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Abstract: The paper presents the Fractional Fourier Transform-Singular Value Decomposition (FRFT-
SVD) method for the localization of various power system faults in a 200 km long, 500 kV Egyptian
transmission line using sent end-line current signals. Transient simulations are carried out using
Alternating Transient Program/Electromagnetic Transient Program (ATP-EMTP), and the outcomes
are then examined in MATLAB to carry out a sensitivity analysis against measurement noises,
sampling frequency, and fault characteristics. The proposed work employs current fault signals of
five distinct kinds at nineteen intermediate points throughout the length of the line. The approach
utilized to construct the localizer model is FRFT-SVD. It is much more effortless, precise, and effective.
The FRFT-SVD is utilized in this technique to calculate 19 sets of indices of the greatest S value
throughout the length of the line. The FRFT-SVD localizer model is also designed to be realistic, with
power system noise corrupting fault signals. To generate fault curves, the curve fitting technique is
applied to these 19 sets of indices. Reduced chi-squared and modified R-squared criteria are used to
choose the best-suited curve. The proposed work results in a very precise localization, with only a
0.0016% average percentage error for fault localization and a maximum percentage error of 0.002%
for the 200 km Egyptian transmission line. Finally, this work can be employed as a proper link
between the nuclear power plant and the grid. The proposed method is an efficient fault distance
estimation method that might contribute to creating a dependable transient-based approach to power
system protection.

Keywords: fault location; ATP-EMTP; long transmission line; curve fitting techniques; FRFT-SVD

1. Introduction

In deregulated situations, accurate fault location in transmission lines saves power
system recovery time, associated costs, and financial losses. Three techniques are used
to locate faults in the electrical grid: approaches based on impedance [1,2], traveling
wave fault location [3–5], and artificial intelligence [6–10]. While traveling wave-based
methods employ high-frequency transient components produced by fault or switching
operations, impedance-based methods utilize power frequency components of voltages and
currents. Artificial intelligence (AI) and machine learning (ML) techniques are typically the
foundation of soft computing. Singular value decomposition (SVD) techniques have drawn
greater attention in recent years thanks to developments in signal processing, the ability to
sample signals at high frequencies, and the creation of optical sensors. Voltage, current,
power, frequency, etc., are only a few of the many variable factors of the power system
as a whole. The application of SVD can reduce the size of these electrical characteristics,
making it easier, faster, and more accurate to determine fault features. Furthermore,
SVD is extremely efficient when dealing with noisy data. Consequently, it reduces the
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unpredictability of noise, making SVD more suitable for application in a noisy setting such
as the power system.

The FRFT-SVD approach, which is exceedingly effective, accurate, and simple to use,
was employed to construct the localizer model. To determine the characteristics of a signal
in terms of the maximum S value, which is employed in this approach to calculate the
indices, FRFT-SVD is a straightforward technique. In particular, for more decomposition,
wavelet transform-based analysis becomes more challenging. On the other hand, neural
networks need a lot of training data that are spread out over a long period of time. As a
result, the proposed fault localizer is both very precise and fast. The proposed analysis
might be enhanced to include fault localization in a transmission network or a system with
several interconnected buses. In the event of such a system, it is first necessary to determine
the bus from which the line with the problem originated. After conducting the following
fault localization study, that bus might be taken as the source point. This study’s goal is to
provide a technique for the efficient use of curve fitting analysis and FRFT-SVD for the sole
purpose of fault site prediction.

1.1. Related Work

Scientists have used quick fault detection, classification, and location identification
techniques to guarantee system stability and safety [11].

To restore the system stability in a power transmission network, the faulty phase or
phases must be removed. Numerous computational tools for defect diagnostics have been
created by researchers. As previously noted, the proposed work investigates the function
of SVM as an upgrading simulation tool and uses it to create a fault location technique.

For the detection, categorization, and localization of faults, researchers have created
numerous mathematical and computational algorithms. Nowadays, researchers use ar-
tificial intelligence (AI) widely in the study of power systems and fault analysis. One of
the most popular and important techniques for studying the protection of transmission
lines in power systems has been the Artificial Neural Network (ANN) and its various
variations [12].

One of the most recent developments in this area is the use of neural networks for
analysis powered by extreme learning machines (ELMs) [13]. As a conventional approach
to fault signal analysis, Wavelet Transform (WT) has been crucial in numerous studies of
fault analysis, even using contemporary compensating devices [14].

Another useful tool for fault analysis is the fuzzy inference system, which is frequently
employed as a primary analytical technique alone [15], as well as in a hybrid model with
wavelet analysis [16] and neural networks, known as the (ANFIS) model. To create wavelet-
based ANFIS models and as a useful means of comprehensive analysis, this hybrid model
has frequently been supported by WT analysis [17]. As a significant standalone method
of study, (SVM) has also been utilized in numerous studies pertaining to power system
protection algorithms [18].

A simple approach to classifying and locating power system defects was developed us-
ing principal component analysis (PCA). For the quick location of the faulty line, this work
solely employs 14-cycle pre-fault and 12-cycle post-fault receiving side current waveforms.

Although SVM-based algorithms are also highly popular for fault analysis, they
nevertheless have the issue of intensive training because of noise contamination to
some extent.

Both [19] and [20] authors explore faults in OHTL with various sources linked to the
system, whereas [19] authors present a method for fault identification intended for busbar
zone protection, as demonstrated by the authors of [21], who provided polynomial and
Gaussian radial basis functions (RBF) for fault classification, or [22], who used dyadic
WT-based SVM for fault classification.

The authors of [23] use time-synchronized fault signals as modern research tools.
Other new research inclusions include measurement analysis based on magnetic

flux variation [24], feature extraction techniques based on mathematical morphology [25],
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ensemble Kalman filter-based strategies [26], analysis based on the combination of several
sensors and fuzzy inference [27], monitoring of transmission line [28–30], etc.

Several more methodologies can help with the development of fault analysis strategies.
Considering this, the purpose of this study is to provide a technique for the efficient use
of curve fitting analysis and FRFT-SVD only for fault site prediction. Consequently, the
analysis is conducted with a variable fault resistance, various fault inception angles, and
noise. The paper proposes the Fractional Fourier Transform-Singular Value Decomposition
(FRFT-SVD) approach for localizing various power system problems in a 200 km long,
500 kV Egyptian transmission line under varied operating conditions utilizing received
end-line current data. The proposed method has all the potential to become an efficient
way of predicting the distance to a fault, which may help in the creation of a dependable
transient-based power system protection strategy.

1.2. Motivation and Contributions

The numerous AT-detection technologies that have recently been introduced each
have drawbacks. For instance, the choice of the mother wavelet affects DWT performance.
Due to the aliasing phenomena, the Empirical Mode Decomposition (EMD) process has
the potential to affect HHT performance. Wavelet transform-based analysis becomes
increasingly complicated as the depth of decomposition increases. On the other hand,
neural networks need extensive training time and widely dispersed training data.

In this paper, a new method for fault location based on FRFT-SVD and curve fitting
of 500 kV long transmission lines is proposed. The purpose of this work is to provide a
strategy for the efficient use of curve fitting analysis and FRFT-SVD for fault site prediction
only. This method lacks the shortcomings of the methods listed above because it was
designed based on algebraic operations in the time-frequency domain. The suggested
algorithm addresses the finding of defects for all fault kinds under various operational
scenarios. Simulations are run in the EMTP/ATP program, and the results are analyzed in
MATLAB to assess how well the proposed technique performs. Through comprehensive
simulations, the sensitivity analysis of measurement noises, sample frequency, and fault
parameters is examined. The results of FRFT-SVD and curve fitting are examined, and
the suggested method’s proper operation under various circumstances is demonstrated.
Following is a summary of the suggested method’s key characteristics: (1) It is sufficiently
resilient against noise. (2) It is simple to implement and has a straightforward structure.
(3) Because it uses straightforward algebraic calculations, it runs quickly enough for online
applications. (4) It responds appropriately without the need for structural adjustments or
training in various systems and circumstances.

1.3. Organization

The organization of the paper is as follows. Section 2 describes the details of the
system under study. The study of 500 kV-long transmission line fault signals is presented
in Section 3. Section 4 outlines the basic tenets of the suggested detection method. In
Section 5, thorough simulations are used to assess how sensitive the suggested strategy
is to the system characteristics; a summary of the outcomes of contrasting the suggested
method with traditional methods is also provided in Section 5. In Section 6, conclusions
are presented.

2. System Description and Modelling

Figure 1 depicts the system under analysis, which is based on a typical 500 kV trans-
mission line in Egypt with a 200 km-long line.
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Figure 1. A 500 kV transmission line in Egypt with a 200 km-long line.

The most sophisticated JMARTI model, which is a frequency-dependent model and
suitable for transients research [31,32], is used to simulate the considered transmission
line. Table 1 lists the key characteristics of the transmission system in operation. There are
two ground wires with direct tower grounding, and phase conductors are presumed to be
perfectly transposed. It is assumed that the soil resistivity is 100 Ωm [31]. Figure 2 depicts
the conductor arrangements and tower configuration [31].

Table 1. The main parameters of the power line.

Items Value

Line voltage (r.m.s) in kV 500
Line length in km 200
Tower circuit No. 1

Sub-conductors per phase No. 3
Ground wires No. 2

Sub-conductor diameter in mm 30.6
Spacing between sub-conductor in phase in cm 47

Span in meters 400
Diameter of ground wire in mm 11.02

Energies 2023, 16, x FOR PEER REVIEW 4 of 24 
 

 

2. System Description and Modelling 

Figure 1 depicts the system under analysis, which is based on a typical 500 kV trans-

mission line in Egypt with a 200 km-long line. 

 

Figure 1. A 500 kV transmission line in Egypt with a 200 km-long line. 

The most sophisticated JMARTI model, which is a frequency-dependent model and 

suitable for transients research [31,32], is used to simulate the considered transmission 

line. Table 1 lists the key characteristics of the transmission system in operation. There are 

two ground wires with direct tower grounding, and phase conductors are presumed to 

be perfectly transposed. It is assumed that the soil resistivity is 100 Ωm [31]. Figure 2 de-

picts the conductor arrangements and tower configuration [31]. 

Table 1. The main parameters of the power line. 

Items Value 

Line voltage (r.m.s) in kV 500 

Line length in km 200 

Tower circuit No. 1 

Sub-conductors per phase No. 3 

Ground wires No. 2 

Sub-conductor diameter in mm 30.6 

Spacing between sub-conductor in phase in cm 47 

Span in meters 400 

Diameter of ground wire in mm 11.02 

 

Figure 2. Tower configuration and conductor arrangements. 

3. Analysis of 500 kV OHTL Fault Signals 

A practical Egyptian 500 kV OHTL ATP/EMTP simulation uses a 200 km transmis-

sion line model. Twenty identical blocks, each 10 km in length, are connected in a cascade 

BCT BCT

Sending end Receiving end

F

200km OHTL

Load

500MVA, 0.8

Figure 2. Tower configuration and conductor arrangements.

3. Analysis of 500 kV OHTL Fault Signals

A practical Egyptian 500 kV OHTL ATP/EMTP simulation uses a 200 km transmission
line model. Twenty identical blocks, each 10 km in length, are connected in a cascade
to develop the 200 km OHTL model. This designed system is shown in Figure 3. Faults
have been conducted at the intermediate junctions of each consecutive block, and the fault
current waveforms are recorded at the sending side only. Faults depend on five main fault
parameters: (fault type, fault distance, fault resistance, noise, and inception angle).
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Figure 3. Simulated OHTL model.

Five different fault types (Line to Ground (LG), Line to Line (LL), Line to Line to
Ground (LL-G), Line to Line to Line (LLL), and Line to Line to Line to Ground (LLL-G))
are simulated in this regard, together with five fault resistances (R), five inception angles
(θ) (including 0◦–180◦), and 19 distances of the fault from the recording site (including
10 km–190 km). Following the application of LG fault type to the phases at 190 km (before
the line’s end) from the transmitting side, Figure 4a–d show the faulted-phase current
waveforms at different locations, fault resistance, and inception angles. Figure 4b shows
the sending side signals under different locations (with fault resistance = 10 Ω, inception
angle = 0◦ and fault location = (10 km, 50 km, 100 km, 150 km, 190 km) for the one-phase
(a) to ground fault. It is evident that the faulted phase current signal peak reduced from
25 kA to 5.8 kA, or by about 77%. Figure 4c shows the sending end signals under different
R (with R = (1 Ω, 10 Ω, 25 Ω, 35 Ω, 50 Ω), inception angle = 0◦ and fault location = 190 Km
for the one-phase (a) to ground fault. It is clear that the faulted phase current amplitude
reduced from 6.4 kA to 4.1 kA, or by about 36%. Figure 4d show the sending end signals
under different inception angle (with fault resistance = 10 Ω, Inception Angle θ = (0◦ to
180◦), and fault location = 190 km for the one-phase (a) to ground fault. Moreover, the
beginning current amplitude in the case of fault at 0◦, and 45◦ is much more than 90◦, 135◦,
and 180◦.
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4. FRFT and SVD Overview

Since they are used in our suggested fault diagnosis technique, FRFT and SVD schemes
will be briefly covered in this section.

4.1. Fractional Fourier Transform (FRFT)

One effective method for time-varying signal analysis is the fractional Fourier trans-
form (FRFT). The Fourier Transform (FT) is generalized by the FRFT. FT defines a signal’s
spectral content, not the timing of its spectral components [33–35]. Signals are rotated
in the time-frequency domain by the FRFT method. As a consequence, the FRFT may
transform a signal from the time domain X(t) to the frequency domain Xα(u) of the signal.
The following mathematical formula can be used to define the αth order FRFT of X(t):

Xα(u) = FRFTα(x(t)) =
∫ ∞

−∞
x(t)·Kα(t, u)dt (1)

A fractional factor (α) with a range of 0 to 1 determines the FRFT coefficients. Therefore,
in the suggested technique, we choose eigenvector FRFT as a feature extractor because of
its superior advantages (with a factor between 0 and 1).

4.2. Singular Value Decomposition (SVD)

Singular value decomposition (SVD) is a matrix factorization technique that is par-
ticularly useful for a wide range of applications, including pattern identification, data
dimension reduction, matrix approximation, pseudo inverse computation, and linear equa-
tion solving. As a data processing approach, SVD has been successfully used in signal
processing and has been demonstrated to be effective in preventing modal aliasing. It may
divide any matrix into three matrices as follows:

A = U·S·V′ (2)

where UU′ = 1 and VV′ = 1, which are referred to as the left and right singular vectors,
respectively, and U and V are unitary matrices. The singular values of A, which are
determined by determining the eigenvalues of AA′, are represented by the diagonal matrix
S. It has the following representation:

S =



s1
. . .

sρ

0

0

0
. . .

0


(3)
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where ρ is the rank of the matrix A. Note that S1 > S2 > . . . > Sρ, i.e., S1 is the largest
singular value. Because SVD has the ability to describe the feature matrix as a collection of
values (singular values), it has a dimension-reduction technique. The solitary values also
have high stability. In other words, there isn’t a significant variation in the singular values
of the feature matrix element as it changes.

5. Results and Discussion
5.1. Data Preparation for the Proposed Algorithm
5.1.1. Data Preparation for Training

The block diagram for the proposed method for power system fault localization using
the Fractional Fourier Transform-Singular Value Decomposition (FRFT-SVD) method is
shown in Figure 5.

A diagonal matrix produced by SVD over the fault current transients exhibits many of
the fundamental properties of the original matrix. The vectors consist of 1500 data points,
each with a pre-fault length of quarter cycles and a post-fault length of half cycles, and a
sampling frequency of 2000 samples per cycle. As a result, the data matrix is produced
as follows:

Dnl =


ianl1 ibnl1 icnl1
ian f 2 ibnl2 icnl2
. . . . . . . . .
ianl1500 ibnl1500 icnl1500


1500×3

(4)

Hence, Dnl = [ianl ianl ianl ]1500×3.
A fault class is represented by n denoted by 1, 2, . . . , 5, the location of the fault is

indicated by l, and the sample index is indicated by 1, 2, . . . 1500. ianl, ibnl, and icnl indicate
the currents for n-th class. The creation of the proposed fault localization technique makes
use of fault data from 19 distinct, evenly spaced fault locations at 10, 20, 30, 40, 50, 60, 70,
80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, and 190 km. The input training matrix for
the FRFT-SVD becomes

Dal = [ial10 ial20 . . . ial190]1500×19
Dbl = [ibl10 ibl20 . . . ibl190]1500×19
Dcl = [icl10 icl20 . . . icl190]1500×19

(5)

where the training matrix for the n-class of fault for phases a, b, and c is represented by
Dal, Dbl, and Dcl. This leads to the formation of five such matrices for each phase. The
recommended fault localization methodology uses fault data for 19 distinct, evenly spaced
fault sites at 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, and
190 km. With a changeable fault location, the S matrix contrasts signals from a fixed phase.

5.1.2. Data Preparation for Testing

The preparation of test data is identical as well. The result is the test data matrix,
which has an unknown fault location but a known fault class t:

Tnt =


iant1 ibnt1 icnt1
iant2 ibnt2 icnt2
. . . . . . . . .
iant1500 ibnt1500 icnt1500


1500×3

(6)

Hence, Tnt = [iant iant iant]1500×3, where Tnt is the test data matrix.
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5.2. The Impact of Noise, Fault Resistance, and Inception Angle

The fault signals have been combined with Gaussian white noise to create noise-
contaminated fault signals. By adjusting the SNR level, the fault waveform noise level
can also be adjusted in four steps. The more significant point is that the proposed model
is tested at a high noise level of 15 dB SNR, which is higher than the typical noise level
used in most research. The impact of this undesirable noise is considered even when
variations in fault type, location, and fault resistance occur concurrently. FRFT creates
a signal’s intermediate time-frequency representations. SVD has a dimension reduction
strategy because it expresses the feature matrix as a collection of singular values. Addi-
tionally, the singular values are stable. The maximum SVD of the FRFT for a single phase
yields a single feature (maximum value S matrix). Three features are chosen for each
fault state in OHTL. FRFT-SVD thus eliminates the impact of noise on discrimination. In
this work, the noise immunity property is also studied. A comparison of the maximum
singular value for direct standardized fault signals and that of its filtered form is shown in
Table 2. Additional results are declared in Tables A1–A4. The observations demonstrate
that filtering has no discernible impact on the FRFT-SVD algorithm’s results, as there is
no noticeable change in the magnitude of the max singular value. Using the suggested
FRFT-SVD based fault analyzer has this as a major benefit. By doing away with the need for
filtering, FRFT-SVD can lessen the computational load. The SNR is varied for this purpose
to observe the variation in max singular value, and the proposed algorithm is then run
under more challenging conditions with higher noise levels. The maximum singular values
in Tables 2 and A1, Tables A2–A4 show how the results of analyzing the filtered and unfil-
tered signals using maximum singular values are extremely similar. Filtering thus becomes
unnecessary at the maximum singular value, saving vital computation and processing time.
This demonstrates the inherent ability of FRFT-SVD to largely ignore the effect of noise.

Table 2. Max singular value of FRFT-SVD results at various SNRs for direct and filtered signals under
LG fault scenario.

SNR = 15 dB SNR = 20 dB SNR = 25 dB SNR = 30 dB

Location (km) Direct Filtered Direct Filtered Direct Filtered Direct Filtered

10 2,634,600 2,634,602 2,634,601 2,634,601 2,634,603 2,634,601 2,634,602 2,634,601
20 1,317,400 1,317,404 1,317,401 1,317,401 1,317,402 1,317,401 1,317,403 1,317,401
30 878,350 878,356 878,353 878,352 878,351 878,351 878,351 878,352
40 658,810 658,813 658,813 658,813 658,812 658,812 658,812 658,811
50 527,090 527,093 527,091 527,091 527,091 527,092 527,092 527,091
60 439,270 439,275 439,272 439,273 439,273 439,271 439,271 439,272
70 376,540 376,542 376,543 376,541 376,542 376,542 376,544 376,542
80 329,500 329,503 329,501 329,502 329,501 329,501 329,502 329,501
90 292,910 292,914 292,911 292,911 292,911 292,911 292,913 292,912

100 263,630 263,631 263,634 263,631 263,632 263,633 263,631 263,631
110 239,680 239,682 239,683 239,681 239,681 239,682 239,682 239,681
120 219,710 219,711 219,712 219,712 219,712 219,712 219,712 219,712
130 202,820 202,822 202,821 202,821 202,822 202,821 202,821 202,821
140 188,340 188,346 188,341 188,341 188,343 188,343 188,341 188,342
150 175,800 175,801 175,802 175,802 175,801 175,802 175,802 175,801
160 164,820 164,821 164,823 164,824 164,822 164,821 164,823 164,821
170 155,130 155,133 155,132 155,131 155,131 155,132 155,132 155,132
180 146,520 146,521 146,523 146,523 146,521 146,523 146,522 146,521
190 138,810 138,811 138,810 138,812 138,811 138,811 138,810 138,811

The maximum singular values in Tables 3 and A5, Tables A6–A9 show how the results
of analyzing the filtered and unfiltered signals using maximum singular values at different
fault resistance and inception are extremely similar. The results show that the proposed
method is unaffected by changes in fault distance, fault resistance, noise, or fault inception
angle. As a result, the proposed algorithm will work in direct form.
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Table 3. Max singular values of FRFT-SVD results for direct and filtered current signals at various
faults and inception angles with R = 10 Ω.

Inception Angle 0◦ 45◦ 90◦ 135◦ 180◦

Faults Location (km) Direct Filtered Direct Filtered Direct Filtered Direct Filtered Direct Filtered

LG
10 2,634,600 2,634,601 2,634,602 2,634,600 2,634,605 2,634,607 2,634,602 2,634,603 2,634,601 2,634,601
100 263,630 263,631 263,633 263,631 263,630 263,633 263,631 263,634 263,630 263,632
190 138,810 138,812 138,811 138,813 138,812 138,818 138,810 138,812 138,810 138,811

LL
10 2,783,955 2,783,955 2,783,954 2,783,955 2,783,953 2,783,959 2,783,955 2,783,955 2,783,955 2,783,955
100 279,220 279,221 279,223 279,220 279,226 279,220 279,220 279,223 279,225 279,223
190 147,310 147,310 147,314 147,310 147,315 147,313 147,311 147,313 147,310 147,313

LL-G
10 2,874,584 2,874,584 2,874,584 2,874,585 2,874,584 2,874,588 2,874,584 2,874,584 2,874,584 2,874,584
100 276,791 276,793 276,791 276,791 276,796 276,795 276,791 276,790 276,791 276,792
190 148,001 148,004 148,000 148,004 148,004 148,006 148,001 148,000 148,004 148,001

LLL
10 2,938,600 2,938,602 2,938,601 2,938,604 2,938,602 2,938,607 2,938,600 2,938,600 2,938,601 2,938,600
100 293,820 293,821 293,820 293,823 293,821 293,823 293,820 2,938,255 293,821 293,821
190 154,610 154,611 154,611 154,612 154,613 154,618 154,610 154,610 154,615 154,612

LLL-G
10 3,134,503 3,134,503 3,134,502 3,134,503 3,134,500 3,134,502 3,134,503 3,134,503 3,134,504 3,134,503
100 312,860 312,861 312,861 312,860 312,862 312,864 312,860 312,863 312,861 312,860
190 164,360 164,363 164,362 164,360 164,364 164,361 164,361 164,362 164,360 164,363

To demonstrate the fault localizer method, the proposed work carefully examines five
different instances. As shown in Tables 4 and A9, Tables A10–A12, the maximum singular
value of each faulty signal corresponding to the 19 separate fault locations throughout the
length of the line is ascertained by utilizing a singular value to analyze the three-phase
working signals to demonstrate this analytically.

Table 4. The maximum singular and its scaled values for LG fault at 19 locations.

Location (km) The Max Singular Value Max Scaled Singular Value

10 2,634,600 1
20 1,317,400 0.500038
30 878,350 0.33339
40 658,810 0.250061
50 527,090 0.200065
60 439,270 0.166731
70 376,540 0.142921
80 329,500 0.125066
90 292,910 0.111178

100 263,630 0.100065
110 239,680 0.090974
120 219,710 0.083394
130 202,820 0.076983
140 188,340 0.071487
150 175,800 0.066727
160 164,820 0.06256
170 155,130 0.058882
180 146,520 0.055614
190 138,810 0.052687

The maximum singular values obtained for the five faults in Tables 4 and A9,
Tables A10–A12 are scaled in relation to the maximum values. For each phase inde-
pendently, the curve fitting technique uses these 19 scaled S values of the faulty lines as
training points.

The model is built using fault data from 19 locations, namely 10, 20, 30, 40, 50, 60,
70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, and 190 km, as previously discussed.
Different curves are evaluated with these scaled singular value values to determine the
optimal curve fitting method, which is discussed next.
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5.3. Analysis of Different Fitness Models

Best-fit approaches are used to approximate the curvilinear nature. The least reduced
chi-squared and maximum adjusted R-square criteria are used to choose the top five fittest
models, with the best-fit model being selected among those:

Fit 1 : f (i) = a0i + a1 (7)

Fit 2 : f (i) = a0 + a1i + a2i2 + a3i3 + a4i4 + a5i5 + a6i6 + a7i7 (8)

Fit 3 : f (i) = a1eai + a2ebi + a3eci (9)

Fit 4 : f (i) = a1e(−((i−b1)/c1)
2) + a2e(−((i−b2)/c2)

2) + a3e(−((i−b3)/c3)
2) (10)

Fit 5 : f (i) = a0 + a1e(−i/c1) + a2e(−i/c2) + a3e(−i/c3) (11)
where a0, a1, c1, a2, c2, a3 and c3 are of 0.03435 ± 9.00317 × 10−4, 2.33327 ± 0.02426, 5.25993
± 0.09922, 0.7114 ± 0.01814, 17.21614 ± 0.451, 0.25131 ± 0.00698 and 72.89877 ± 1.96831,
respectively. The fifth fitting formula has an R-Square (COD) = 1, R-squared value of 1, and
Reduced Chi-Sqr = 3.19786 × 10−8.

The five different fit models were progressively applied to the same set of maximum
scaled singular values in order to determine which model provided the best fit with the
least chi-squared and the highest adjusted R square. For the LG, LL, LL-G, LLL, and LLL-G
faults, respectively, these best fit curves with the lowest reduced chi-squared and highest
adjusted R-square. The best curve-fitting formula is accounted for in the fifth one. It is
the most effective strategy for fault location determination. This last fitting expression
employs an exponential decay with a third degree. The lowest possible error between the
actual location and the predicted location is estimated using the proposed fitting formula
at LG, LL, LL-G, LLL, and LLL-G faults, as depicted in Figure 6, Figure 7, Figure 8, Figure 9,
and Figure 10, respectively. The difference between the predicted and real fault distances
(P and A) was utilized to quantify this inaccuracy. This estimated error is equivalent to
the algorithm’s accuracy. As the distance deviation rises, the algorithm’s accuracy falls.
The overall accuracy is defined as the greatest estimate error throughout the whole length
range of the line as well as for all conceivable fault types represented as a percentage of the
total line length, C in Equation (12), and the average error (AE), is defined in Equation (13).

error (e) =
∣∣∣∣ predicted location(P)− actul location(A)

total line length(C)

∣∣∣∣× 100 (12)

(AE) =

n
∑

i=1
error

n
(13)

Tables 5–14 show the locations of five faults that were predicted based on current line
data and fitted using various five-curve fitting methods. Furthermore, the average error
(AE) and five different fault prediction errors using line current signals and various five
curve fittings are shown in these tables. The proposed work produces a localization that is
extremely accurate, with a maximum percentage error of 0.002% and an average percentage
error for fault localization of just 0.0016%. The proposed approach is validated with other
approaches, as shown in Table 15. Both the maximum and average percentage errors
are computed and compared with literature work [9,11,12,35]. A comparison between
the proposed work and that experimentally published is demonstrated. This comparison
was made using the same data in the form of current signals. These simulated data are
generated using ATP-EMTP that was tested with the mentioned methods on [9,11,12,35].
In addition, this data corresponds to changes in power system faults in a 200 km long,
500 kV Egyptian transmission line using sent end-line current signals. The proposed work
is executed using a laptop with Intel(R) Core(TM) i7-10750H and a 2.59 GHz CPU. One
of the main strengths of the suggested work is the ability to use it as a link between the
nuclear power plant and the grid. Moreover, the proposed method is an effective fault
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distance estimating method that might help to develop a reliable transient-based strategy
for power system protection with minimal error.
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Figure 6. The best fitting curve at 19 fault locations for LG fault using scaled maximum singular value.
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Figure 7. The best fitting curve at 19 fault locations for LL fault using scaled maximum singular value.

Table 5. Actual (A in km) and predicted (P in km) fault locations under LG fault scenario.

A (km) 10 30 50 70 90 100 120 140 160 180 190

P for Fit 1 (km) 10.5340 30.432 50.512 70.621 90.456 100.614 120.685 140.752 160.782 180.742 190.852
P for Fit 2 (km) 10.3211 30.312 50.468 70.425 90.562 100.568 120.536 140.568 160.311 180.541 190.752
P for Fit 3 (km) 10.1242 30.212 50.265 70.359 90.255 100.352 120.425 140.425 160.456 180.342 190.425
P for Fit 4 (km) 10.1181 30.102 50.120 70.130 90.125 100.129 120.235 140.254 160.352 180.213 190.246
P for Fit 5 (km) 10.0010 30.0024 50.002 70.0025 90.001 100.002 120.0022 140.002 160.003 180.003 190.003
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Figure 8. The best fitting curve at 19 fault locations for LL-G fault using scaled maximum singu-
lar value.
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Figure 9. The best fitting curve at 19 fault locations for LLL fault using scaled maximum singu-
lar value.

Table 6. LG fault prediction error utilizing line current signals.

A (km) 10 30 50 70 90 100 120 140 160 180 190 AE (%)

error for Fit 1 (%) 0.267 0.216 0.256 0.3105 0.228 0.307 0.3425 0.376 0.391 0.394 0.426 0.319455
error for Fit 2 (%) 0.1605 0.156 0.234 0.2125 0.281 0.284 0.268 0.284 0.1555 0.2705 0.376 0.243818
error for Fit 3 (%) 0.062 0.106 0.1326 0.1795 0.1275 0.176 0.2125 0.2125 0.228 0.171 0.2125 0.165464
error for Fit 4 (%) 0.059 0.051 0.06 0.065 0.0625 0.0645 0.1175 0.127 0.176 0.1065 0.123 0.092000
error for Fit 5 (%) 0.0005 0.0012 0.001 0.00125 0.0005 0.001 0.0011 0.001 0.0015 0.0015 0.0015 0.001095
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Figure 10. The best fitting curve at 19 fault locations for LLL-G fault using scaled maximum singu-
lar value.

Table 7. Actual (A in km) and predicted (P in km) fault locations under LL fault scenario.

A (km) 10 30 50 70 90 100 120 140 160 180 190

P for Fit 1 (km) 10.4820 30.523 50.623 70.528 90.711 100.692 120.695 140.723 160.722 180.823 190.722
P for Fit 2 (km) 10.2101 30.423 50.532 70.411 90.545 100.525 120.568 140.622 160.569 180.623 190.625
P for Fit 3 (km) 10.1512 30.198 50.225 70.325 90.456 100.352 120.458 140.352 160.355 180.456 190.425
P for Fit 4 (km) 10.1432 30.112 50.110 70.156 90.211 100.125 120.356 140.258 160.211 180.254 190.215
P for Fit 5 (km) 10.0011 30.0031 50.0023 70.002 90.0034 100.003 120.0021 140.0021 160.003 180.0031 190.0035

Table 8. LL fault prediction error.

A (km) 10 30 50 70 90 100 120 140 160 180 190 AE (%)

error for Fit 1 (%) 0.241 0.2615 0.3115 0.264 0.3555 0.346 0.3475 0.3615 0.361 0.4115 0.361 0.329273
error for Fit 2 (%) 0.10505 0.2115 0.266 0.2055 0.2725 0.2625 0.284 0.311 0.2845 0.3115 0.3125 0.256959
error for Fit 3 (%) 0.0756 0.099 0.1125 0.1625 0.228 0.176 0.229 0.176 0.1775 0.228 0.2125 0.1706
error for Fit 4 (%) 0.0716 0.056 0.055 0.078 0.1055 0.0625 0.178 0.129 0.1055 0.127 0.1075 0.097782
error for Fit 5 (%) 0.00055 0.00155 0.00115 0.001 0.0017 0.00125 0.00105 0.00105 0.0015 0.00155 0.00175 0.001282

Table 9. Actual (A in km) and predicted (P in km) fault locations under LL-G fault scenario.

A (km) 10 30 50 70 90 100 120 140 160 180 190

P for Fit 1 (km) 10.4910 30.725 50.561 70.568 90.774 100.621 120.685 140.711 160.799 180.759 190.812
P for Fit 2 (km) 10.3214 30.526 50.458 70.452 90.538 100.435 120.533 140.652 160.653 180.612 190.625
P for Fit 3 (km) 10.1245 30.3524 50.288 70.401 90.456 100.211 120.355 140.433 160.436 180.355 190.356
P for Fit 4 (km) 10.1395 30.182 50.124 70.128 90.364 100.178 120.244 140.311 160.235 180.215 190.282
P for Fit 5 (km) 10.0012 30.002 50.0032 70.0029 90.00296 100.003 120.002 140.0025 160.0028 180.003 190.0031

Table 10. LL-G fault prediction error.

A (km) 10 30 50 70 90 100 120 140 160 180 190 AE (%)

error for Fit 1 (%) 0.2455 0.3625 0.2805 0.284 0.387 0.3105 0.3425 0.3555 0.3995 0.3795 0.406 0.341182
error for Fit 2 (%) 0.1607 0.263 0.229 0.226 0.269 0.2175 0.2665 0.326 0.3265 0.306 0.3125 0.263882
error for Fit 3 (%) 0.06225 0.1762 0.144 0.2005 0.228 0.1055 0.1775 0.2165 0.218 0.1775 0.178 0.171268
error for Fit 4 (%) 0.06975 0.091 0.062 0.064 0.182 0.089 0.122 0.1555 0.1175 0.1075 0.141 0.109205
error for Fit 5 (%) 0.0006 0.001 0.0016 0.00145 0.00148 0.0015 0.001 0.00125 0.0014 0.0015 0.00155 0.001303
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Table 11. Actual (A in km) and predicted (P in km) fault locations under LLL fault scenario.

A (km) 10 30 50 70 90 100 120 140 160 180 190

P for Fit 1 (km) 10.6212 30.526 50.785 70.752 90.744 100.511 120.752 140.811 160.823 180.835 190.851
P for Fit 2 (km) 10.4251 30.425 50.524 70.526 90.524 100.325 120.652 140.720 160.652 180.653 190.666
P for Fit 3 (km) 10.2520 30.236 50.411 70.456 90.411 100.235 120.532 140.511 160.328 180.422 190.513
P for Fit 4 (km) 10.1740 30.125 50.35 70.196 90.354 100.133 120.356 140.325 160.311 180.341 190.283
P for Fit 5 (km) 10.0021 30.0026 50.0029 70.003 90.0029 100.0035 120.003 140.003 160.0034 180.0032 190.0035

Table 12. LLL fault prediction error.

A (km) 10 30 50 70 90 100 120 140 160 180 190 AE (%)

error for Fit 1 (%) 0.3106 0.263 0.3925 0.376 0.372 0.2555 0.376 0.4055 0.4115 0.4175 0.4255 0.364145
error for Fit 2 (%) 0.2125 0.2125 0.262 0.263 0.262 0.1625 0.326 0.36 0.326 0.3265 0.333 0.276909
error for Fit 3 (%) 0.126 0.118 0.2055 0.228 0.2055 0.1175 0.266 0.2555 0.164 0.211 0.2565 0.195773
error for Fit 4 (%) 0.087 0.0625 0.175 0.098 0.177 0.0665 0.178 0.1625 0.1555 0.1705 0.1415 0.134000
error for Fit 5 (%) 0.00105 0.0013 0.00145 0.0015 0.00145 0.00175 0.0015 0.0015 0.0017 0.0016 0.00175 0.001505

Table 13. Actual (A in km) and predicted (P in km) fault locations under LLL-G fault scenario.

A (km) 10 30 50 70 90 100 120 140 160 180 190

P for Fit 1 (km) 10.6453 30.642 50.785 70.798 90.755 100.533 120.811 140.821 160.831 180.842 190.896
P for Fit 2 (km) 10.4932 30.498 50.429 70.652 90.623 100.325 120.652 140.711 160.599 180.711 190.756
P for Fit 3 (km) 10.4241 30.324 50.359 70.421 90.418 100.253 120.425 140.536 160.458 180.635 190.424
P for Fit 4 (km) 10.3242 30.110 50.192 70.199 90.212 100.172 120.352 140.324 160.352 180.361 190.213
P for Fit 5 (km) 10.0015 20.0032 50.003 70.0032 90.0036 100.003 120.0035 140.0034 160.0036 180.0035 190.004

Table 14. LLL-G fault prediction error.

A (km) 10 30 50 70 90 100 120 140 160 180 190 AE (%)

error for Fit 1 (%) 0.32265 0.321 0.3925 0.399 0.3775 0.2665 0.4055 0.4105 0.4155 0.421 0.4480 0.379968
error for Fit 2 (%) 0.2466 0.249 0.2145 0.326 0.3115 0.1625 0.326 0.355 0.2995 0.3555 0.3780 0.293100
error for Fit 3 (%) 0.21205 0.162 0.1795 0.2105 0.209 0.1265 0.2125 0.268 0.229 0.3175 0.2120 0.212595
error for Fit 4 (%) 0.1621 0.055 0.096 0.0995 0.106 0.086 0.176 0.162 0.176 0.1805 0.1065 0.127782
error for Fit 5 (%) 0.00075 0.0016 0.0015 0.0016 0.0018 0.0015 0.00175 0.0017 0.0018 0.00175 0.0020 0.001614

Table 15. Validation of the proposed algorithm compared to literature work in [9,11,12,35].

Literature & Proposed Work Methods Maximum Percentage Error (%) Average Percentage Error (%)

[9] PCA 0.3217 0.1921
[11] CNN 0.0497 0.03670
[12] ANN 0.4522 0.2375
[35] MCSVM 0.0832 0.06790

The Proposed FRFT-SVD 0.0020 0.001614

6. Conclusions

The FRFT-SVD method, which is very effective, precise, and straightforward, was
used to develop the localizer model. Here is a practical power system protection approach
for long-distance power system issue prediction for a 500 kV, 50 Hz, 200 km overhead
transmission line. FRFT-SVD was used to develop the suggested protective mechanism.
Using the best-fit curve method, sending end current signals are evaluated after being
subjected to FRFT-SVD analysis to obtain fault characteristics expressed in terms of the
highest S value. Only around 0.001614% of the typical scheme is inaccurate. The lowest
estimate for an LLL-G defect was 0.002%, which is also quite precise for a 200-km long
line. This paper aims to provide a technique for predicting the location of faults using
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curve fitting analysis and FRFT-SVD. For this reason, the analysis makes use of a vari-
ety of noise, inception angle, and fault resistance variables. The proposed method may
prove to be an effective way to gauge how far a problem would spread, which might be
useful in creating a dependable transient-based power system security strategy. In future
work, we will implement the new model in hardware and apply it in real systems with
different configurations.
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Appendix A

Here, an appendix is presented for several fault results. These faults are LL fault, LL-G
fault, LLL fault and LLL-G fault. The max singular values of FRFT-SVD results at various
SNRs for direct and filtered signals under LL fault, LL-G fault, LLL fault, and LLL-G fault
scenarios are depicted in Tables A1–A4, respectively. The results in these tables confirm that
the variations of SNR values have no impact on the max singular value of the FRFT-SVD.

Table A1. Max singular value of FRFT-SVD results at various SNRs for direct and filtered signals
under LL fault scenario.

SNR = 15 dB SNR = 20 dB SNR = 25 dB SNR = 30 dB

Location (km) Direct Filtered Direct Filtered Direct Filtered Direct Filtered

10 2,783,955 2,783,954 2,783,952 2,783,952 2,783,953 2,783,951 2,783,952 2,783,951
20 1,216,531 1,216,532 1,216,530 1,216,533 1,216,532 1,216,531 1,216,531 1,216,532
30 773,253 773,252 773,250 773,253 773,253 773,253 773,253 773,253
40 635,422 635,421 635,422 635,424 635,422 635,422 635,422 635,420
50 557,560 557,565 557,561 557,563 557,566 557,562 557,560 557,561
60 418,326 418,323 418,321 418,322 418,326 418,326 418,326 4,183,262
70 366,330 366,331 366,333 366,330 366,330 366,330 366,330 366,330
80 358,422 358,421 358,420 358,422 358,423 358,424 358,420 358,422
90 283,721 283,722 283,721 283,723 283,720 283,721 283,720 283,721

100 279,220 279,221 279,223 279,222 279,224 279,221 279,220 279,221
110 248,230 248,231 248,230 248,231 248,230 248,232 248,231 248,230
120 228,880 228,882 228,882 228,881 228,880 228,883 228,880 228,881
130 205,200 205,201 205,201 205,200 205,200 205,200 205,200 205,200
140 189,931 189,930 189,932 189,931 189,932 189,933 189,931 189,930
150 177,536 177,534 177,531 177,533 177,536 177,531 177,534 177,532
160 167,320 167,322 167,320 167,320 167,320 167,322 167,321 167,320
170 158,223 158,220 158,223 158,223 158,223 158,223 158,223 158,223
180 148,880 248,231 248,230 248,230 248,230 248,230 248,230 248,230
190 147,310 147,313 147,311 147,313 147,311 147,315 147,310 147,313
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Table A2. Max singular value of FRFT-SVD results at various SNRs for direct and filtered signals
under LL-G fault scenario.

SNR = 15 dB SNR = 20 dB SNR = 25 dB SNR = 30 dB

Location (km) Direct Filtered Direct Filtered Direct Filtered Direct Filtered

10 2,874,584 2,874,585 2,874,580 2,874,581 2,874,582 2,874,583 2,874,584 2,874,585
20 1,317,210 1,317,213 1,317,213 1,317,210 1,317,211 1,317,210 1,317,212 1,317,210
30 782,500 782,501 782,502 782,501 782,500 782,500 782,502 782,503
40 662,530 662,532 662,533 662,530 662,533 662,530 662,531 662,530
50 624,440 624,442 624,442 624,443 624,441 624,445 624,440 624,442
60 437,210 437,211 437,210 437,210 437,212 437,212 437,210 437,213
70 382,501 382,503 382,502 382,500 382,503 382,501 382,502 382,501
80 368,521 368,522 368,520 368,521 368,520 368,521 368,520 368,521
90 288,823 288,820 288,821 288,822 288,823 288,820 288,823 288,821

100 276,791 276,792 276,790 276,792 276,793 276,790 276,790 276,791
110 241,230 241,233 241,232 241,230 241,232 241,230 241,231 241,230
120 228,880 228,883 228,882 228,881 228,883 228,883 228,882 228,881
130 215,200 215,201 215,202 215,204 215,201 215,202 215,203 215,200
140 187,011 187,013 187,013 187,010 187,014 187,011 187,010 187,012
150 195,012 195,010 195,010 195,011 195,012 195,013 195,012 195,010
160 168,432 168,430 168,431 168,432 168,430 168,432 168,433 168,431
170 157,882 157,883 157,880 157,882 157,882 157,881 157,883 157,881
180 151,230 151,231 151,230 151,233 151,230 151,232 151,230 151,232
190 148,001 148,003 148,001 148,002 148,003 148,002 148,000 148,001

Table A3. Max singular value of FRFT-SVD results at various SNRs for direct and filtered signals
under LLL fault scenario.

SNR = 15 dB SNR = 20 dB SNR = 25 dB SNR = 30 dB

Location (km) Direct Filtered Direct Filtered Direct Filtered Direct Filtered

10 2,938,600 2,938,602 2,938,601 2,938,602 2,938,602 2,938,601 2,938,603 2,938,602
20 1,469,300 14,693,033 1,469,303 1,469,302 1,469,301 1,469,302 1,469,303 1,469,301
30 979,520 979,523 979,522 9,795,210 979,521 979,521 979,522 979,521
40 734,640 734,643 734,641 734,642 734,642 734,641 734,642 734,640
50 587,690 587,694 587,691 587,691 587,691 587,691 587,692 587,691
60 489,740 489,745 489,742 489,741 489,742 489,742 489,741 489,740
70 419,770 419,772 419,771 419,772 419,771 419,772 419,771 419,770
80 367,300 367,305 367,303 367,301 367,301 367,302 367,300 367,301
90 326,480 326,482 326,481 326,482 326,481 326,481 326,481 326,480

100 293,820 293,823 293,821 293,821 293,821 293,821 293,820 293,821
110 267,110 267,113 267,113 267,111 267,111 267,113 267,110 267,110
120 244,850 244,852 244,852 244,851 244,851 244,852 244,852 244,852
130 226,010 226,013 226,013 226,012 226,011 226,011 226,010 226,011
140 209,860 209,862 209,861 209,861 209,862 209,861 209,861 209,862
150 195,870 195,873 195,871 195,871 195,873 195,871 195,871 195,870
160 183,620 183,621 183,622 183,621 183,622 183,621 183,621 183,622
170 172,820 172,822 172,823 172,822 172,821 172,822 172,822 172,820
180 163,210 163,212 163,213 163,211 163,212 163,210 163,210 163,211
190 154,610 154,615 154,612 154,611 154,613 154,611 154,612 154,611
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Table A4. Max singular value of FRFT-SVD results at various SNRs for direct and filtered signals
under LLL-G fault scenario.

SNR = 15 dB SNR = 20 dB SNR = 25 dB SNR = 30 dB

Location (km) Direct Filtered Direct Filtered Direct Filtered Direct Filtered

10 3,134,503 3,134,501 3,134,502 3,134,501 3,134,500 3,134,501 3,134,503 3,134,501
20 1,566,902 1,566,900 1,566,901 1,566,901 1,566,901 1,566,902 1,566,903 1,566,900
30 1,044,400 1,044,401 1,044,402 1,044,402 1,044,401 1,044,401 1,044,402 1,044,400
40 783,140 783,142 783,142 783,142 783,142 783,140 783,143 783,141
50 626,370 626,373 626,373 626,372 626,372 626,372 626,373 626,372
60 521,870 521,875 521,871 521,872 521,872 521,871 521,872 521,871
70 447,230 447,231 447,231 447,232 447,231 447,231 447,231 447,231
80 391,250 391,251 391,252 391,253 391,251 391,252 391,250 391,251
90 347,700 347,701 347,702 347,703 347,700 347,701 347,701 347,702

100 312,860 312,862 312,863 312,861 312,862 312,862 312,861 312,861
110 284,360 284,362 284,362 284,361 284,362 284,362 284,362 284,361
120 260,620 260,621 260,621 260,622 260,623 260,623 260,622 260,623
130 240,522 240,521 240,521 240,521 240,522 240,523 240,522 240,523
140 223,290 223,293 223,292 223,293 223,291 223,293 223,292 223,292
150 208,361 208,360 208,364 208,363 208,362 208,361 208,362 208,362
160 195,300 195,301 195,304 195,302 195,303 195,301 195,301 195,301
170 183,770 183,770 183,773 183,771 183,772 183,771 183,771 183,772
180 173,520 173,521 173,522 173,522 173,523 173,521 173,522 173,522
190 164,360 164,363 164,362 164,361 164,361 164,362 164,361 164,361

Appendix B

Influences of both inception angles and fault resistances on the Max singular values of
FRFT-SVD are declared in Appendix B. The considered inception angles are 0◦, 45◦, 90◦,
135◦, and 180◦. However, the fault resistances accounted for 50 Ω, 100 Ω, 150 Ω and 200 Ω.
The results of max singular values of FRFT-SVD for direct and filtered current signals at
various faults and inception angles with fault resistances 50 Ω, 100 Ω, 150 Ω and 200 Ω are
respectively shown in Tables A5–A8. These results conclude that both inception angles and
fault resistances do not affect the proposed algorithm’s performance.

Table A5. Max singular values of FRFT-SVD results for direct and filtered current signals at various
faults and inception angles with R = 50 Ω.

Inception Angle 0◦ 45◦ 90◦ 135◦ 180◦

Faults Location
(km) Direct Filtered Direct Filtered Direct Filtered Direct Filtered Direct Filtered

LG
10 2,634,601 2,634,603 2,634,601 2,634,601 2,634,604 2,634,601 2,634,603 2,634,601 2,634,601 2,634,601

100 263,632 263,631 263,630 263,633 263,631 263,630 263,631 263,631 263,630 263,632
190 138,810 138,814 138,810 138,811 138,815 138,812 138,812 138,810 138,813 138,810

LL
10 2,783,953 2,783,952 2,783,955 2,783,952 2,783,958 2,783,957 2,783,955 2,783,952 2,783,955 2,783,953

100 279,221 279,220 279,223 279,221 279,225 279,221 279,222 279,220 279,223 279,221
190 147,310 147,311 147,314 147,310 147,312 147,316 147,311 147,310 147,314 147,312

LL-G
10 2,874,584 2,874,585 2,874,586 2,874,584 2,874,588 2,874,580 2,874,581 2,874,584 2,874,583 2,874,580

100 276,791 276,793 276,791 276,792 276,795 276,793 276,790 276,791 276,790 276,792
190 148,000 148,004 148,001 148,005 148,003 148,007 148,002 148,001 148,003 148,001

LLL
10 2,938,601 2,938,603 2,938,600 2,938,600 2,938,602 2,938,605 2,938,601 2,938,600 2,938,600 2,938,600

100 293,822 293,821 293,823 293,820 293,821 293,825 293,822 293,824 293,820 293,823
190 154,610 154,612 154,610 154,610 154,613 154,616 154,613 154,611 154,613 154,611

LLL-G
10 3,134,503 3,134,502 3,134,503 3,134,503 3,134,503 3,134,500 3,134,503 3,134,503 3,134,503 3,134,503

100 312,864 312,860 312,860 312,860 312,862 312,867 312,862 312,860 312,863 312,862
190 164,364 164,360 164,360 164,360 164,361 164,368 164,361 164,363 164,360 164,363
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Table A6. Max singular values of FRFT-SVD results for direct and filtered current signals at various
faults and inception angles with R = 100 Ω.

Inception Angle 0◦ 45◦ 90◦ 135◦ 180◦

Faults Location
(km) Direct Filtered Direct Filtered Direct Filtered Direct Filtered Direct Filtered

LG
10 2,634,602 2,634,601 2,634,600 2,634,603 2,634,602 2,634,605 2,634,601 2,634,603 2,634,604 2,634,603

100 263,633 263,631 263,632 263,635 263,632 263,636 263,633 263,634 263,631 263,632
190 138,811 138,812 138,811 138,814 138,812 138,816 138,810 138,812 138,811 138,813

LL
10 2,783,951 2,783,953 2,783,952 2,783,951 2,783,959 2,783,950 2,783,952 2,783,954 2,783,955 2,783,956

100 279,222 279,220 279,222 279,224 279,225 279,227 279,222 279,221 279,220 279,221
190 147,313 147,310 147,313 147,312 147,313 147,318 147,311 147,310 147,313 147,314

LL-G
10 2,874,584 2,874,582 2,874,583 2,874,581 2,874,587 2,874,580 2,874,583 2,874,584 2,874,581 2,874,580

100 276,792 276,791 276,790 276,791 276,797 276,795 276,794 276,791 276,790 276,792
190 148,001 148,004 148,002 148,005 148,009 148,002 148,003 148,005 148,004 148,002

LLL
10 2,938,602 2,938,603 2,938,602 2,938,602 2,938,605 2,938,607 2,938,601 2,938,601 2,938,602 2,938,603

100 293,821 293,824 29,382 293,821 293,825 293,828 293,825 293,820 293,822 293,821
190 154,613 154,611 154,613 154,614 154,614 154,616 154,612 154,615 154,612 154,614

LLL-G
10 3,134,505 3,134,503 3,134,505 3,134,505 3,134,502 3,134,501 3,134,502 3,134,503 3,134,502 3,134,501

100 312,861 312,860 312,863 312,864 312,865 312,869 312,864 3,128,610 312,861 312,863
190 164,362 164,365 164,363 164,362 164,366 164,361 164,364 164,362 164,362 164,361

Table A7. Max singular values of FRFT-SVD results for direct and filtered current signals at various
faults and inception angles with R = 150 Ω.

Inception Angle 0◦ 45◦ 90◦ 135◦ 180◦

Faults Location
(km) Direct Filtered Direct Filtered Direct Filtered Direct Filtered Direct Filtered

LG
10 2,634,601 2,634,605 2,634,602 2,634,604 2,634,604 2,634,601 2,634,604 2,634,604 2,634,604 2,634,605

100 263,631 263,632 263,631 263,632 263,635 263,638 263,635 263,631 263,631 263,631
190 138,813 138,810 138,813 138,815 138,818 138,817 138,812 138,812 138,811 138,815

LL
10 2,783,951 2,783,954 2,783,954 2,783,955 2,783,954 2,783,950 2,783,954 2,783,952 2,783,954 2,783,955

100 279,222 279,221 279,224 279,223 279,223 279,220 279,225 279,223 279,222 279,221
190 147,313 147,312 147,318 147,312 147,315 147,315 147,314 147,311 147,312 147,313

LL-G
10 2,874,581 28,745,834 2,874,584 2,874,585 2,874,588 2,874,585 2,874,585 2,874,581 2,874,583 2,874,582

100 276,791 276,792 276,795 276,793 276,795 276,794 276,792 276,792 276,790 276,791
190 148,003 148,005 148,001 148,005 148,008 148,007 148,003 148,000 148,002 148,001

LLL
10 2,938,603 2,938,604 2,938,600 2,938,605 2,938,607 2,938,609 2,938,603 2,938,602 2,938,602 2,938,601

100 293,822 293,821 293,820 293,823 293,826 293,824 293,824 293,821 293,821 293,823
190 154,611 154,610 154,610 154,610 154,610 154,612 154,612 154,613 154,611 154,612

LLL-G
10 3,134,501 3,134,503 3,134,504 3,134,503 3,134,502 3,134,503 3,134,507 3,134,505 3,134,503 3,134,502

100 312,863 312,860 312,864 312,862 312,866 312,865 312,864 312,860 312,861 312,864
190 164,364 164,362 164,363 164,364 164,367 164,365 164,365 164,360 164,363 164,362
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Table A8. Max singular values of FRFT-SVD results for direct and filtered current signals at various
faults and inception angles with R = 200 Ω.

Inception Angle 0◦ 45◦ 90◦ 135◦ 180◦

Faults Location
(km) Direct Filtered Direct Filtered Direct Filtered Direct Filtered Direct Filtered

LG
10 2,634,601 2,634,603 2,634,602 2,634,601 2,634,608 2,634,603 2,634,604 2,634,601 2,634,601 2,634,602

100 263,631 263,632 263,632 263,634 263,636 263,635 263,632 263,635 263,633 263,631
190 138,814 138,811 138,813 138,810 138,817 138,812 138,812 138,814 138,811 138,810

LL
10 2,783,953 2,783,953 2,783,955 2,783,954 2,783,950 2,783,955 2,783,955 2,783,955 2,783,955 2,783,953

100 279,222 279,223 279,222 279,225 279,226 279,223 279,223 279,222 279,222 279,220
190 147,313 147,311 147,315 147,313 147,317 147,314 147,310 147,315 147,314 147,314

LL-G
10 2,874,585 2,874,581 2,874,584 2,874,584 2,874,589 2,874,584 2,874,584 2,874,584 2,874,587 2,874,584

100 276,790 276,792 276,791 276,791 276,798 276,793 276,791 276,793 276,798 276,793
190 148,000 148,001 148,003 148,004 148,008 148,001 148,005 148,001 148,001 148,005

LLL
10 2,938,603 2,938,605 2,938,604 2,938,605 2,938,607 2,938,604 2,938,602 2,938,602 2,938,604 2,938,603

100 293,820 293,823 293,820 293,822 293,820 293,823 293,823 293,820 293,820 293,822
190 154,614 154,610 154,611 154,610 154,615 154,612 154,610 154,614 154,614 154,611

LLL-G
10 3,134,503 3,134,501 3,134,503 3,134,503 3,134,503 3,134,501 3,134,503 3,134,503 3,134,505 3,134,502

100 312,862 312,864 312,864 312,861 312,863 312,862 312,863 312,862 312,864 312,861
190 164,362 164,361 164,365 164,364 164,369 164,362 164,360 164,363 164,361 164,361

Appendix C

In this appendix, the maximum singular and its scaled values of FRFT-SVD at 19
different location values are investigated. These values are utilized for curve fitting to get
a proper formula of fault locations. Accordingly, the maximum singular and its scaled
values at 19 locations for LL fault, LL-G fault, LLL fault and LLL-G fault are declared in
Tables A9–A12, respectively.

Table A9. The maximum singular and its scaled values for LL fault at 19 locations.

Location (km) Max Singular Value Max Scaled Singular Value

10 2,783,955 1
20 1,392,500 0.436979
30 928,640 0.277753
40 696,720 0.228244
50 557,560 0.200276
60 464,780 0.150263
70 398,510 0.131586
80 348,810 0.128746
90 310,150 0.101913

100 279,220 0.100296
110 253,910 0.089165
120 232,820 0.082214
130 214,970 0.073708
140 199,670 0.068223
150 186,410 0.063771
160 174,800 0.060102
170 164,560 0.056834
180 155,460 0.053478
190 147,310 0.052914
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Table A10. The maximum singular and its scaled values for LL-G fault at 19 locations.

Location (km) Max Singular Value Max Scaled Singular Value

10 2,874,584 1
20 1,407,210 0.489535
30 982,500 0.341789
40 699,530 0.24335
50 624,440 0.217228
60 497,210 0.172968
70 399,501 0.138977
80 368,521 0.1282
90 320,150 0.111373

100 279,991 0.097402
110 298,230 0.103747
120 238,880 0.083101
130 215,200 0.074863
140 199,711 0.069475
150 195,012 0.06784
160 178,432 0.062072
170 167,882 0.058402
180 151,230 0.052609
190 148,001 0.051486

Table A11. The maximum singular and its scaled values for LLL fault at 19 locations.

Location (km) Max Singular Value Max Scaled Singular Value

10 2,938,600 1
20 1,469,300 0.500000
30 979,520 0.333329
40 734,640 0.249997
50 587,690 0.19999
60 489,740 0.166658
70 419,770 0.142847
80 367,300 0.124991
90 326,480 0.111101

100 293,820 0.099986
110 267,110 0.090897
120 244,850 0.083322
130 226,010 0.076911
140 209,860 0.071415
150 195,870 0.066654
160 183,620 0.062486
170 172,820 0.05881
180 163,210 0.05554
190 154,610 0.052613
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Table A12. The maximum singular and its scaled values for LLL-G fault at 19 locations.

Location (km) Max Singular Value Max Scaled Singular Value

10 3,134,500 1
20 1,566,900 0.499888
30 1,044,400 0.333195
40 783,140 0.249845
50 626,370 0.199831
60 521,870 0.166492
70 447,230 0.14268
80 391,250 0.124821
90 347,700 0.110927

100 312,860 0.099812
110 284,360 0.090719
120 260,620 0.083146
130 240,520 0.076733
140 223,290 0.071236
150 208,360 0.066473
160 195,300 0.062307
170 183,770 0.058628
180 173,520 0.055358
190 164,360 0.052436
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