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Abstract: Despite being a limited and scarce resource, the necessity and exploitation of fossil fuels
are unstoppable in serving human demands. In order to supply energy demand without causing
environmental damage, it is crucial to utilize a variety of renewable feedstock resources. Biochar,
made up mostly of carbon, oxygen, and hydrogen, is the product of the thermochemical processes
of pyrolysis, hydrothermal carbonization, torrefaction, and hydrothermal liquefaction. Biochar,
once activated, has the potential to act as a catalyst in a variety of energy generation processes,
including transesterification and fermentation. Transesterification is the process that is used to
produce biodiesel from a variety of oils, both edible and non-edible, as well as animal fats in the
presence of either a homogeneous or a heterogeneous catalyst. When selecting a catalyst, the amount
of free fatty acid (FFA) content in the oil is considered. Homogeneous catalysts are superior to
heterogeneous catalysts because they are unaffected by the concentration of free fatty acids in the oil.
Homogeneous catalysts are extremely hazardous, as they are poisonous, combustible, and corrosive.
In addition, the production of soaps as a byproduct and a large volume of wastewater from the use
of homogeneous catalysts necessitates additional pretreatment procedures and costs for adequate
disposal. This article examines the biochar-based fuel-generation catalyst in detail. At first, a wide
variety of thermochemical methods were provided for manufacturing biochar and its production.
Biochar’s chemical nature was analyzed, and the case for using it as a catalyst in the production of
biofuels was also scrutinized. An explanation of how the biochar catalyst can improve fuel synthesis
is provided for readers. Biodiesel’s transesterification and esterification processes, biomass hydrolysis,
and biohydrogen generation with the help of a biochar catalyst are all reviewed in detail.

Keywords: biochar; transesterification; biomass based catalyst; biofuels; biodiesel

1. Introduction

There is a growing need for fuels for use in vehicles and other purposes in both
urban and rural settings. However, increasing crude oil prices and shrinking fossil fuel
reserves have serious consequences for the world. This has encouraged scientists to
consider renewable energy as a replacement for fossil fuels to accommodate expanding
human requirements. Thus far, renewable energy has contributed to the production of
4.7% of liquid transport fuel. On this list, producing biodiesel, bio-oil, and biogas are
prioritized [1,2]

The IEA predicts that by 2023, worldwide production of biofuels would have increased
to more than 2.7 million barrels of oil per day or by almost 16%. Due to the rising demand
for transportation fuel, Asia is the fastest-growing market for biofuels worldwide. The
transportation industry around the world is one of the largest consumers of biofuels. Four
major regions, namely North America, Asia, Europe, and Latin America, as reported by
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the IEA, together account for roughly 90% of global biofuel use. Although Asian demand
will increase in the early 2020s, numerous countries are already working to improve their
energy balance by increasing the amount of biodiesel they use.

To reduce greenhouse gas emissions, especially carbon dioxide (CO2) emissions, liquid
biofuels can be used as a viable alternative to petroleum-derived fuels in the transportation
sector [2,3]. The increasing energy needs of a growing global population puts a significant
strain on the planet’s limited renewable energy resources. Sustainable growth and limiting
global warming, as agreed in the Paris Agreement, become muddled when fossil fuels are
exploited at such a rapid rate. Since the early 2000s, biodiesel has become increasingly im-
portant as a solution to the environmental problems caused by exhausts from conventional
diesel fuel. Due to its low production cost, biodegradability, and renewable nature as well
as its versatility in terms of feedstock and catalysts, biodiesel is a promising alternative fuel
to conventional diesel [4].

Although the idea of producing and utilizing biofuels has been discussed for quite
some time, it is less efficient to do so since cutting-edge technology is not included in simple
steps. Several chemical processes, including fermentation, transesterification, gasification,
and fast and slow pyrolysis, help transform biomass into high-temperature fuel vapors
through incomplete oxidation (>800 ◦C) in a common step in the gasification process. Using
air or steam as its primary fuel, carbon monoxide, hydrogen, carbon dioxide, and a few
other light hydrocarbons are the byproducts. Torrefaction is the processing of using biomass
by heating it to a temperature of 200 ◦C to 300 ◦C in an oxygen-free atmosphere [5,6].
Catalysts are crucial for increasing the efficiency of various chemical processes by speeding
up the rate of reaction, hence enhancing the quality and yield of the product. However,
catalytic activity is only of value in chemical reactions that are thermodynamically viable.
When a reversible reaction takes place, the catalyst serves the same purpose in both
directions [7]. Many different types of catalysts, including acids, bases, and enzymes, are
used by scientists from all kinds of fields to produce biofuel. In addition to a number
of acid/base catalysts, biodiesel was made from both homogenous and heterogeneous
sources, and in terms of conversion efficiency and simplicity of separation, heterogeneous
catalysts excel over homogeneous ones. Therefore, the chemical reaction occurs on their
surface [8]. Lipase enzyme is widely used as an enzyme-based catalyst for the lipid-to-
biodiesel conversion; lipase enzymes derived from various bacteria are immobilized to
maintain enzyme stability and maximize output [9]. Biodiesel production catalysts based on
biochar in recent times have gained much attention. Hydrogen-based energy solutions are
one alternative energy option due to their low emissions and high efficiency. In particular, if
it is produced from renewable sources, hydrogen gas (H2) is an extremely practical energy
source. As biodiesel production has recently come under increased scrutiny, glycerol is
predicted to be a key byproduct produced in vast quantities over the world [10]. Yusuf et al.
researched on the different zero- or low-carbon H2 generation options available. Green H2
is a superior option to H2 produced from fossil fuels. Several desirable features of blue
H2 are present. The costs associated with carbon capture, utilization, and storage (CCUS)
technology and blue H2 (which is not carbon-free) are high. However, the present CCUS
technology is limited in its ability to hold and absorb anything from 80% to 95% of CO2 [11].

The term “biochar” refers largely to a carbon-based fuel made through thermochemical
processes. Biochar is rich in carbon but is not graphitizable because of the way its aromatic
carbon rings are arranged. Biochar is incompatible with the production of graphitic carbon
even at 2700 ◦C. Despite sharing graphite’s high carbon content, its structure is distinct
due to the atoms of carbon being arranged in a two-dimensional, parallel stack [12,13].
It can be used as an electrode, supercapacitor, soil amendment, catalyst, etc., and this
depends on the features it has obtained from its biomass source and the varied preparation
circumstances. Surface area, surface functional groups, and matrix nature must all be
taken into account when using biochar as a catalyst [14]. However, depending on the
(a) biomass type, (b) carbonization method, and (c) activation procedures used, biochar
directly following synthesis processes has poor physicochemical properties. Activated
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biochar is a potential catalyst having a large surface area, high porosity, and the capability
to sustain a variety of surface functional groups [15,16]. Studies have been conducted on
the activation, production, and use of biochar in this setting. There is an immediate need
for a lengthy analysis of biochar’s potential as a catalyst in biodiesel production. Catalysts
based on biochar are advantageous because they have functional groups on their surface
that facilitate the adsorption of metal precursors and inorganic groups such as K and Fe that
can be employed in tar cracking. Therefore, biochar-based catalysts are being prioritized.
Increased biodiesel production can be achieved in addition to the benefits of simple catalyst
synthesis, low cost, convenient disposal, and reusable properties. This article aims to bring
attention to the value of biochar as a catalyst in biofuel production. An in-depth analysis of
the processes utilized to create biochar from various biomass sources is part of the study.
In addition, we investigated the use of biochar as a biomass pyrolysis catalyst, biodiesel,
and biohydrogen production by exploring the existing literature [17].

2. Methods of Biochar Production

The growing interest in converting biomass into biochar for use in a variety of applica-
tions has led to a rise in the rate at which this conversion is taking place. Thermochemical
conversion is a process that is frequently used in the synthesis of biochar. Pyrolysis, gasifica-
tion, torrefaction, and hydrothermal carbonization are the four methods that comprise the
thermochemical conversion techniques. Pyrolysis is the term used to describe the process
by which organic substances are broken down by the use of heat in an atmosphere free of
oxygen at temperatures ranging from 250 to 900 ◦C [18]. Gasification is a thermochemical
process that decomposes carbonaceous material into syngas, which contains CO, CO2, CH4,
H2, and traces of hydrocarbons. Gasification agents include oxygen, air, steam, and high
temperature. Torrefaction is gaining popularity as a method for creating biochar. Since it
uses a modest heating rate, it is called mild pyrolysis. At a temperature of 300 ◦C, several
different decomposition processes are used to remove the oxygen, moisture, and carbon
dioxide from the biomass. The method of hydrothermal carbonization (HTC) utilizes heat
to change the structure of wet biomass feedstocks into hydrochar. HTC is carried out in a
reactor at temperatures between 180 to 250 ◦C. The biomass type, manufacturing technique,
and process conditions (heating rate, temperature, residence duration, etc.) must be optimal
to maximize biochar yield. These parameters are significant because they may change
biochar’s physical and chemical states during formation. Since biomass weight loss occurs
during biochar production, its shape depends on process parameters. Water loss at 100 ◦C
is followed by cellulose, hemicellulose, and lignin degradation above 220 ◦C. Burning
carbonaceous residues reduces weight [19,20]. The % of biochar produced by different
thermochemical processes varies; pyrolysis and HTC biochar were compared in this study.
Biochar formation is very sensitive to temperature, pressure, and biomass composition [21].
Various methods of producing a biochar-based catalyst are given in Figure 1. The produc-
tion of biochar is primarily accomplished through the pyrolysis processes, gasification,
hydrothermal carbonization, liquefaction, and torrefaction. Torrefaction is a mild pretreat-
ment that takes place between 200 ◦C and 300 ◦C, just before pyrolysis or gasification. The
process of heating biomass in the absence of oxygen is known as pyrolysis, and temper-
atures above 300 ◦C are usually used for the purpose of producing biochar. To generate
carbon from biomass pyrolysis, an ancient process requires a temperature between 300 ◦C
and 800 ◦C and yields biochar at a rate of 35–50% as a byproduct of this process. However,
it has drawbacks include inefficient use of energy and lengthy processing times [22].

In Table 1, different biomasses were used to produce biochar catalysts, and biomass
went through the initial process of pyrolysis and carbonization methods following treatment
methods to produce solid acid as well as solid alkali catalysts.
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Table 1. Producing biochar and biochar-based catalysts through different methods and feedstocks.

Feedstock Biochar
Production Method

Catalyst
Production Method

Type of
Catalyst References

Peanut hulls, glucose, oat hulls,
coconut husks, Carbonization Sulfonation Acidic [23]

Wood saw dust Slow pyrolysis Sulfonation Acidic [24]

Pamela fruit skin, palm nut shells Carbonization Calcination Wet
impregnation Alkaline [25]

Husk of rice Carbonization ChemicalActivation Acidic [26]

Peat Carbonization Wet impregnation Alkaline [27]

Banana Carbonization Wet impregnation Alkaline [28]

2.1. Pyrolysis

Pyrolysis is a thermochemical process that converts various types of biomass into
biochar or biocrude by subjecting the biomass to high temperatures and pressures. It is
one of the oldest ways to process biomass, and it involves burning compounds at high
temperatures in a closed reactor having little or no oxygen. The temperature is between
350 and 650 ◦C, and biochar, bio-oil, and biogas (syngas) are the primary byproducts. Slow,
fast, and flash pyrolysis are all different types of pyrolysis depending on variables such
as temperature, particle size, residence period, and heating rate [29]. Figure 2 shows how
different types of biomass can be used to make biochar and bio-oil by pyrolyzing and
gasifying them with or without oxygen. Slow pyrolysis is better for making a great quantity
of biochar because the temperature rises slowly, and the biomass breaks down slowly, and
this gives biochar more time to form than bio-oil or syngas [30]. The process of biomass
pyrolysis can be broken down into three simple steps. The first process involves heating at
temperatures of 40 ◦C to 200 ◦C or even higher and is used to accomplish the drying process.
Then, the remaining biomass is used to make primary biochar, and generally, 500–800 ◦C is
considered as the optimum range for pyrolysis temperature in the endeavor of producing
biochar. In the last step, primary char slowly breaks down into secondary char, which is
made of a great deal of carbon. The temperature at which biochar is made also affects its
properties, such as its surface area and surface functional groups [31]. The time required
for the thermal decomposition of low-energy biomass bio-oil is the primary byproduct
of the rapid pyrolysis process, which takes place between 400 ◦C and 600 ◦C. Regardless,
pyrolysis is a cheap method that produces low greenhouse gases. However, there are
technical considerations that have rendered high-quality bio-oil production unlikely using
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slow pyrolysis. A considerable amount of time spent can slow down the cracking process
of the primary product, which can have detrimental impacts on bio-oil output and quality.
Energy expenditure increases due to prolonged stay and poor heat transmission [32,33].

Fast pyrolysis is limited by similar technological constraints as follows:

• Low resistance to heat and corrosion as well as a loss of solids in the oil;
• Char catalysis causes a gradual increase in viscosity;
• The oil absorbs the char’s dissolved alkali and generates pyrolytic water.

The aliphatic alkyl and ester groups found in organic molecules break apart when
subjected to high temperatures, and this results in an increase in the surface area and
porosity of biochar as well as the elimination of the substances that block pores [34]. The
biochar that is made is stable and repels water, but biochar that is made at a low pyrolysis
temperature attracts water. On the other hand, when the temperature goes up, the chemical
bonds change, adding new functional groups such as carboxyl, lactone, phenol, pyridine,
etc., to the surface. These surface functional groups are able to donate or accept electrons.
If the temperature of pyrolysis is low, the biochar that is made looks like graphene and has
fewer functional groups on its surface [35]. The production of high-quality bio-oil from
algae is accomplished through a process called fast pyrolysis. Scenedesmus species was
pyrolyzed rapidly at 500 ◦C with a vapor residence time of two seconds, and the result was
the production of 55% bio-oil. Chlorella vulgaris was also pyrolyzed quickly at 500 ◦C, and
53% bio-oil was formed [36].
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2.2. Hydrothermal Carbonization

Thermochemical conversion is achieved through a process known as hydrothermal
carbonization (HTC), which results in charred biomass also known as hydrochar. Wastes
from municipal, forest, crop residue, biomass seeds, human and animal wastes, etc., are
all used in the process [37,38]. Hydrochar and biochar have some similarities, but they
are made in different thermochemical ways. Hydrochar, which is made from HTC, is a
two-phase mixture of solids and liquids in a slurry. It is different from biochar in both its
physical and chemical properties. Bergius found this method in 1913. It mimics the natural
process of turning cellulose into materials that are similar to coal. It is called “artificial
coalification”, and it was later found again and called HTC, subcritical water treatment,
moist torrefaction, etc. [39,40]. An example of a hydrothermal carbonization reactor used
to transform biomass into biochar is shown in Figure 3.
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Hydrothermal carbonization often occurs between 150 ◦C and 350 ◦C and 20.25 MPa,
which are both close to the critical point. The reaction medium is water, which is either
subcritical or supercritical, and it does not make any dangerous chemicals or byproducts.
When biomass is used, the water retains some minerals that have not been burned. For
example, the salts of ammonium, phosphorus, and potassium in the water can be used
as fertilizers. The extent to which a given type of biomass can be converted into biochar
depends on its unique properties and potential. The distinct qualities of various biochars
are determined by the types of feedstock biomass and the processing procedures used to
produce them [41,42]. Because the composition of biomass is so complicated, scientists still
do not fully understand how biomolecules break down. It is said that some of the reactions
include hydrolysis, dehydration, decarboxylation, aromatization, and recondensation,
which happen when biomass breaks down during HTC. Even though char can be made in
a variety of ways, its composition, yield, and physical and chemical characteristics vary
depending on how it is made and what kind of biomass is used (Table 1). Hydrochar
can be used to: (i) improve the soil, (ii) make an adsorbent, (iii) make activated charcoal,
(iv) store hydrogen, (v) store energy in supercapacitors, (vi) make solid fuel, and (vii) treat
wastewater [43].
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2.3. Torrefaction

The aim of the thermochemical process known as torrefaction is to reduce the biomass’s
water and volatile contents, hence enhancing the fuel’s energy density and hydrophobic
behavior, eliminating biological activity, and increasing ease of grindability, compositional
homogeneity, and so on. Torrefaction is often referred to as “mild pyrolysis” because of
its similarities to pyrolysis in that it occurs in an inert or reducing environment (i.e., an
atmosphere free of oxygen) but at temperatures between 200 and 350 degrees Celsius. In
most cases, normal air pressure serves as the working pressure. There is a drop in the H
and O contents and a rise in the C contents in the remaining torrefied residue because of
the degradation of the lignocellulosic compounds (hemicellulose, cellulose, and lignin)
that takes place during torrefaction. Hemicellulose is the most degraded lignocellulosic
component during torrefaction [44,45].
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2.4. Hydrothermal Liquefaction

Hydrothermal liquefaction (HTL) is a thermochemical conversion method that is
used to turn wet microalgal biomass into bio-crude or bio-oil. It works in a state that
is close to being supercritical. Even though HTL is an expensive process on its own, it
makes it possible to process all of the algal biomass into a single product without having to
dewater it, which reduces other problems that can happen after processing. The bio-oil can
then be put through a refinery to make jet fuel and other biofuels. Pyrolysis is similar to
high-temperature–low-pressure (HTL). It is a high-temperature (between 400 and 600 ◦C)
process that is completed in an inert atmosphere that converts algal biomass to bio-crude,
char, and other gases [46].

3. Biochar Composition

Biochar is the charred part of pyrolyzed biomass that contains a great deal of organic
carbon. It has a high amount of oxygen (27–34%) in the form of acid groups such as phenolic
and carboxylic. The sulfonic group presence makes the catalyst more active and helps
molecules stick to its surface. In order to maximize the atomic efficiency of organic synthesis,
the development of innovative single-atom catalysts (SAC) is very desirable [47]. Biochar
is a substance made from organic materials that is high in fixed carbon and has many uses
because of its stability, porosity, recalcitrance potential, and ability to store CO2 [48]. It
has a carbon content of about more than 65% and is formed by the thermal breakdown of
biomass in settings with reduced or no oxygen. The charred biomass primarily consists of
varying carbon, hydrogen, nitrogen, and sulfur, in addition to oxygen; these percentages
differ depending on the type of biomass used. The physicochemical qualities of biochar
are determined by the following factors: (i) the type of feedstock or biomass; (ii) the
temperature at which pyrolysis occurs; (iii) the amount of time in which the reaction
takes place; and (iv) strategies for activating the container in which the reaction takes
place [49,50]. A virtually infinite variety of biomass, ranging from detritus left behind by
forests to detritus left behind by farms, has been utilized across a wide range of industries
as biochar catalysts (Table 2).

Table 2. Biochar yield from a variety of biomass sources using pyrolysis and hydrothermal carboniza-
tion methods.

Type of Biomass Process Parameters Time Yield of Biochar (%) References

Pyrolysis

Safflower seeds
T = 400 ◦C 34.2 [51]

Waste water sludge
T = 300 ◦C 90.2 [52]

Olive husk
T = 177 ◦C 44.6 [53]

Poultry waste
T = 300 ◦C 79 [54]

Rice husk
T = 300 ◦C 37.8 [55]

Peanut kernel shells
T = 350 ◦C 45.8 [56]

Palm shell
T = 400 ◦C 43.3 [57]

Bamboo
T = 300 ◦C 81 [58]
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Table 2. Cont.

Type of Biomass Process Parameters Time Yield of Biochar (%) References

Bio-sludge from pulp mill
T = 200 ◦C [59]

Time = 120 min

Paddy straw
T = 100 ◦C [60]

Time = 60 min
82

Watermelon peel
T = 260 ◦C

Time = 60 min
55 [61]

Coconut husk
T = 140 ◦C

Time = 240 mins
>76 [62]

Municipal solid waste
T = 120 ◦C

Time = 180 min
89 [63]

4. Biochar-Based Catalysts

To produce biochar, a process known as pyrolysis is used to heat the biomass in a
carefully regulated environment with little or no oxygen. The pyrolysis process typically
requires temperatures between 300 ◦C and 1000 ◦C to produce biochar. Biochar made a very
large impact on the agricultural sector because of its effectiveness and productivity [64].
Biochar can increase soil organic matter, lower soil acidity, and remove key environmental
pollutants from the soil, all of which contribute to better water quality. Using biochar as
a heterogeneous catalyst or support is a feasible option for biodiesel synthesis due to its
low cost, high surface area, and functional group customization, among other benefits.
Biochar has a structure that is chemically inert, thermally and mechanically stable, has a
high acid density, is non-toxic, and is good for the environment [65]. Transesterification
reactions take place at high temperatures in porous materials such as biochars. Many
researchers are interested to study biochar rather than other types of catalysts because of
their low cost, versatility, and low environmental impact. Different researcher’s work on
the heterogeneous catalyst is shown in Table 3. Recyclable biochar-based catalysts have
shown more activity than conventional acid catalysts when it comes to the esterification
and transesterification of oils that are not edible. Biochar’s catalytic activity is improved
by the absorption of inorganics (K and Fe); additionally, the presence of functional groups
on the surface of biochar is beneficial to the synthesis of metal catalysts that are supported
by biochar. Degradation of phenolic pollutants requires the rational design of photocat-
alysts with the adjustable structure to expose active areas [66,67]. The biochar synthesis
method is cheap and uncomplicated due to the availability of renewable feedstocks, and
the physicochemical characteristics of biochar are amenable to being altered through a
variety of activation processes, both of which are positives for biochar-based catalysts.
Biochar’s organizational structure, which it acquired from biomass, along with its surface
functional groups, presence of inorganic constituents, and a few other basic properties
make it an excellent catalyst for a wide variety of catalytic applications. Catalysts derived
from biochar are (i) heterogeneous in the sense that they may be separated from other reac-
tant combinations, (ii) stable catalysts capable of both esterification and transesterification,
(iii) reusable, (iv) extremely porous, and (v) biodegradable. Due to its low cost, environmen-
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tal friendliness, simple production procedures, reusability, and biodegradability, biochar is
preferable to other commercially available solid-based catalysts [68,69].

Table 3. Different researchers work on heterogeneous catalysts.

Catalyst Used TiO2 and Cu CH3-O-CO-R3

Acid Biochar
and Murumuru

Kernel Shell
Flamboyant Pods KOH/Al2O3

Al2O3
Supported

Coconut Chaff

Na2CO3 and
Ca(NO3)2

Oil used Palm oil Sunflower and
soybean oil Jupati oil Hevea-

brasiliensis oil
Waste

cooking oil Waste frying oil Soybean oil

Biodiesel
yield (%) 90.9 93.4 91.8 89.8 98.2 91.06 99

Time (minutes) 45 52 45 60 60 150 240

Temperature of
reaction (◦C) 45 50 135 55 70 65 60

References [70] [71] [72] [73] [74] [75] [76]

5. Biochar as a Catalyst for Fuel Production
5.1. Transesterification and Esterification

Raw oil is unsuitable for diesel engines due to its high viscosity, high free fatty acid
content, low volatility, and gum formation during storage and combustion. Therefore,
proper processing is required to transform vegetable oils and animal fats into biodiesel
fuel. Numerous studies have investigated the three well-known approaches of biodiesel
synthesis: thermal cracking, microemulsion, and transesterification. The most efficient
strategy for converting vegetable oils into biodiesel is called transesterification. Biodiesel
(FAME) and glycerol are produced through transesterification, that is, the reaction that
takes place between a triglyceride found in oil or fat and alcohol, and it can take place
with or without a catalyst [77]. A general reaction involving transesterification and the
mechanism behind the transesterification reaction is shown in Figure 4a,b. In addition,
classification of catalysts in biodiesel production is shown in Figure 5.
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In the production of biofuels, biochar is frequently utilized as either a catalyst or
a catalyst-support material. The usage of carbon-based materials as catalysts has been
increasing over the last few years due to their high acid/base stability, smooth texture,
and adaptability to surface chemical modifications. To a large extent, the efficiency of
producing biochar-supported metal catalysts has relied on the concentration of surface
functional groups. Low-cost heterogeneous biocatalysts were developed using a response
surface methodology for the production of biodiesel from Phaeodactylum tricornutum
and Isochrysis biomasses. FAME yield was shown to be enhanced by using a biochar
catalyst in combination with iron nanoparticles (32.8% using Isochrysis biochar and 26.4%
using a conventional acid catalyst) [79,80]. As used homogeneous acid catalysts cannot be
recycled and must be purified using expensive equipment, nanocatalyst-based biodiesel
production has recently gained a great deal of attention. Using the biochar-supported CaO
catalyst, it was possible to produce biodiesel with a purity of up to 96% from Turbonilla
striatula and de-oiled cake made from Mesua ferrea Linn seeds under optimal conditions
(3 wt.% catalyst, 6 h, 12:1 methanol/oil molar ratio) [81,82]. Transesterification activity
contains a low amount of biochar-based catalysts that are prepared using concentrated
sulfuric acid but is high in catalysts prepared with fuming sulfuric acid. Catalysts with
the maximum catalytic activity of canola oil as a feedstock for biodiesel were produced
by further treating the biochar with 10 M KOH, which increased both the density of the
acid and the surface area of the catalysts. The production of 90% biodiesel through the
pseudocatalytic transesterification of used cooking oil using biochar derived from maize
was effective at 300 ◦C and 380 ◦C, while biochar made from pine cones resulted in 43%
biodiesel at both temperatures. The proportion of lignin in biomass was more important to
biodiesel production than cellulose and hemicellulose [83]. Due to its hydrophobic nature,
the transesterification reaction is sped up by biochar because it promotes the interaction of
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organic chains on its surface without creating water, a waste product that lowers catalytic
activity. After being carbonized at temperatures between 300 ◦C and 500 ◦C and then treated
with 98% sulfuric acid, the bamboo was then introduced to a batch reactor setup with oleic
acid and ethanol, containing a three-necked reactor vessel to create acid heterogeneous
catalysts at 90 ◦C, with a molecular ratio of 7 ethanol to 1 oleic acid as well as an addition
of 6% heterogeneous acid the catalyst showed a 98.4% esterification efficiency [84].

By heating sulfonated biochar and ethanol to 60 ◦C, we were able to convert 77–80% of
the FFA in waste vegetable oil. These yields at 50–60 ◦C and 70–100% methanol conversion
were comparable to those of the prototype fatty acids palmitic and stearic acid. Biomass,
including microalgae, containing chlorophylls and phospholipids, can alter the catalyst activity
and biodiesel quality. To see if it could convert triglyceride and FFAs, a catalyst made from
the production of asphalt from sulfonated vegetable oil was investigated at ratios of 0.2 wt.%
catalysts to oil and 16:8 methanol to oil, and the catalyst performed as predicted, exhibiting
conversion efficiencies of 80.5% for triglyceride and 94.8% for FFAs. The aforementioned
catalyst is easily accessible to the reactants due to its large pore size, presence of a hydrophilic
sulfonic acid group, and an increased number of active sites [85,86].

Some of the benefits of solid biochar-based catalysts include increased surface area
and stability, reusability, and easy, inexpensive purification. Synthesized nanocatalysts,
on the other hand, have issues such as slow reaction rates, insufficient reactivity, poor
stability, and narrow pores. As with the FFAs in jatropha oil, as a catalytic agent, biochar
derived from jatropha seeds was utilized. The authors found that when using a ratio of
methanol to oil of 12:1 M and a catalyst loading of 7.5 wt.%, the conversion efficiency for
FFAs was 99.13%. In another study, biodiesel was made from Hevea brasiliensis oil using
a flamboyant pod catalyst that had been functionalized with potassium hydroxide. This
study found a biodiesel production of 89.3% with a 15:1 M ratio of methanol to oil and a
3.5 wt.% catalyst. In addition, the performance of a catalyst that is reused is approximately
seven times that of a catalyst that is not reused. On the other hand, a palm seed-based
acidic catalyst produced a biodiesel yield of 97.8% from palm fatty acid distillate with an
approximate 8-fold reusability. Derris indica L seed oil was transesterified with sulfonated
charcoal from cassava peel to produce 96.8 percent biodiesel [87,88]. This article describes
the mechanism through which biochar aids in the production of fuel. Using a porous
catalyst material can boost both the reaction rate of transesterification and the FAME yield.
Biochar’s many active sites enable methanol and triglycerides reaction at room temperature,
enhancing transesterification. Transesterification produces a two-phase system by heating
lipids in a solvent. The solid biochar’s inert holes are filled with reactants and is capable
of more rapid reactions as a result of a reduction in the activation energy. During the
transesterification reaction, the normal mesoporous and microporous biochar can hold
greater triglyceride molecules with an average diameter of 5.8 nm. Biochar’s mesoporosity
makes its surface-active sites accessible, which is the vast majority of them. For example,
less activation energy is needed when the reactants methanol and triglycerides come
into contact with one another inside the pores, which speeds up the reaction rate [89].
For transesterification to take place, it is essential that biochar has pores that are bigger
than the reactant molecule. Triglyceride and glycerin molecules have been measured to
have a diameter of 2.5 nanometers. An enhanced transesterification performance can be
attained by using any biochar that must have pore sizes bigger than 2.5 nm if it is to
maximize FAME yield. With direct transesterification of Isochrysis sp., for instance, the
FAME production using biochar made from a variety of leaf types (pore size—2.785 nm) at
9 wt.% of catalyst to dry cell weight was 32.8%, which was higher than the conventional
acid catalyst (26.45%) [90].

More than 90% FAME can be produced from waste cooking oil using sulfonated oat
husk biochar at a catalyst-to-oil ratio of 10% and a methanol-to-oil ratio of 1:10. When
200 mg of maize residue biochar was mixed with 10 L of used cooking oil and with
2 milliliters of methanol, the FAME yield increased to 91%, according to a different study.
For the transesterification of coconut oil, Jung et al. found an FAEE (fatty acid ethyl ester)
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yield of 87% when using biochar made from maize residue. Within two hours, waste from
microalgal carbonization of biodiesel production took place on-site and was sulfonated in
an autoclave with sulfuric acid (1:12). FTIR characterization proved that -SO3H, -COOH,
and -OH groups were present as active sites, whereas XRD analysis revealed randomly
oriented aromatic carbon sheets that were ideal for anchoring these groups [91,92]. The
results showed that the catalysts made from microalgae byproducts performed similarly to
the carbon-based solid acid catalyst made from the powder of cellulose. Using a 5 wt.%
MBC catalyst, oleic acid was transesterified with methanol for an impressive 98% yield.
Esterification is used to convert fats from animals, oils from plants, and low-molecular-
weight alcohols into usable biofuel esters. Three distinct runs at 100 ◦C with methanol
resulted in a yield of 97–98% of the FFA from the oil of microalgae [93]. Utilizations of
biochar as a catalyst derived from a variety of biomass sources are given in Table 4.

Table 4. Utilizations of biochar as a catalyst derived from a variety of biomass sources.

Biochar Types Activation
Conditions

Elemental
Composition (wt.%)

Surface
Area (m2/g) Pore Size (nm) Pore

Volume (cm3/g) Applications References

Woody biomass
Sulfonation,
activation

temperature 150 ◦C

C = 75.03
H = 0.82
N ≤ 0.3

O = 15.16
S = 0.36

839 3.48 0.86 Esterification and
transesterification

Peanut hull
Sulfonation,
activation

temperature 100 ◦C

C = 63.5
N = 1.5
S = 0.14

243 1.05 0.12 Esterification

Woody biomass
Sulfonation,
activation

temperature 875 ◦C

C = 81.39
H ≤ 0.3
N = 1.01
O = 6.64
S = 1.21

1412 2.19 0.75 Transesterification [94]

Sugarcane
bagasse

Sulfonation,
activation

temperature 150 ◦C

C = 74.18
O = 21.61
S = 4.21

55.02 2.8 – Esterification

Dried leaves
mixture

Charring
temperature—470 ◦C

C = 78.26
O = 13.50 19.23 2.84 0.02 Transesterification [95]

Lemna minor
(duckweed) Sulfonation

C = 40.11
H = 6.13
O = 36.74
N = 5.52
S = 0.67

11.9 —- 0.015 Biogas reforming

Rice husk
KOH activation,

activation
temperature—650 ◦C

– 1059 2.4 0.61 Syngas
methanation [96]

Pomelo peel KOH activation C = 76.1
O = 15 277.8 — 0.156 Transesterification

Corn-bran
residue Sulfonation

C = 74.36
H = 2.78
O = 18.39
N = 4.47

59.34 —- — [97]

Irul wood
biomass Sulfonation

C = 30.98
H = 2.71
N = 0.22
S = 6.62

O = 60.47

3.4 100.89 0.006 Esterification and
Transesterification [98]

Municipal
wood waste Sulfonation – 184 — 0.0072 MFC (oxygen

reduction)

Sewage sludge Sulfonation C = 34.96
O = 35.50 43.9 8.7 — MFC (oxygen

reduction) [99]

It was observed that the biochar pyrolyzed above 600 ◦C had the biggest surface areas,
suggesting the most productive interaction is with ultrasonic waves. As the pyrolysis
temperature was raised from 500 ◦C to 700 ◦C, the micro surface area of all biochars
increased by over 200 m2/g (on average).
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5.2. Biohydrogen Production

Hydrogen has the highest energy density of any fuel at 140 KJ/g and produces zero
emissions throughout its production. The only byproduct of burning is water vapor, which
poses no threat to the environment. Despite its benefits, the product’s high production
costs keep it somewhat distant from demand. The reformation of natural gas or methane
with steam is one of the most common methods used in the modern world to produce
hydrogen from fossil fuels. The different biohydrogen production process is shown in
Figure 6. Biomass-based alternative production methods have been proposed worldwide
as a result of the depletion of fossil fuels. Numerous catalysts have been developed over
time to increase the amount of hydrogen gas that is produced while maintaining its high
level of purity. To produce hydrogen from biomass, cement kiln dust, dolomite, potassium
mineral, and nickel-based catalyst are all examples of catalysts [100,101].
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Catalysts such as these are essential to the creation of hydrogen, but they are rendered
ineffective when a coke-like substance deposits on their surface. However, coke production
can be reduced by adding promoters such as Ca, Na, and Li. After pyrolysis, some
metals included in biomass are preserved. Since no promoters are required, biochar
can be used as a catalyst. The catalyst’s primary function in biohydrogen production is
to lessen the biomass gasification process’s tar content and quicken the water–gas shift
reaction. As a result, biomass gasification with the aid of biochar-based catalysts is now a
viable option for the generation of hydrogen cotton char impregnated with nickel, which
produced the highest hydrogen output (92.08 mg/g of biomass or 64.02 vol%) while using
a 15 wt.% catalyst for biomass gasification. Higher nickel loading resulted in a higher
molar proportion of hydrogen, and the hydrogen production was enhanced through the
inclusion of alkaline earth metals; as an alternative, sargassum algal biochar was utilized
as a catalyst for H2 generation through the pyrolysis of raw algae, resulting in a small
amount of hydrogen (3 mmol/g of sargassum). Similar results were found when Fe was
introduced into Cladophora glomerata biochar, which resulted in 7.99 mmol/g hydrogen
being produced during pyrolysis of C. glomerata [102,103].
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5.3. Biomass Hydrolysis

In order to break down complex macromolecules into simpler micro molecules,
biomass hydrolysis is often employed in industry by using catalysts, and cellulose can be
broken down into glucose. Biochar-based catalysts are utilized either as-is or after suitable
modification, and charges, chemical groups (carbonyl, carboxyl, and phenolic moieties),
and sulfonation are all examples of surface functionalization. Biochar is a type of catalyst
that can be made from a wide range of waste products, such as tree and plant matter,
animal byproducts, and soil and rock [104]. Sulfonic acid proton (SO3H) attacks cellulose’s
-1,4 glycosidic links during sulfonation, converting the molecule with less activation energy
than an acid catalyst. These biomass-based catalysts, also known as green catalysts, are
growing rapidly in the biomass hydrolysis process. Examples include the production of
furfural through the hydrolysis of cornhob sulfonated carbon catalyst for cellulose methyl
glucoside extraction in the presence of SnO2-CO3O4/C biochar. In biochar made from
bamboo by pyrolysis, the cellulose was broken down into glucose using molten alkali
carbonate, as Wei reported [105,106]. Through a process called sulfonation, sulfonic acid
groups were attached to the surface of the bamboo charcoal used to make the biochar. When
he used this catalyst for hydrolyzing cellulose, he obtained glucose at a 43.5% yield and
total reducing sugar at a 52.8% rate. It is common practice to generate biochar-based solid
acid catalysts by coupling biochar catalysts with acids by sulfonation or the insertion of
acidic groups. Furthermore, biochar possesses its own weak acid groups that are beneficial
to biomass hydrolysis right after it is synthesized [107]. The inside structure of a plant cell
wall is shown in Figure 7.
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Here are some of the many advantages of a biochar solid acid catalyst over a pure acid
catalyst: There is no degradation in biochar’s catalytic activity as the reaction progresses,
and it boosts the strength of acid groups added to the mixture [108,109]. Researchers have
used biochar made from nine distinct biomass types to ferment glucose, and those nine
materials are as follows: coconut, rice hull, wood, longan shell, white popinee, pinecone,
bagasse, and bamboo. Biochar’s role as a carrier and absorbent for volatile fatty acids
improved acetate and pyruvate fermentation yields [110,111].
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6. Conclusions, Future Prospects, and Recommendations

Achieving a larger output of biofuel with the desired quality requires careful consider-
ation when selecting catalysts for biofuel production. From acidic to basic, homogeneous to
heterogeneous, and chemical to enzymatic, the catalyst of choice for biofuel production has
evolved over time. Through a transesterification reaction, biochar-based catalysts are uti-
lized to convert lipids or triacylglycerols to biodiesel. However, utilized activation methods
for biochar as a catalyst must be intensively investigated to make the biochar effective for
several uses. Environmentally speaking, biochar applications provide numerous benefits.
However, the economic elements must be calculated depending on manufacturing cost
and conversion technology investment. In recent years, it has become clearly evident that
researchers in the field of science are paying an ever-increasing amount of attention to
biochar, and this trend will likely continue in the foreseeable future, as nature has provided
an abundance of biochar in the environment. Due to its variability, a consistent procedure
for its production processes and physical-chemical features has not been created. Utilizing
biochar as a catalyst has been researched on a small scale despite the fact that several
studies have focused on various biochar applications. Therefore, additional research is
required to fully understand its long-term viability and economic potential. In addition,
modern biochar production technologies, including conversion technologies, equipment,
and activation methods, are needed; if significant advancement is to be made in the field of
biochar-based catalyst, obsolete catalysts must be replaced.

It is critically desirable to establish a system to convert biochar into a viable alternative
to industrial heterogeneous catalysts, allowing large-scale biochar production. Having
reliable access to raw biochar resources is also crucial. If these obstacles can be overcome,
however, biochar catalysts will be more likely to find uses in the real world as an alternative
to the currently used catalysts, which are costly and harmful to the environment.
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