional engineering problems.

3.7.3. Tabu Search Algorithm (TS)

Tabu search algorithm (TSA) employs a local search approach by exploring different
areas in the search space. It uses artificial intelligence via adaptive memory and iterative
methods to solve the given problem. In [146], this algorithm is used for tuning PSS
controllers in a three-machine nine-bus system. For effective damping, all parameters must
be precisely tuned. Which can be quite large in an integrated power system. The efficiency
of TS is low for global search as compared with other algorithms [147].

3.7.4. Salp Swarm Algorithm

This is a population-based metaheuristic optimization method that is based on the
behavioral feature of marine organisms. The behavior of the Salp Swarm Algorithm (SSA)
can be convincible by computing it with the salp chain searching for optimal food sources,
i.e., the target of this swarm is a food source in the search space [148]. A comparative effect
of SSA tuning of SVC and TCSC in damping oscillations was performed in [149]. The main
limitation of SSA is the no-free launch theorem which states that no optimization algorithm
can solve all optimization problems.

3.7.5. Moth-Flame Algorithm

This is a population-based metaheuristic algorithm. Its optimization procedure begins
by creating moths at random within the solution space, then calculating each moth’s
position and marking the ideal place with a flame. The moth position is then updated
and the process is repeated until pre-set termination criteria are met [150]. In [151], moth-
flame algorithm (MFO) is applied to three controllers, PID, PSS, and TCSC, for damping
oscillation. However, this algorithm suffers from a slow speed convergence which leads
to being stuck at local optima [150]. Using a new selection scheme as proposed in [152]
provides an enhanced version of this population-based metaheuristic algorithm.

3.7.6. Sine Cosine Algorithm

Sine cosine algorithm (SCA) is a population-based optimization algorithm introduced
for solving several optimization problems. Using a mathematical model based on sine and
cosine functions, it generates a variety of starting random solutions and moves them in
the direction of the optimal solution [147]. Optimal tuning of PSS was carried out in [153]
using the Sine cosine algorithm (SCA). However, its low ability to handle the complexities
of multi-modal search problems is its major limitation [154]. In [155], a hybrid sine cosine
algorithm was proposed to address the aforementioned limitation.
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3.7.7. Harris Hawk Algorithm

Harris hawk algorithm (HHA) is a swarm-based metaheuristic optimization. It mimics
the behavior of a hawk’s team in a collaborative hunting strategy when looking for prey.
Verily, it is a very recent algorithm that is yet to be fully explored particularly in large cross-
modal optimization [156]. The singular objective problem is defined and the algorithm was
applied in [156]. In [157], it was applied for the optimization of PSS parameters.

3.7.8. Other Algorithms

A kidney-inspired algorithm which is a meta-heuristic algorithm was used in [158]
for PSS design. In [101], the farmland fertility algorithm was used for PID–PSS controller
design. Presently, there are extensive applications of various metaheuristic algorithms in
designing damping controllers. Some researchers have gone further to apply hybrid (two or
more) algorithms or improve existing algorithms [43] for robust damping controller design.

3.7.9. Hybrid Algorithms

The major aim of a hybrid algorithm is to achieve robust design, different algorithms
have some advantages and disadvantages over others. Therefore, combining two algo-
rithms can improve the damping controller performance. Harris hawk and particle swarm
optimization (HHO–PSO) was applied to PSS and STATCOM in [159] to damp power sys-
tem oscillations. The combination of algorithms may successfully address some limitations.
However, it increases the computational complexities of the optimization process.

4. Discussion
4.1. Controller Design limitations in Existing Methods

Various research has demonstrated appropriate damping controller design by combin-
ing different definitions of the objective function and applying optimization algorithms.
However, it is observed that there are notable limitations in damping controller design.
Meta-heuristic algorithm convergence curve is a critical factor used to validate the per-
formance of a designed damping controller. Different researchers validate their designed
damping controller by comparing it with other meta-heuristic techniques using the conver-
gence curves [160] and conclude that their designed damping controller is more efficient
based on the comparison. However, the meta-heuristic technique is a randomization
process. Therefore, this means of validation is not sufficient for justifying the solution
convergence. Incorporating statistical analysis can help make this validation a robust one.

Various researchers have ignored the time constant parameters T2 and T4 in optimizing
PSS to reduce design complexities [161] and improve the optimization algorithm’s efficiency
by reducing the parameters for optimization. However, it is only when all parameters (K,
T1, T2, T3, and T4) are optimized that the effectiveness of the designed damping controller
can be justified.

4.2. Challenges and Trending Issues

To date, various types of research publications on efficient damping controller design
in a renewable energy-integrated system are in place. From the various publications, the
following challenges are notable:

4.2.1. Performance and Design of Damping Controller

The proper damping controller design is a big issue in the power system. For an
integrated renewable energy system, the design of a damping controller and the optimiza-
tion process is even more complex [162–164]. Therefore, optimal designs are complicated,
limiting the damping controller performance.

4.2.2. Objective Function

Over the years, research has been carried out in designing damping controllers [165–167].
In these studies, [167–169] different methods to define the objective function are consid-
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ered. Defining the objective function is an integral part of designing the damping controller.
Therefore, improper definition may result in poor damping performance in the designed
damping controller. Prior to this review, no research has compared the performances of
different objective function formulations in a renewable grid-integrated system. Thus, it is
essential to determine the best method to define an objective function for effective design in a
renewable-integrated grid power system.

4.2.3. Implementation of the Meta-Heuristic Algorithm

Meta-heuristic algorithm application is one of the widely accepted approaches to
designing a damping controller, meta-heuristic algorithms determine its optimum solution
using a stochastic approach to problem-solving. Researchers have adopted meta-heuristic
algorithms for designing different damping controller schemes [121,169–171]. However,
evaluating the variation in design performance in a renewable-integrated grid system is
essential with increased solar and wind energy penetration.

4.3. Future Outlook

The effect of high penetration of Wind–PV into electrical power systems on overall
system stability requires more extensive analysis. The design of the damping controller
should be further enhanced as it is a constraint-based multimodal optimization problem.
The future outlook of power system oscillation damping will be shaped by coordinated
damping schemes and a thorough exploration of artificial intelligence-based optimization
approaches is required.

4.4. Conclusions and Recommendations

Power system oscillation is a problem that leads to blackouts and the collapse of a
renewable-integrated power grid system. Furthermore, it limits power transfer capacity
and causes safety issues in the system. Hence it is necessary to have an adequate auto-
mated damping controller in the system to mitigate this problem. The design of damping
controllers involves two basic steps; objective function definition, and application of opti-
mization algorithms which are applied to the defined objective function. This is carried out
to achieve a robust damping controller design for power system stability and to enhance
power transfer capacity. Nevertheless, designing a damping controller for a RES-integrated
multi-machine system is a cross-modal optimization problem that sometimes limits optimal
design using conventional optimization algorithms.

This review tends to solve this problem by presenting renewable energy sources and
their integration into the multi-machine power system. The synchronous machine model,
which represents the machines (generators) in the power system is discussed, then solar,
wind, and hybrid (solar, wind, and hydro) renewable energy sources are presented. For
optimum power tracking in solar and wind renewable energy due to its intermittent nature,
MPPT is discussed. Moreover, power electronic converters that convert direct current to
alternating current are presented, followed by grid synchronizers in form of the phase-lock
loop (PLL). In an integrated system, power system oscillation is a major concern as it affects
the stability of the entire power system; therefore, the basic concepts of power system
oscillation are introduced. To mitigate the power system oscillation, damping schemes
and various damping controllers which are incorporated into the system are evaluated.
After a thorough evaluation, it is noted that SSSC and STATCOM damping controllers
are the regularly employed FACTS damping controllers in the design of power oscillation
damper in a RES-integrated system. It is also observed that lead–lag type controllers such
as lead–lag PSS are often preferred in PSS-based damping design owing to their adequate
performance. The review also introduced the artificial intelligence damping scheme and
virtual synchronous generator damping scheme (VSG), which researchers are exploring for
robust damping controller design. The linearization of nonlinear systems and the recent
toolbox for power system dynamic oscillation analysis in MATLAB® in form of Matsim and
Matpower are noted. The eigenvalue approach for defining the objective function is also
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presented. The discussion concludes with a comparative study of different formulation
methods. Furthermore, this review discussed various optimization algorithms employed
in the damping controller design. Lastly, the limitations of existing damping controller
design methods are discussed.

Conclusively, challenges and current issues are noted. Amidst these issues, sugges-
tions for effective design of damping controllers as renewable energy penetration keeps
increasing are as follows:

� Artificial intelligent damping type of controller scheme needs to be further explored
as there are signs of improved oscillation damping compared with PSS and FACTS;

� The objective function definition is a critical part of damping controller design and
thus, should be appropriately defined;

� Researchers should apply statistical analysis together with the single convergence
curve for proper validation in optimizing the parameters of a proposed damping
controller which will provide sufficient validation of the convergence curve.
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