
Citation: Mateichyk, V.; Kostian, N.;

Smieszek, M.; Mosciszewski, J.;

Tarandushka, L. Evaluating Vehicle

Energy Efficiency in Urban Transport

Systems Based on Fuzzy Logic

Models. Energies 2023, 16, 734.

https://doi.org/10.3390/en16020734

Academic Editors: Roberto

Alonso González Lezcano,

Francesco Nocera and Rosa

Giuseppina Caponetto

Received: 5 December 2022

Revised: 2 January 2023

Accepted: 6 January 2023

Published: 8 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Evaluating Vehicle Energy Efficiency in Urban Transport
Systems Based on Fuzzy Logic Models
Vasyl Mateichyk 1,* , Nataliia Kostian 2 , Miroslaw Smieszek 1 , Jakub Mosciszewski 1

and Liudmyla Tarandushka 2

1 Department of Technical Systems Engineering, Rzeszow University of Technology, al. Powstancow
Warszawy 10, 35-959 Rzeszow, Poland

2 Department of Automobiles and Technologies for Their Operating, Cherkasy State Technological University,
Shevchenko 333, 18006 Cherkasy, Ukraine

* Correspondence: vmate@prz.edu.pl

Abstract: This work solves the task of developing a fuzzy logic model for evaluating the energy
efficiency of vehicles as part of the control unit of an intelligent transport system. Within the scope
of this study, the previously obtained morphological model of the transport system was modified.
A mathematical dependence is proposed to determine the vehicle energy efficiency indicator. This
dependence characterizes the energy consumption of the vehicle in relation to the energy consumption
of the vehicle under the reference operating conditions. Synthesis of system configurations was
performed, and procedures were used to transform the morphological formulas of the received
configurations into a base of logical derivation rules. Parameters of the membership functions of
system parameters to fuzzy terms of the area of their definition are defined. Based on the results of
the morphological analysis, two fuzzy derivation models were developed: the Mamdani type and the
Sugeno type. The accuracy of the modeling was evaluated using different defuzzification algorithms
in the control sample. The most accurate model is the fuzzy Mamdani model, with an accuracy value
of 98.8%. Using the developed model, the nature of the mutual influence of the transport system
parameters on the level of vehicle efficiency was assessed. The results of the study can be used to
justify the choice of the vehicle under the specified operating conditions and in the settlement design
of the road infrastructure.

Keywords: fuzzy logic model; membership function; morphological matrix; urban transport system;
vehicle energy efficiency

1. Introduction

The global trend of increasing motorization causes several problems, including those
related to ensuring the rational functioning of city transport systems. Changes in one of the
subsystems of the transport system require prompt adjustment of others. On the one hand,
the renewal and growth of the car fleet require taking into account its characteristics when
designing road infrastructure and implementing the latest traffic management tools. On the
other hand, with the well-established structure of the already existing transport network, it
is necessary to develop mechanisms for choosing the optimal type of transport depending
on the operating conditions. In accordance with the goal of modernization, new technical
and management solutions require the modernization of the knowledge base about system
elements and states. In order to build the structure of the knowledge base and further
determine the optimal solution to improve the technical system in the conceptualization
phase, it is appropriate to use the method of morphological analysis, the stages of which
are described in detail in the work [1]. At the same time, they build a morphological model
(matrix) of the system. Based on the structure of the morphological matrix, the possible
states of the system are synthesized. The disadvantage of the morphological model is the
difficulty in transforming them into equivalent mathematical ones for further research.
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Usually, the morphological features of the system are fully or partially represented by
qualitative parameters. Therefore, when designing technical systems, it is convenient to use
formal models: production, logical, network, and frame [2]. Thus, the authors of [1], based
on the results of morphological analysis, built a base of production rules in the model of
quality control of technological processes of car service systems. This model is based on
the principles of fuzzy sets. The Sugeno fuzzy derivation algorithm used in [1] is shown to
give a higher accuracy of the result compared to the Mamdani algorithm.

The paper [3] presents an intelligent method for controlling the movement of an
electric vehicle. The method is based on the use of the Fuzzy Logic controller (FLC)
as part of the driver model and the implementation of the genetic algorithm of swarm
intelligence in the control design. This model allows for controlling the use of energy
during movement and predicting the energy efficiency of the vehicle under the given
conditions. The experimental results show that the use of the specified method provides
energy savings while maintaining the performance of the electric vehicle.

The authors of [4] developed an intelligent system for preventing risky driving maneu-
vers based on soft computing technologies with the use of Mamdani-type fuzzy inference
algorithms. The input parameters of the system are the structural properties of the road and
the dynamic characteristics of the car, which are obtained using the inertial sensors of the
smartphone, the GPS system, the accelerometer, and the gyroscope. The system is designed
to work in real time and ensures an increase in the economy, environmental friendliness,
and safety level of transport processes. However, among the multitude of input parameters,
those that characterize settlement, weather conditions, and the peculiarities of driving
during peak hours are missing. In the study [5], Soft Computing technology was used to
design a classification system for two-lane roads. The work [6] is devoted to solving the
problem of diagnosing driving skills in real conditions based on a fuzzy logic algorithm
based on GPS data and video recordings. Fuzzy inference rules are built with traffic rules
and expert driving criteria in mind.

The authors of [7] developed a fuzzy logic model for intelligent control and man-
agement of the behavior of electricity consumption of an electric car with battery power.
The fuzzy model has two inputs: battery state and speed and three outputs according to
the power consumption regulation functions of the car’s auxiliary devices. The centroid
method was used for the defuzzification of model outputs. Each of the parameters has only
three implementation options. An optimal intelligent control strategy has been proven to
make the engine operate in the high-efficiency zone most of the time, which can improve
the energy recycling rate and reduce fuel consumption at a constant vehicle power. Experi-
mental results show that when this energy consumption management system is used with
auxiliary devices, it is possible to increase the battery range by 9.8–20.4%. Although the
study was conducted for different driving cycles (European, Japanese), the control strategy
was developed based on the technical characteristics of the LG-Proton IRIZ BEV and must
be adjusted for other electric vehicle models.

In work [8], a simulation model of a hybrid tractor containing an optimization module
was implemented to control energy consumption based on fuzzy logic. The optimal
control strategy is determined by a genetic algorithm for Particle Swarm Optimization. The
disadvantages of the classical algorithm for particle swarm optimization are given in [8],
one of which is the probability of falling into a local extremum in the space of admissible
solutions. To eliminate this shortcoming, the authors proposed a quantum modification of
the classical algorithm. The simulation results of tractor operation in different work cycles
show that the average fuel efficiency of the fuzzy logic control strategy after optimization
improves by 6.9% compared to the strategy without optimization.

The results of the study [9] demonstrate the energy efficiency of multimode adaptive
driving based on the use of fuzzy logic. The FLC controller contains one input (control
loop) and three outputs: speed limit, β limit, and comfort level. The BEV battery electric
vehicle model, which supports adaptive driving mode, has been tested for various weather
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conditions that are most typical for Malaysia throughout the year. In adaptive mode, the
driving parameters change automatically depending on the driving speed.

The authors of [10] presented a model in the form of a multilayer neural network
with direct communication for forecasting the concentration of PM2.5 based on traffic
parameters in the area of crossroads, meteorological data, and background concentration
of PM10. The network was trained using the gradient descent method. Only a third of the
statistical sample participated in the training process. This model is designed to expand the
functionality of the intelligent system for monitoring traffic and harmful emissions in the
city of Bielsko-Biała, Poland. The paper [11] presents an adaptive neuro-fuzzy inference
system (ANFIS-PSO) for predicting the intensity of traffic flows in the example of the South
African transport system. Training of the neuro-fuzzy system is implemented using the
algorithm of Particle Swarm Optimization. The results of the study showed that the period
of the day is a significant parameter affecting the movement of vehicles on freeways. The
authors of [12] proposed the deep convolutional neural network for use in the process of
technical diagnostics. Network optimization is carried out using the minibatch gradient
descent method.

The variety of tasks successfully solved in the field of transport by Soft Computing
methods testifies to their universality and feasibility of use in models of transport systems
of cities, taking into account the nature of variability, partial uncertainty, and vagueness
of statistical information. Soft Computing technologies are based on the principles of
theories of fuzzy sets and neural networks, operate with fuzzy logic, and implement
genetic algorithms. The integration of fuzzy logic controllers into the control units of the
specified systems increased the efficiency of their functional elements. Furthermore, the
development of the FLC strategy does not require precise analytical models.

In the last stage of the morphological analysis, the most rational states of the technical
system are selected according to the given criterion. In research on optimizing the operation
of the urban transport system, it is relevant to determine its best configurations based
on the highest values of energy efficiency, productivity, and environmental safety. The
effectiveness of the entire system can be evaluated based on partial performance indicators
of its partitive functional elements or on the basis of an indicator that reflects the synergistic
effect of the interaction of their morphological attributes. Since the number of emissions of
harmful substances into the air is directly proportional to fuel consumption, and separate
algorithms for evaluating the energy efficiency of road transport contain procedures for
determining the work performed, the criterion of energy efficiency of transport can be
considered a basic condition in the process of evaluating the configurations of the transport
system synthesized based on the results of morphological analysis.

Currently, scientists offer several methods to evaluate the energy efficiency of road
transport and strategies to increase its level. In work [13], the evaluation of its fuel economy,
which is defined as the ratio of mileage to fuel consumption, is taken as an indicator of the
efficiency of a vehicle. However, this estimate does not characterize the impact of vehicle
loading. Studies [14,15] are devoted to evaluating the energy efficiency of public passenger
transport. These works are limited to a given class of buses; at the same time, the results
of their research can be adapted to other specifications of buses with internal combustion
engines. The authors of [14] proposed a set of indicators that reflect the dependence of
the energy efficiency of a city bus on the length of the haul, the coefficient of static use
of passenger capacity, and the maximum power of the engine. Models of the energy
efficiency of vehicles require an adequate assessment of vehicle energy consumption
during operation. According to the authors [15], the fuel consumption of a city bus is
determined using the VSP method, which is based on the defined index, which is affected
by aerodynamic resistance, rolling resistance, road gradient, speed, and variable load on
the bus. Polynomial, logarithmic, and exponential forms of analytical dependences are
used to estimate the fuel consumption of an arbitrary vehicle in works [16–18], taking into
account its instantaneous speed and modes of movement.
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The authors of [19] proposed a strategy for managing thermal comfort in an electric
vehicle based on the criterion of minimizing energy consumption in moderate and hot
climates. Within the specified strategy, the energy required for traction and the energy
required to maintain thermal comfort is determined on the basis of navigation data. The
total traction energy is calculated as the sum of the traction energies of individual sections
of the route, taking into account the average speed of the vehicle, its standard deviation,
and the slope of the road in the sections. However, the average relative error can reach
10% in sections with a negative value of the road slope. In [19], a mathematical model was
built for forecasting the energy required to maintain the rational operation of the HVAC in
the air conditioning and ventilation modes. The model uses information about weather
conditions and a scale of thermal comfort indices. The implementation of the algorithm
of the proposed strategy was carried out in the MATLAB environment under different
weather conditions, traffic flow intensity values, and the initial level of the battery charge.
In the process of research [20], innovative technologies were developed to increase the
energy efficiency of vehicles by reducing the weight of individual components and systems
of vehicles and optimizing their operation using the example of the demonstration model
of the QUIET battery electric vehicle of the Horizon 2020 European Union project. In [20],
the results of the study [19] were also used and further developed. It has been proven that
the issue of HVAC energy efficiency is relevant for electric vehicles with relatively low
movement resistance.

In research [21], the consumption of fuel with given properties is determined based
on the mass of emissions of carbon-containing gaseous components in exhaust gases using
the carbon balance method. Usually, fuel consumption indicators are based on test results
in driving cycles. A critical description of driving cycles used in different countries has
been made. Its own unique vehicle test procedures have been developed to control fuel
consumption. It is noted that the main problem in the design of fuel consumption control
systems is the difficulty of formalizing a large number of variants of driving conditions,
driving behavior, and weather conditions.

Articles [22,23] provide methods for managing the energy resource efficiency of a
car in its life cycle. The authors of [22] proposed a complex indicator of the technical
and energy and transport energy efficiency of a car. The built mathematical model of
this indicator contains the energy mileage coefficient, the method of determining which is
based on the comparison of the energy efficiency of the specified and reference cars during
the performance of test and reference transport operations. The complex indicator in the
study [22] takes into account the structural and parametric organization of vehicle design
and road properties. However, this efficiency indicator is based on the average (for the
test operation) and constant set (for the reference operation) value of the movement speed
and its individual components require the determination of coefficients in accordance with
the specifics of different vehicles and types of test operations. In [23], the energy efficiency
of a vehicle is determined by taking into account the aging of materials during the stages
of manufacture and operation for a vehicle with an internal combustion engine (CV), an
electric vehicle (EV), a hybrid vehicle (HV) and a fuel cell vehicle (FCV). In addition, in [23],
an indicator of the overall national energy efficiency of a car was proposed. This indicator
is determined by the method of additive aggregation. The essence of the method is to find
the sum of the products of the values of the energy efficiency indicators of the vehicle types
under study and the share of their annual sales. It is observed that the difference between
the values of the energy efficiency indicators of different types of vehicles decreases with
an increase in the duration of the operation.

Articles [24–26] are devoted to the study of the energy efficiency of electric vehicles.
The authors of [24] evaluate the energy efficiency of the Edison II electric car manufactured
at the University of Zilina, Slovakia. Three modes of operation of the car were studied:
battery charging, mode of wheel driving, and recuperation. Analytical dependences for
energy calculation at various measurement points are presented on the basis of experimental
data. It is shown that 47% of the energy is lost during transmission from the socket to the
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electric motor shaft. It was determined that the amount of energy loss also depends on
the design of the battery. The results of this study indicate that the formation of nitrogen
oxides in the energy efficiency of Edison II will be greater than when using heavy trucks.
The authors of [25] defined the energy efficiency index of the vehicle, which is the inverse
of the energy load indicator YW [W/J]. In turn, the YW indicator depends on the maximum
effective power of the engine, the total weight of the car, and the maximum speed of
the car. It is shown that the energy load indicator YW compared to the specific engine
power Psp [kW/t], has a smaller variance. In paper [26], the energy efficiency of electric
vehicles of seven categories was investigated. Separate linear regression dependences of the
energy consumption of an electric vehicle on its mass, nominal engine power, and battery
capacity were obtained, taking into account the modeling error. A multiple regression
model was built to estimate energy consumption based on the specified indicators, year of
manufacture, and vehicle category. The authors of [27] systematized the types of energy
losses in vehicles and their elimination on the basis of improving the car design.

The results of the analysis of the results of recent studies are combined in Table 1.
Despite a significant number of studies in the direction of evaluating the energy

efficiency of vehicles, the majority of them are aimed at optimizing this indicator by
improving the design and operational characteristics of the vehicle. It remains relevant to
identify potential external factors that, in combination with the technical and operational
properties of the vehicle, affect its effectiveness, as well as the construction of generalized
models that reflect the importance of this influence for research. In addition, among the
latest studies, there is a lack of universal energy efficiency estimates for different categories
of vehicles, which would take into account the parameters of all elements of the transport
system and the changing conditions of its operation.

The purpose of the study is to evaluate the energy efficiency of vehicles taking into
account the changing conditions of the transport system based on fuzzy output models.
It is suggested that there is a close relationship between the results of the morphological
analysis of the transport system and non-linear models for evaluating the energy efficiency
of vehicles. The works discussed above reflected only separate stages of the morphological
analysis of the studied systems. The formalization of the transition between the stages of
morphological analysis and the construction of appropriate models will allow a compre-
hensive assessment of the level of energy efficiency of transport depending on the factors
of all elements of the system.
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Table 1. Generalized characteristics of the results of recent studies.

Methods and Technologies Reference Number Advantages Disadvantages

Morphological analysis method

[1] The principle of constructing a morphological matrix
and morphological formulas is described

The transition to an equivalent mathematical model
has not been formalized

[2] The stages of morphological analysis are described The presented models only take into account the
operational characteristics and design of the vehicle

Soft Computing Technologies (fuzzy logic)

[3] A model for forecasting energy efficiency was built The model is only adequate for electric vehicles

[4] The developed intelligent system ensures an increase
in the efficiency of transport processes

Traffic environment parameters, weather conditions
and hours of the day are not taken into account

[5] The results can be used to define the attributes of the
element of the “Road” system Only Two-Lane Roads are considered

[6] Real driving conditions are considered; traffic rules
are taken into account

An intelligent system is not universal; the energy
efficiency of the vehicle is not taken into account

[7–9]
An intelligent system for controlling the energy

consumption of vehicles has been developed, which
allows to increase energy efficiency up to 20.4%

Only the vehicle parameters are taken into account
(weather conditions are also taken into account in [8]);
the system is intended for only one model of electric
vehicle/hybrid vehicle; there is no argumentation for

choosing the defuzzification method

Soft Computing Technologies (neural
network)

[10,11]
Attributes of the functional element of the “Transport
flow” system are defined; in [11] an adaptive fuzzy

neural network is used

In [10], the training sample is only a third of the
initial sample; the modeling error (Mean Absolute

Percentage Error) is significant and amounts to 24%.
In [11], not all categories of vehicles were taken into

account

[12]

Used deep convolutional neural networks ensured an
increase in the productivity of the machine learning

system; the method can be used to determine the
structure of the traffic flow

It requires significant financial resources to identify
traffic flows on the entire street network of the city
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Table 1. Cont.

Methods and Technologies Reference Number Advantages Disadvantages

Analytical and statistical methods of energy
efficiency assessment

[13] The indicator of energy efficiency of the vehicle
was determined

The indicator does not take into account vehicle
loading, environmental, traffic flow, roads parameters

[14,15] The indicator of energy efficiency of the vehicle
was determined Research is limited to a given class of bus

[16–18] Analytical estimates of the fuel consumption of
arbitrary vehicle have been developed

The parameters of other (except vehicle) functional
elements of the transport system are not taken

into account

[19,20]

models were built to forecast the energy required for
efficient HVAC operation; the parameters of all
functional elements of the system are taken into

account

The average relative error can reach 10%; models are
only adequate for electric vehicles

[21] Own unique vehicle test procedures for tracking fuel
consumption have been developed

Dependence of the complexity of formalization of
system parameters on their number

[22,23]
Comprehensive indicators of energy efficiency of
various categories of vehicles, taking into account

their construction and road parameters, are proposed

Requires additional calculations in accordance with
the specifics of various vehicles and types of test

operations; in [23], the use of the indicator requires
annual sales statistics

[24–26]

Analytical dependencies of energy efficiency
indicators were obtained; a comparison of the energy
efficiency of different categories of electric vehicles

was made

The energy efficiency of only electric cars was studied

[27] The types of energy losses in vehicles and methods of
their elimination are systematized

Only the parameters of the “vehicle” functional
element are taken into account
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In order to achieve the goal, the following tasks must be solved:

• Formalize the mechanism of synthesis of transport system configurations;
• Synthesize various system configurations based on experimental data;
• Build a fuzzy inference model for evaluating the energy efficiency of the vehicle within

the system;
• Determine rational modes of operation of the transport system.

According to the purpose of the research, the article consists of the following sections:

• The Section 1 provides a description of the results of the latest publications on the
subject of the research and defines its purpose;

• In the Section 2, the morphological structure of the urban transport system with
independent parameters is developed; its morphological model was built in the form
of a morphological matrix; the criterion for evaluating the effectiveness of the vehicle is
defined; a formalized transition from a morphological system model to a mathematical
one is proposed;

• In the Section 3, the experimental part of the research is described, and its partial results
are highlighted: the configurations of the transport system are synthesized, and the
system of fuzzy rules of derivation is built for the evaluation of the energy efficiency
of the vehicle under the given conditions of the transport system; the influence of the
system parameters on the energy efficiency of the vehicle was investigated;

• The Section 4 presents the discussion and interpretation of the obtained results;
• The Section 5 summarizes the obtained results and outlines the vector of further

research.

2. Materials and Methods

In order to ensure the rational operation of the urban transport system, it is necessary
to have mechanisms and technologies to influence its essential parameters and focus on
the problem of increasing the level of energy efficiency of vehicles (LEE). The algorithms
of these mechanisms should be based on models characterizing the connection between
system inputs and LEE. Such dependencies between parameters usually have a non-linear
character.

This study is a continuation of the work [28] in which the functional elements of the
intelligent transport energy efficiency management system (TrEECS) were identified on the
basis of morphological analysis. The structure of the system is presented in Figure 1.

At the first level of the system, there are functional elements: vehicle (V), traffic flow
(TF), road (R), and traffic environment (Env). At the second level, the morphological features
(attributes) of these elements are defined. In the process of research [28], 10 independent
parameters (the basis of the system) were selected from the set of 18 significant quantitative
and qualitative parameters corresponding to morphological features. Figure 1 shows
only the basic attributes. At the third level, for each attribute, its implementation options
(domain, possible values) are listed. The method of determining the quantitative values of
the limits of implementation options for each attribute is given in [28].

This hierarchy can be presented in the form of a morphological matrix (Table 2). Under
each basic attribute (line 2 in Table 2), its implementation options xij (i—the attribute
number; j—is the number the implementation option of the i -th attribute) are presented.
All possible variants of one attribute make up its domain (cells of lines 3–8 of Table 2).

In Table 2, next to each verbal value of a qualitative characteristic, its quantitative
counterpart is defined. For example, the attribute “1. Category” can take the following
values: M1, M2, M3, N1, N2, N3. The first three categories correspond to passenger vehicles.
M1 vehicles have no more than 8 seats. M2s have more than 8 seats, and the maximum
weight does not exceed 5 tons. The maximum weight of M3 is more than 5 tons. Categories
N1, N2, and N3 correspond to cargo vehicles. N1s have a maximum mass of less than 3.5 t.
The maximum mass of N2 is more than 3.5 t but does not exceed 12 t. The maximum mass
of N3 exceeds 12 t.
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Figure 1. Structure of TrEECS.

This matrix (Table 2) is a modification of the matrix given in [28]. Dependent attributes
were removed, and some value ranges were changed. Furthermore, based on the results of
the [28], the order of implementation options for the separate attributes were inverted to
reduce the number of negative correlations. Based on the real distribution of the values
of the complexity level of the traffic flow, the ranges of its implementation options were
changed compared to [28].

The synthesis of various configurations of the system takes place by combining various
options for implementing its attributes. A separate configuration is given by a morpho-
logical formula. An example of a morphological formula is expression (1), which was
constructed in the process of evaluating the energy efficiency of a SEAT Toledo passenger
car (category M1 (x11), gasoline (x21), year of manufacture 2008 (x33), the degree of use of
passenger capacity—0.75 (x44))—heading in a stream with a low level of complexity 0.03
(x51) on a road with an average degree of road resistance—0.09 (x62)—and an average de-
gree of curvature (x72) in an urban environment (Zamkovy Uzviz Street, Cherkasy) with an
average level of motorization (200–300 cars/1000 inhabitants) (x82), in the hours of reduced
traffic intensity (20:00–21:00) (x94) under weather conditions of high complexity (x103):

[(x11 − x21 − x33 − x44) + (x51) + (x62 − x72) + (x82 − x94 − x103)] = Y (1)
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Table 2. Modified morphological matrix of the TrEECS system (built according to the results [28]).

Vehicle Traffic Flow Road Traffic Environment

1. Category
2.

Energy Unit
Type

3.
Vehicle Age

4.
The Degree of

Use of
Load/Passenger

Capacity

5.
Traffic Flow
Complexity

Level

6.
Road

Resistance
Degree,

f + i

7.
Carriageway

Curvature
Degree

8.
Level of

Motorization,
Cars/1000

Inhabitants

9.
Time Interval

10.
Complexity of

Weather
Conditions

1.1. M1
1

2.1.
Petrol

1

3.1.
Up to 5 years

1

4.1.
Low
0–0.4

5.1. Low
0–0.2 6.1.

Low
0.007–0.049

7.1.
Low

2maxR/3-maxR
1

8.1.
Low
<200

1

9.1.
Rush hours

1

10.1.
Low

0–0.19

1.2. M2
2

2.2.
Diesel

2

3.2.
5–10 years

2

4.2.
Medium
0.41–0.5

5.2. Medium
0.21–0.4

9.2. Hours of
increasing traffic

intensity
2

10.2.
Medium
0.2–0.39

1.3. M3
3 2.3.

Gas
3

3.3.
10–15 years

3 4.3.
High

0.51–0.7

5.3.
High

0.41–0.7

6.2.
Medium

0.05–0.099

7.2.
Medium
maxR/3–
2maxR/3

2

8.2.
Medium
200–300

2

9.3. Hours of
steady traffic

intensity
3

10.3.
High

0.4–0.691.4. N1
4

3.4.
15–20 years

4

1.5. N2
5 2.4.

Hybrid and
electric

4

3.5.
More than 20

years
5

4.4.
Very high

0.71–1

5.4.
Very high

0.71–1

6.3.
High

0.1–0.15

7.3.
High

0-maxR/3
3

8.3.
High
> 300

3

9.4. Hours of
decreasing traffic

intensity
4

10.4.
Very high

0.7–1
1.6. N3

6

9.5.
Night hours

5
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In the general case, the output of system Y is a vector consisting of indicators of
environmental safety, energy efficiency, safety of transport processes, etc. In this study, the
level of energy efficiency LEE is considered as the output of the TrEECS system, which for
a given configuration is proposed to be determined as follows:

LEE =
Ebasis
E f act

=
Ebasis

Ebasis(1 + 0.01·Ke)
=

1

1 + 0.01·
(

∑n
i=1 Ki −∑n+m

j=n+1 Kj

) (2)

where Ebasis—energy consumed by the engine under ideal operating conditions, MJ; is
determined according to the basic norms of fuel/energy consumption for a given vehicle
model;

E f act—energy actually consumed by the engine, MJ;
Ke—complex correction coefficient, %;
Ki—i-th correction factor that increases fuel consumption norms (1 ≤ i ≤ n), %;
Kj—j-th correction factor that reduces fuel consumption norms (1 ≤ j ≤ m), %.
The work [28] gives the values of the main correction coefficients used in the conditions

of urban mobility.
Analytical dependence (2) is a universal formula that can be used to determine the

energy efficiency of vehicles of different classes with a given type of power plant.
Thus, the selection of the best system configuration from a set of already synthesized

ones is carried out according to the following criterion:

LEE = f (K1, K2, · · ·Kn, Kn+1, Kn+2, · · · , Kn+m)→ max (3)

However, the number of all possible TrEECS configurations, calculated using the com-
binatorics product rule, is 1.0368× 106. Processing such a volume of information requires
significant resources and is not possible. In addition, the values of the correction coefficients
are not known for all configurations. Therefore, the development of a mathematical fuzzy
model with the possibility of further integration into the intelligent system of the control of
energy efficiency of transport is relevant.

The fuzzy model of logical derivation represents a base of logical derivation rules (de-
duction rules) built on the results of the TrEECS morphological analysis. At the same time,
each morphological formula of synthesized TrEECS configurations is uniquely matched by
one logical derivation rule. System (4) characterizes the mechanism of transformation of a
morphological formula into a rule as part of the model:

ΩXi = ∪
mi
j=1 Aj

i , under the condition ∩mi
j=1 Aj

i = ∅
Aj

i = Ψxij

ΘLEE = ∪p
s=1Bs, under the condition ∩p

s=1 Bs = ∅
Left(F)→ rule condition

Right(F)→ the rule conclusion

(4)

where ΩXi —area of determination of values of parameter Xi;

Aj
i—j-th term (interval of definition area division) of i-th parameter;

mi—the number of implementation options for the i-th feature;
Ψxij —area of definition of the j-th variant of the implementation of the i-th feature;
ΘLEE—area of definition of the LEE values;
Bs—s-th term of the resulting parameter LEE;
Le f t(F)—the left part of the morphological formula;
Right(F)—the right part of the morphological formula.
In the next step, membership functions mfj of system parameter values to fuzzy terms

(intervals) of their definition area are constructed (Table 3).
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Table 3. Parameters of the membership functions of the system input and output terms.

Inputs Term Aj
i

Membership Function mf Parameters Inputs/
Output

Term Aj
i

Membership Function mf Parameters

a b c d a b c d

X1

A1
1 0 0.5 1.5 7

X6

A1
6 0 0.007 0.049 0.151

A2
1 0 1.5 2.5 7 A2

6 0 0.05 0.099 0.151

A3
1 0 2.5 3.5 7 A3

6 0 0.1 0.15 0.151

A4
1 0 3.5 4.5 7

X7

A1
7 0 0.5 1.5 4

A5
1 0 4.5 5.5 7 A2

7 0 1.5 2.5 4

A6
1 0 5.5 6.5 7 A3

7 0 2.5 3.5 4

X2

A1
2 0 0.5 1.5 5

X8

A1
8 0 0.5 1.5 4

A2
2 0 1.5 2.5 5 A2

8 0 1.5 2.5 4

A3
2 0 2.5 3.5 5 A3

8 0 2.5 3.5 4

A4
2 0 3.5 4.5 5

X9

A1
9 0 0.5 1.5 6

X3

A1
3 0 0.5 1.5 6 A2

9 0 1.5 2.5 6

A2
3 0 1.5 2.5 6 A3

9 0 2.5 3.5 6

A3
3 0 2.5 3.5 6 A4

9 0 3.5 4.5 6

A4
3 0 3.5 4.5 6 A5

9 0 4.5 5.5 6

A5
3 0 4.5 5.5 6

X10

A1
10 0 0.05 0.19 1.01

X4

A1
4 0 0.01 0.4 1.01 A2

10 0 0.2 0.39 1.01

A2
4 0 0.41 0.5 1.01 A3

10 0 0.4 0.69 1.01

A3
4 0 0.51 0.7 1.01 A4

10 0 0.7 1 1.01

A4
4 0 0.71 1 1.01

LEE

B1 0 0.01 0.2 1.01

X5

A1
5 0 0.01 0.2 1.01 B2 0 0.21 0.4 1.01

A2
5 0 0.21 0.4 1.01 B3 0 0.41 0.6 1.01

A3
5 0 0.41 0.7 1.01 B4 0 0.61 0.8 1.01

A4
5 0 0.71 1 1.01 B5 0 0.81 1 1.01

In most of the fuzzy inference systems considered in the first section, triangular and
trapezoidal membership functions of the terms to the parameter definition area of the
fuzzy model are accepted. In some cases, Gaussian functions are used. The results of
the study, which will be described in the next section, proved the feasibility of using the
trapezoidal form of the membership function, given by the vector of parameters (a, b, c, d, h),
height h = 1 [29]. On the basis of the implementation options values of the morphological
features (Table 2) and system (4), parameters of the membership functions of the input
and output values of the TrEECS are determined, which are presented in Table 3. When
determining the parameters of the membership functions, the experience of experts in the
field of organization and provision of road safety, including specialists of the civil service
“Ukrtransbezpeka”, was taken into account. The parameters of the membership functions
were adjusted according to the criterion of the smallest modeling error.

The general appearance of the logical derivation models of the Mamdani and Sugeno
types of the TrEECS system is given by expressions (5), (6), respectively:

RulesMamdani =
{

rulei : &10
i=1

(
Xi ∈ Aj

ik

)
⇒ LEEk ∈ Bs

k, i = 1, m
}

(5)

where Xi—value of the i-th TrEECS parameter;
Aj

ik—j-th term of the i-th parameter for the k-th system configuration;
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LEEk—level of energy efficiency of the vehicle in the k-th configuration;
Bs

k—s-th term of the LEEk value, m—number of TrEECS configurations.

RulesSugeno =
{

rulei : &10
i=1

(
Xi ∈ Aj

ik

)
⇒ LEEk = LEEtabl , i = 1, m

}
(6)

where LEEtabl—LEE value obtained experimentally.
Thus, Formula (1) will be transformed into the following rule of logical derivation

according to the Mamdani algorithm:

rule :
(

x1 ∈ A1
1

)
&
(

x2 ∈ A1
2

)
&
(

x3 ∈ A3
3

)
&
(

x4 ∈ A4
4

)
&
(

x5 ∈ A1
5

)
&
(

x6 ∈ A2
6

)
&
(

x7 ∈ A2
7

)
&
(

x8 ∈ A2
8

)
&
(

x9 ∈ A4
9

)
&
(

x10 ∈ A3
10

)
⇒ LEE ∈ B4 (7)

Thus, the transition from the conceptual model of the system to the corresponding
mathematical model can be represented by the following algorithm (Figure 2).
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Figure 2. Scheme of the proposed approach.

The data preprocessing procedure (block 3 in Figure 2) is presented in [28].
The main condition for the completeness of statistical data is that they overlap all

intervals of the area of definition of system attributes (the presence of all possible variants
of their implementation). Therefore, loops 5–6 will be repeated until the condition of block
6 is met.

A sufficient number of statistical values of the resulting LEE parameter can be deter-
mined by Formulas (8) and (9):

NLEE =
t2
α·σ2

η2 (8)
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where tα—confidence probability function, for confidence probability θ = 0.95 function of
confidence probability tα = 1.96;

σ—standard deviation;
η—extreme error allowed.

η = ∆·LEEavg (9)

where ∆—relative accuracy of accounting, assume ∆ = 0.05;
LEEavg—average value of energy efficiency of vehicles.
In the next section, it is noted that for the initial sample, the examination of 25 transport

system states, that is, 25 TrEECS configurations, proved to be sufficient. If as a result of the
study, high accuracy of the modeling will not be achieved, then the study of other states of
the system (synthesis of configurations) will be continued (loop 5–9 in Figure 2).

3. Results
3.1. Synthesis of System Configurations

Monitoring of the TrEECS states was carried out on the example of fragments of
street and road networks in Kyiv, Lviv, Odesa, Cherkasy, Kaniv, Boryspil, Smila, Cherkasy
Region, Zolotonosha, Cherkasy District (Ukraine) and the city of Rzeszów (Poland) under
different time periods and weather conditions. The functional element “Vehicle” within the
TrEECS was represented by the following car models: Renault Logan 1.2, Skoda Octavia
A7 1.8, SEAT Toledo 1.6, ZAZ Lanos T150, Nissan Micra 1.2, Volkswagen Passat B5 GP
2.0, PAZ-4234, Ataman A092G6, Mercedes -Benz O530, Bogdan T70117, Mercedes Sprinter
214, IVECO Daily 35S170, FORD Transit 2.4D, MAN L 8.220, MAN TGL 8.180, VOLVO
FH 460, which provided a complete set of options for the implementation of the three
morphological attributes of the specified functional element. The methods for determining
the TrEECS input parameters are given in [28].

In the process of researching TrEECS states, the specifics of traffic organization in
different settlements are taken into account. Differences were recorded regarding the
distribution of “peak” periods during the day and the level of passenger capacity utilization
of public transport in Poland and Ukraine.

Based on the results of the TrEECS state monitoring in the sections of the investigated
networks [28], 25 system configurations were synthesized, the morphological formulas of
which are presented in Table 4. The left parts of the morphological formulas are constructed
similarly to (1). The options for implementing the attributes of a separate functional element
are listed in round brackets. It can be seen from the constructed 25 morphological formulas
that the implementation options written in them completely overlap the areas of defining
the attributes of the functional elements of the system. In addition, the required number
of LEE values with a confidence probability θ = 0.95 and relative accuracy of accounting
∆ = 0.05 is determined taking into account (8) by Formula (10):

N =
1.962·0.082

(0.05·0.657)2 ≈ 23 < 25. (10)

Thus, 25 TrEECS configurations ensure the reliability of the initial statistical data
sample.

System configurations with the lowest value of the sample variance were selected
for the control sample [29]. The training sample was used for learning the constructed
fuzzy logic models (Mamdani and Sugeno). The control sample was used to assess the
accuracy of the developed models. The sample type is indicated in the last column of
Table 4. The experimental values of the energy efficiency level LEE for the synthesized
configurations were obtained using Formula (2). According to this method of calculating
the output parameter, its scope is in a narrow range of values [0.5, 0.8]. To be consistent
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with the area corresponding to the terms Bs (Table 3), the range of experimental LEE values
is converted to a more acceptable interval [0, 1] by expression (11):

LEEtabl = (LEE− a)/(b− a) = (LEE− 0.5)/0.3 (11)

where LEE and LEEtabl—experimental and reduced value of the energy efficiency level of
the system, respectively;

a, b—the left and right boundaries of the LEE definition area, respectively.
The converted (tabular) output values of the system (LEEtabl) are given in Table 4.

Table 4. Input data for building a fuzzy inference model.

Configuration Number Left Part of the Morphological Formula LEEtabl Sample Type

1 [(x11 − x21 − x33 − x44) + (x51) + (x62 − x72) + (x82 − x94 − x10 3)] 0.648 training

2 [(x11 − x23 − x35 − x42) + (x51) + (x62 − x72) + (x82 − x94 − x10 2)] 0.632 training

3 [(x15 − x22 − x32 − x43) + (x52) + (x61 − x71) + (x82 − x93 − x10 1)] 0.556 training

4 [(x13 − x22 − x34 − x44) + (x52) + (x61 − x71) + (x82 − x93 − x10 1)] 0.227 control

5 [(x11 − x21 − x34 − x43) + (x53) + (x61 − x71) + (x82 − x92 − x10 3)] 0.632 control

6 [(x13 − x24 − x32 − x44) + (x51) + (x61 − x71) + (x83 − x91 − x10 2)] 0.060 training

7 [(x11 − x23 − x35 − x41) + (x51) + (x61 − x71) + (x83 − x92 − x10 2)] 0.681 training

8 [(x11 − x21 − x31 − x41) + (x52) + (x62 − x71) + (x81 − x93 − x10 1)] 0.958 training

9 [(x11 − x21 − x33 − x41) + (x51) + (x61 − x72) + (x82 − x95 − x10 4)] 0.859 training

10 [(x12 − x22 − x33 − x44) + (x51) + (x61 − x72) + (x82 − x93 − x10 2)] 0.329 control

11 [(x16 − x22 − x33 − x44) + (x52) + (x61 − x71) + (x82 − x92 − x10 3)] 0.017 training

12 [(x14 − x22 − x34 − x43) + (x52) + (x61 − x71) + (x81 − x91 − x10 1)] 0.601 training

13 [(x14 − x22 − x32 − x44) + (x52) + (x61 − x71) + (x81 − x91 − x10 3)] 0.430 training

14 [(x13 − x22 − x35 − x42) + (x51) + (x61 − x71) + (x81 − x94 − x10 3)] 0.556 training

15 [(x15 − x22 − x34 − x44) + (x52) + (x62 − x71) + (x81 − x93 − x10 2)] 0.175 training

16 [(x11 − x23 − x35 − x41) + (x52) + (x62 − x71) + (x81 − x94 − x10 2)] 0.802 training

17 [(x11 − x22 − x35 − x41) + (x53) + (x62 − x71) + (x82 − x91 − x10 1)] 0.632 training

18 [(x11 − x21 − x33 − x42) + (x52) + (x62 − x71) + (x82 − x94 − x10 1)] 0.859 training

19 [(x14 − x23 − x35 − x41) + (x51) + (x62 − x71) + (x82 − x95 − x10 1)] 0.897 training

20 [(x14 − x22 − x34 − x44) + (x53) + (x61 − x71) + (x82 − x93 − x10 2)] 0.366 control

21 [(x13 − x22 − x33 − x44) + (x54) + (x61 − x71) + (x82 − x92 − x10 1)] 0.145 control

22 [(x11 − x21 − x33 − x41) + (x54) + (x61 − x73) + (x82 − x93 − x10 1)] 0.681 training

23 [(x11 − x21 − x31 − x41) + (x51) + (x61 − x71) + (x83 − x91 − x10 2)] 0.714 training

24 [(x14 − x22 − x32 − x43) + (x51) + (x63 − x73) + (x82 − x93 − x10 4)] 0.271 training

25 [(x12 − x22 − x32 − x43) + (x51) + (x62 − x73) + (x82 − x92 − x10 2)] 0.329 training

3.2. Construction of TrEECS Nonlinear Models

In order to evaluate the LEE indicator, the TrEECS fuzzy control module has been
developed, which consists of a rule base and blocks: Fuzzifier, The Inference Engine, and
De-fuzzifier. The fuzzy control module was implemented in the Fuzzy Logic Toolbox
environment of the Matlab package.

Based on the fuzzy logic models of Mamdani and Sugeno, two versions of the con-
trol unit were developed. The terms of the input parameters are given by trapezoidal
membership functions. Model variants differ in the form of presentation of the area of the
definition of the resulting parameter, presentation of the inference rules, and defuzzification



Energies 2023, 16, 734 16 of 22

algorithms. In Mamdani’s model, the membership functions of the LEE value ranges are
used (Table 4). The type and parameters of the membership functions were experimentally
selected. The Sugeno model uses an array of LEE values in the training sample. The view
of the membership functions of the resulting parameter terms in the Mamdani model is
shown in Figure 3.
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The membership functions of the terms of the LEE parameter correspond to the
following ranges of its values:

• Very low (mf1)—from 0 to 0.2;
• Low (mf2)—from 0.21 to 0.4;
• Middle (mf3)—from 0.41 to 0.6;
• High (mf4)—from 0.61 to 0.8;
• Very high (mf5)—from 0.81 to 1.

In order to achieve more accurate simulation results, the experimental data were
divided into training and control samples in a ratio of 80:20, respectively. Accordingly, five
configurations of the system were included in the control sample.

Based on the results of the morphological analysis, rule bases were built, which contain
20 derivation rules according to the size of the training sample. Since there are no repetitions
in the rule bases, the weight of each rule is equal to 1. To determine the best model, the
following defuzzification algorithms were implemented: bisector, centroid, the smallest
of maximums, the mean of maximums, the weighted average, and the weighted sum.
Evaluation of the simulation results was carried out for the values of the output parameter
to which the inverse transformation of (11) was applied. The outputs of the system (LEE)
in the control sample, the model values of the energy efficiency level (LEEmodel) obtained by
different algorithms, and their accuracy estimates are shown in Table 5.

The higher the level of overlap between the theoretically and practically obtained
energy efficiency estimates, the higher the validity of the methodology. The level of
agreement between the specified estimates can be analyzed by the value of the relative
root-mean-square error of modeling (the last line in Table 5). According to Table 5, the
relative root mean square error of model values of energy efficiency in the Sugeno system
is achieved by the defuzzification method “the weighted average” and is 0.019 (1.9%).

The simulation results prove that the Mamdani model with the defuzzification algo-
rithm “the smallest of maximums” is more adapted to the real operating conditions of the
investigated transport systems. The relative standard deviation is 0.012 (1.2%). At the same
time, the standard deviation of the model values from the experimental values is equal to
0.005. The specified model should be used to predict the level of vehicle energy efficiency.
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Table 5. Simulation results using different defuzzification algorithms.

Configuration
Number

Control
Output Value

LEE

Defuzzification Methods

Mamdani Type Model Sugeno-Model

Bisector Centroid The Smallest
of Maximums

The Mean of
Maximums

The Weighted
Average

The Weighted
Sum

Model Output Value LEEmodel

4 0.568 0.668 0.665 0.623 0.691 0.691 0.727

5 0.690 0.659 0.658 0.584 0.692 0.688 0.706

10 0.599 0.635 0.640 0.509 0.586 0.650 0.682

20 0.610 0.656 0.654 0.623 0.691 0.643 0.768

21 0.543 0.650 0.651 0.506 0.641 0.650 0.604

Average value 0.60197 0.6536 0.65354 0.569 0.6599 0.66446 0.69722

Standard deviation σ

4 0.009964 0.009374 0.003005 0.014962 0.015183 0.02535

5 0.000940 0.001034 0.011163 0.000005 0.000005 0.000251

10 0.001310 0.001705 0.008064 0.000177 0.002591 0.006839

20 0.002138 0.001975 0.000175 0.006520 0.001132 0.024915

21 0.011347 0.011539 0.001405 0.009510 0.011411 0.003675

Average value 0.00514 0.005126 0.004763 0.006235 0.006064 0.012206

Relative standard deviation Sr

4 0.03086 0.02904 0.00931 0.04635 0.04703 0.07853

5 0.00198 0.00217 0.02347 0.00001 0.00001 0.00053

10 0.00365 0.00476 0.02249 0.00049 0.00722 0.01907

20 0.00575 0.00531 0.00047 0.01754 0.00304 0.06701

21 0.03842 0.03907 0.00476 0.03220 0.03863 0.01244

Average value 0.016132 0.016069 0.012099 0.019317 0.019188 0.035516

3.3. The Influence of TrEECS Parameters on the Vehicle Energy Efficiency

In order to study vehicle dynamics of changes in energy efficiency, it is advisable to
use the mode of visualization of logical inference.

Analysis of the joint influence of the input parameters of the system on the indicator
LEE was performed using a graphical method. At the same time, it is convenient to use
the Sugeno model, which also showed a high accuracy of the model values of the energy
efficiency level. According to the results of the previous study, it can be stated that the
most significant factor in evaluating vehicle energy efficiency is the parameter x4 − the
degree of use of load/passenger capacity. Therefore, it is advisable to study the dynamics
of the influence of combinations of the specified parameters and parameters of various
functional elements of the system on the level of vehicle energy efficiency. Figure 4 shows
the influence of the degree of use of load capacity of cars and the complexity of the traffic
flow on the indicator LEE.

The dependence of LEE(x4,x5) is non-linear. Figure 5 shows the projection of LEE(x4,x5)
onto the x4 × x5 plane for buses (a) and trucks (b). The arrows in Figure 5 (gradient) point
to the point (x∗4 , x∗5) where the maximum value of LEE energy efficiency is reached. The
maximum value of LEE(x4,x5) is reached within the average level of its arguments (see
Table 2): x4 ∈ [0.41, 0.5] and x5 ∈ [0.2, 0.4] regardless of the vehicle category (Figure 5).

When the vehicle category changes from a smaller value to a larger value (see Table 2),
the gradient of the LEE(x4,x5) decreases, and the area of LEE values close to the maximum
narrows (Figure 4). Therefore, changing these system parameters has a greater effect on the
energy efficiency of a bus than of a truck.
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Figure 5. Optimal values of the LEE(x4,x5): (a) bus, (b) truck.

The described trends regarding the dependence gradient LEE(x4,xj), 1 ≤ j ≤ 9, are
preserved for other combinations of x4 with the parameters of the functional elements of
the transport system. Thus, the decrease in the LEE(x4,x9) gradient reflects a decrease in the
level of energy efficiency when the parameter x1 = 5 (category N2) is changed to the value
x1 = 6 (category N3), provided that other parameters are the same (Figures 6 and 7).

As can be seen in Figures 6 and 7, the optimal value is LEEN2* > LEEN3*. The highest
values of the vehicle energy efficiency level are observed in hours of constant intensity
(x9 = 3) and in hours of decreasing traffic intensity (x9 = 4).
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4. Discussion

Intelligent management of the urban transport system according to the selected cri-
terion requires evaluation and formalization of the characteristics of the influence of the
system on the components of the performance indicator. Estimating the energy efficiency of
the vehicle is a basic subtask that is solved within the scope of implementing a significant
number of methods to improve its environmental friendliness and productivity. In contrast
to existing methods, determining the vehicle efficiency in the proposed way does not
require a direct assessment of the energy consumption of the vehicle under study, but it
can give a large error in the result. For the application of this method, additional studies
are needed in the direction of clarification and completeness of the vector of correction
coefficients, taking into account the peculiarities of the operation of the vehicle in different
regions.
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The results of the morphological analysis of the TrEECS system form the basis for the
procedures for building a base of logical rules as part of the transport system control module.
The construction and implementation of logical inference models partially smooth out the
negative impact of the vague nature of the experimental data. The terms of the domains
of each parameter are given by trapezoidal membership functions, the form of which is
selected experimentally according to the criterion of the smallest modeling error. The
developed system of Mamdani determines the value of the energy efficiency of the vehicle
with an error of 1.2%, and the system of Sugeno—with an error of 1.9%—indicates the
adequacy of the built models. The largest error is obtained for TrEECS configurations with a
low level of energy efficiency. In the future, it is planned to adjust the obtained membership
functions to ensure the accuracy of the model results within the given configurations.

On the developed models, it became possible to investigate the influence of transport
system parameters on vehicle energy efficiency. It was determined that the parameter x4—
the degree of use of load/passenger capacity—has the greatest weight in the evaluation
of the indicator LEE. The results of the analysis of the level of dependence of the energy
efficiency on the combination of this parameter and the level of complexity of the traffic
flow showed that the weight of their total impact on LEE depends on the category of
vehicle. The energy efficiency of buses is more affected by the combination (x4,x5) than that
of trucks.

The initial sample was represented by a small number of new hybrid and electric cars
and did not reflect their properties under the studied conditions. In the future, it is planned
to expand the obtained base of rules of logical derivation, having previously checked that
the new configurations do not affect the structure of the system base.

The aging of the vehicle park imposes certain limitations on the duration of the life
cycle of the TrEECS model and requires periodic updating of the existing rule base by
adjusting the vehicle age in the statistical sample and the values of the transition of the
corresponding parameters to the next fuzzy term. The formalized stages of morphological
analysis can be repeated to maintain an up-to-date base of derivatives. An up-to-date
database will provide an assessment and forecast of the energy efficiency of vehicles in
changing system conditions.

5. Conclusions

To evaluate the energy efficiency of vehicles of the TrEECS transport system, a morpho-
logical model of this system was built. The structure of the model contains four functional
elements, 10 independent attributes of functional elements, and domains of their possible
values. For the first time, a formalized mechanism of transition from the morphological
model of the system to the corresponding fuzzy model of derivation is proposed. This
will make it possible to periodically update the base of the intelligent transport system to
maintain its relevance, taking into account new elements and factors.

The criterion of energy efficiency of vehicles based on dimensionless coefficients
is determined. The proposed energy efficiency indicator characterizes the increase in
energy consumption of vehicles relative to energy consumption under standard operating
conditions. Unlike existing methods, this indicator is universal for vehicles of various
categories and types, and its definition does not require a direct assessment of energy
consumption.

On the basis of experimental data on the state of the TrEECS system, a synthesis of
25 system configurations was carried out on the example of nine settlements in Ukraine and
Poland. Observation of the state of the relevant transport systems was carried out with the
involvement of 16 units of equipment in different time and weather conditions. Mamdani
and Sugeno, fuzzy derivation systems, were built for comprehensive evaluation of the
energy efficiency of vehicles under given conditions. These systems are based on fuzzy
models that take into account ten attributes of the vehicle, traffic flow, road, and traffic
environment. At the same time, six defuzzification algorithms were used. The accuracy of
the obtained models confirms their adequacy. The Mamdani system was the most adapted
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to real conditions, with an energy efficiency estimation error of 1.2%. It is advisable to use
this system in the control module of intelligent transport systems.

The impact of the TrEECS system parameters on the energy efficiency of the vehicle
for the configurations of the control sample was evaluated. The degree of utilization of
cargo/passenger capacity has the greatest influence. It was established that the total effect
of combinations of this parameter with others depends on the vehicle category.

Further, it is planned to refine the correction coefficients for determining the energy
efficiency indicator and expand the base of the transport system control module due to
the study of new TrEECS configurations for electric vehicles. Further research also will be
aimed at determining rational configurations of the TrEECS system based on multi-criteria
optimization. The outputs of the corresponding model will be components of the complex
efficiency criterion. The results of the study should be used in the design of effective
mechanisms to manage the transport infrastructure of cities and road traffic in intelligent
transport systems.
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15. Śmieszek, M.; Mateichyk, V. Determining the fuel consumption of a public city bus in urban traffic. In IOP Conference Series:
Materials Science and Engineering, Proceedings of the 26th International Slovak-Polish Scientific Conference on Machine Modelling
and Simulations (MMS 2021), Bardejovské Kúpele, Slovak Republic, 13–15 September 2021; IOP Publishing Ltd.: Bristol, UK, 2021;
Volume 1199. [CrossRef]

16. Dmytriiev, M.M. M 218-02070915-694:2011 Methods for Assessing the Ingredient and Parametric Pollution of the Roadside Environment
by the System Traffic Flow—Road; National Transport University: Kyiv, Ukraine, 2011; p. 28.

17. Ahn, K.; Rakha, H.; Trani, A.; Van Aerde, M. Estimating vehicle fuel consumption and emissions based on instantaneous speed
and acceleration levels. J. Transp. Eng. 2002, 128, 182–190. [CrossRef]

18. Du, J.; Rakha, H.A.; Filali, F.; Eldardiry, H. COVID-19 pandemic impacts on traffic system delay, fuel consumption and emissions.
Int. J. Transp. Sci. Technol. 2021, 10, 184–196. [CrossRef]

19. Lahlou, A.; Ossart, F.; Boudard, E.; Roy, F.; Bakhouya, M. A Real-Time Approach for Thermal Comfort Management in Electric
Vehicles. Energies 2020, 13, 4006. [CrossRef]

20. Patrone, G.L.; Paffumi, E.; Otura, M.; Centurelli, M.; Ferrarese, C.; Jahn, S.; Brenner, A.; Thieringer, B.; Braun, D.; Hoffmann,
T. Assessing the Energy Consumption and Driving Range of the QUIET Project Demonstrator Vehicle. Energies 2022, 15, 1290.
[CrossRef]

21. Klimenko, A.; Hill, N.; Windisch, E. Approaches to regulation of CO2 emission and energy consumption indicators of new light
duty vehicles in Ukraine. Bull. Natl. Transp. Univ. 2019, 1, 66–75. (In Ukrainian) [CrossRef]

22. Khabutdinov, R.A. System concept of energy-resource synergy and methodology of technological-innovative management on
motor transport. Bull. Natl. Transp. Univ. 2020, 1, 365–374. (In Ukrainian) [CrossRef]

23. Kosai, S.; Nakanishi, M.; Yamasue, E. Vehicle energy efficiency evaluation from well-to-wheel lifecycle perspective. Transp. Res.
Part D Transp. Environ. 2018, 65, 355–367. [CrossRef]
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