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Abstract: Wireless power transfer (WPT) has been a promising way to transfer power wirelessly
over certain distances through the mutual inductance (MI) of the magnetically coupled transmitter
and receiver coils, providing significant benefits of convenience, safety, and feasibility to special
occasions. The stable output and efficiency cannot be maintained due to the load variation and
the inevitable misalignment between the magnetic couplers. High-order compensation topologies
that are highly flexible in design due to more compensation elements are essential for the WPT
to suppress the load variation and misalignment effects. However, due to core loss and thermal
management, high-power-level and high-frequency inductor design have always been challenging
for WPT systems. Space occupation and cost are other aspects to be considered for inductor design.
Thus integrating these additional bulky inductors into the main coils has been a critical trial. As a
result, the compensation topologies’ original input and output profiles will change or even disappear.
This paper reviews the existing high-order compensation topologies and their integration principles
and implementation for the WPT to obtain high misalignment tolerance. The design objectives and
challenges of the integrated compensation topology in terms of misalignment tolerance capability
are discussed. The relevant control systems to cope with coil misalignment and load variations are
investigated. Challenges and future development of the high-tolerant WPT are discussed.

Keywords: wireless power transfer; compensation topology integration; misalignment tolerance;
constant output; control strategy

1. Introduction

Wireless power transfer (WPT) is a promising way of charging and has been utilized in
many applications, such as electric vehicles (EVs) [1,2], body-implanted medical devices [3],
underwater supplies [4,5], robots [6,7], and drones [8,9]. With the advantages of electrical
and mechanical isolation, the flexibility of power supply, and the safety of operation, WPT
is a flexible alternative to applications that are not suitable for using wires. A WPT system
generally comprises the inverter, compensation network, transmitter and receiver coils,
rectifier, filter, and load. The DC voltage source is inverted into the AC input voltage
with a specific operation frequency by the inverter on the primary side. A high-frequency
magnetic field is generated by the AC flowing in the primary transmitter (Tx) coil, which
is magnetically coupled with the secondary receiver (Rx) coil. Moreover, the energy is
transferred through the mutual inductance (MI) between the Tx and Rx coils, which will be
converted into DC power by the rectifier to charge the batteries. Therefore, MI is a critical
design parameter for achieving a highly-performance WPT system [10,11].
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In practice, the large air gap makes WPT systems loosely coupled compared to con-
ventional transformers, and the MI is more sensitive to the relative positions between the
Tx and Rx coils. The misalignment between coupled coils inevitably results in significant
variations in MI, which will deteriorate the output power stability and system efficiency.
In addition, load-independent constant current (CC), constant voltage (CV), and/or their
hybrid profiles are recommended for charging Li-ion batteries [12,13]. Therefore, the design
and implementation of high-performance WPT systems mainly consider variations in both
MIs and loads [14,15]. Furthermore, to minimize the volt-ampere (VA) rating of the power
supply and reduce the reactive power, the zero-phase angle (ZPA) input is desirable [16,17].

As the critical part of the WPT system, compensation topology is crucial to compensate
for the reactive power, improve system efficiency, and determine system output character-
istics [18,19]. Series-series (SS), series-parallel (SP), parallel-series (PS), and parallel-parallel
(PP), which consist of series or parallel components on the primary and secondary sides,
are the four essential topologies. Although the compensation with ZPA input and CC/CV
output can be achieved, SS is the only topology independent of MI and the load condi-
tion among them [20,21]. The essential topologies have a limited ability to tolerate wide
load variations and misalignments. Higher-flexible compensation topologies, which have
a higher degree of design freedom due to more resonant components being used, are
presented against the MI and load variations. Conversely, more passive components will
increase the system’s volume and cost. Furthermore, the core loss and thermal management
of high-power-level and high-frequency inductor design will aggravate the core loss and
thermal issues. In light of this, numerous integrated topologies are proposed to improve
the performance of WPT systems under misalignment conditions [10].

Topology integration in WPT systems means that the additionally compensated induc-
tors generate a magnetic field to couple with the main coils and transfer power. Typically,
the topology integration is designed with some special magnetic couplers. For effective
integration, the integrated topologies should be designed so that the original ZPA input and
load-independent output properties are not affected. Meanwhile, relative control strategies
have been proposed to maintain the CC/CV output and improve the overall performance
under misalignment conditions.

This paper compares and describes highly flexible compensation topologies, integra-
tion methods, and relative control strategies for high misalignment-tolerant WPT systems.
Section 2 presents a detailed review of existing misalignment tolerant compensation topolo-
gies based on the configuration, effects on the soft-switching and/or ZPA of the inverter,
load-independent output properties, and the misalignment tolerance behavior. In Section 3,
the topology integration principle and its design objectives can be found. Different integra-
tion topologies’ design, implementation, and performance are comprehensively studied,
analyzed, and compared. Section 4 discusses the control strategies utilized to cope with
load variations and misalignment to increase system efficiency and stability. Section 5
provides the main challenges and future developments, whereas the last section concludes
the paper.

2. Highly Flexible Compensation Topologies

Due to the loose coupling between the primary and secondary coils, the reactive power
in the WPT system is high [22]. Compensation topologies are essential for the WPT to
compensate for the reactive power to offer high power density, efficiency, and flexible
output voltage/current. Meanwhile, the variation of MI due to the misalignment between
the primary and secondary coils will lead to input impedance change, deterioration of
the output power stability, and reduction in the system efficiency [11]. Therefore, the
requirements for the misalignment-tolerant output should be considered in the design of
the compensation topologies. Some of the common compensation topologies and their
design challenges in terms of misalignment tolerance capability are studied.
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2.1. High-Order Topologies

To improve the misalignment tolerance, more components, namely inductor (L) and
capacitor (C), are added to the basic compensation topologies, forming higher-order com-
pensation topologies. More components may reduce the system efficiency as a tradeoff.
However, the additional compensation components offer more freedom for the resonant
parameters design to achieve the desired characteristics, such as the load-independent
ZPA input, constant output, high power density, and misalignment tolerance. Numerous
high-compensation topologies, such as S/SP [23,24], S-LCC [25], S-CLC [26,27], CLC-S [28],
LCL-S [29], LCC-S [30,31], LCC-P [32,33], LCL-LCL [34], and LCC-LCC [35–37], are pro-
posed along with parameter design methods to overcome the coil misalignment and load
variations. Table 1 summarizes these high-order compensation topologies’ typical operating
angular frequencies obtaining the ZPA input and constant output conditions.

Table 1. Typical Characteristics of high-order compensation topologies.

Topology Circuit Typical Operating Angular Frequency Input Impedance Output Gain

S/SP Vin

Cp

Lp Cf

Cs

Ls

Iin Io

VoVoR

Mps

ω = 1√
(Lp+ω2 M2

psCf)Cp

= 1√
LsCs

Zin =
ω2 M2

ps
R

Io
Vin

= j 1
ωMps

S-LCC RVin

Cp

Lp

Lf

Cf

Cs

Ls

Iin Io

VoVo

Mps

ω = 1√
LpCp

= 1√
(Ls−Lf)Cs

= 1√
LfCf

Zin =
M2

psR
L2

f

Vo
Vin

= Lf
Mps

S-CLC Vin

Cp

Lp CsLs

Lf

Cf

Iin Io

VoVoR

Mps

ω = 1√
LpCp

=

√
Ls+Lf
L2

f Cf
=
√

Ls+Lf
Ls LfCs

Zin =
ω2 M2

ps L2
f

L2
s R

Io
Vin

=
−jLs

ωLf Mps

CLC-S
Cs

Ls

Cp

LpLf

Cf

Vin

Iin Io

VoVoR

Mps

ω = 1√
(Lp+Lf)Cp

= 1√
LsCs

= 1√
LfCf

Zin = − L2
f R

M2
ps

Vo
Vin

=
−Mps

Lf

LCL-S Vin

Lf

Cf Lp

Cs

Ls

Iin Io

VoVoR

Mps

ω = 1√
LpCf

= 1√
LsCs

= 1√
LfCf

Zin =
L2

f R
M2

ps

Vo
Vin

=
Mps
Lf

LCC-S Vin

Lf

Cf

Cp

Lp

Cs

Ls

Iin Io

VoVoR

Mps

ω = 1√
(Lp−Lf)Cp

= 1√
LsCs

= 1√
LfCf

Zin =
L2

f R
M2

ps

Vo
Vin

=
Mps
Lf

LCC-P Vin

Lf

Cf

Cp

Lp CsLs

Iin Io

VoVoR

Mps

ω = 1√(
Lp−Lf−

M2
ps

Ls

)
Cp

= 1√
LsCs

= 1√
LfCf Zin =

ω2 L2
f L2

s
M2

psR
Io
Vin

= j−Mps
ωLf Ls

LCL-LCL RVin

Lf1

Cf1 Lp

Lf2

Cf2Ls

Iin Io

VoVo

Mps

ω = 1√
Lf1Cf1

= 1√
LpCf1

= 1√
LsCf2

= 1√
Lf2Cf2

Zin =
ω2 L2

f1 L2
f2

M2
psR

Io
Vin

= j −Mps
ωLf1 Lf2

LCC-LCC RVin

Lf1

Cf1

Cp

Lp

Lf2

Cf2

Cs

Ls

Iin Io

VoVo

Mps

ω = 1√
Lf1Cf1

= 1√
(Lp−Lf1)Cp

= 1√
(Ls−Lf2)Cs

= 1√
Lf2Cf2

Zin =
ω2 L2

f1 L2
f2

M2
psR

Io
Vin

= j −Mps
ωLf1 Lf2

It can be observed from Table 1 that all of these topologies can be designed with ZPA
input and load-independent output. A higher degree of design freedom for the WPT system
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can be obtained by adding more compensation components. In the CLC, LCL, and LCC
compensation topologies, the constant amplitude of the output can be adjusted by changing
the values of Lf and Lf1. However, in the LCL compensation topologies, the restriction of
equal inductance values for the compensation inductance and the main coil reduces the
flexibility of the topology design. Additionally, the compensation inductor Lp in the CLC-S
compensation topology can be designed to be smaller than the LCC-S compensation topology,
reducing the system volume and power losses. However, the operating angular frequency
of the S/SP and LCC-P compensation topologies are both functions of Mps, increasing the
difficulty and complexity of system design. As a result, it is difficult for the system to obtain
a stable output under misalignment conditions. Furthermore, for the system with controls,
this poses challenges to the system control to be a faster response, higher precision, and wider
tracking range to Mps.

Apart from the typical characteristics presented in Table 1, these compensations
can also be designed with other output characteristics by changing the operating fre-
quency due to more compensation components. Therefore, the higher-order compensation
topologies can implement CC/CV charging profiles, which are more suitable for battery
charging [12,13,38]. However, the ZPA input cannot be achieved in both CC and CV charg-
ing modes for all these high-order compensation topologies [33]. Therefore, the topology
parameters should be redesigned with the actual MI under the misalignment conditions.

In Table 1, it can be found that the output of the S/SP, S-LCC, and S-CLC compensation
topologies are all proportional to 1

Mps
. When Mps approached zero, i.e., the secondary

pad moves out of the misalignment tolerant range, there will be a dramatic increase in
the output, causing damage to the load equipment. Meanwhile, the input impedance of
the S/SP, S-LCC, and S-CLC compensation topologies are all proportional to Mps, which
will cause a significant drop under the large misalignment. As a result, an overcurrent
will occur on the primary side. However, the CLC- and LCC-compensation topologies
can provide more significant tolerance to coil misalignment. Moreover, comparing the
S-LCC and LCC-S, S-CLC and CLC-S topologies, the higher stable system can be achieved
by using double CLC- and LCC-compensation topologies.

Numerous novel compensation topologies and optimized design methods are pro-
posed to further improve the misalignment tolerance of the compensation topologies.
In [23], a design method for parameters of the S/SP compensation topology is proposed
based on the relationship between the primary input impedance angle and secondary
input impedance angle with coupling coefficient and load resistance. To make the S/SP
compensation topology tune at the optimal coefficient achieving high misalignment toler-
ance capability, a minimizing output voltage fluctuation design method is provided in [39].
In [40], a novel S-CLCC compensation topology is proposed to resist MI changes due to
coil misalignment. The ZPA input condition can always be maintained under the load-
independent CC and CV output modes, which are shifted based on the filter with a double
bandpass. In [41], an S–S–LCLCC compensation for three-coil WPT with load-independent
CV output is proposed against the load variation and coil misalignment. The voltage stress
is reduced, and the output power and the system light-load efficiency are improved. In [42],
an X-type LLCC compensation topology is proposed, which has a stable power transfer
capacity without using a dedicated coil design and tight control.

Furthermore, a detuned design method based on the sensitivity of the coupling
coefficient is proposed for a family of compensation topologies [43]. However, the design
is complicated, and the reactive power due to the non-resonant state increases the system’s
losses. The misalignment tolerance capability is insufficient based solely on compensating
topology design.

2.2. Reconfigurable Topologies

To overcome the limited misalignment tolerance of the high-order compensation
topologies, reconfigurable compensation topologies switching between two or more mag-
netic couplers or using switchable topologies/components based on coil misalignment
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conditions are presented, as shown in Figure 1. With the reconfigurable topologies, any
random-direction misalignment tolerance can be improved.

Mps

Vdc

Inverter

Primary

compensation network

Lp

Secondary

compensation network

RVo

(a)

AC

DC

Ls

Rectifier

DC

AC

S1 S2 S3 S4

ac switch I ac switch II

Mps

Vdc

Inverter

Primary

compensation 

network

Lp

Secondary

compensation 

network

RVo

(b)

AC

DC

Ls

Rectifier

DC

AC

S1 S2 S3 S4

ac switch I ac switch II

Multi-

transmitter

Multi-

receiver

Figure 1. Schematic of the reconfigurable topologies with (a) switchable topologies/components and
(b) switchable multiple couplers.

The reconfigurable topologies switching between different topologies, such as SS and
PS (or SP and PP ) topologies [44], LCC-LCC and LCC-S topologies [45], S-S-S and S-S-LCC
topologies [46], etc., are proposed. A hybrid compensation topology switched between SS and
LCC-LCC topologies is presented in [47] to maintain the system efficiency for a wide range
of loads. The two topologies are switched by using two AC switches based on the wireless
communication links. In [48], a novel topology switched between SS and LCC-S topologies
is proposed to enable CC and CV. In this design, only one relay is utilized. However, these
designs mainly focus on achieving inherent CC/CV output profiles under load variations.
To achieve both the tolerance to coil misalignment and load variations in a wide range, [49]
presents a reconfigurable topology based on two equivalent detuned SS topologies. The two
SS topologies switch at the crossover coupling coefficient point by an ac switch to obtain the
constant transfer power. To overcome the limitation of SS topology under large misalignment,
a switchable topology between the SS and LCCC-S is proposed in [50]. By switching at the
boundary point, the equivalent MI can be stabilized under the misalignment conditions.

In addition, reconfigurable topologies based on switchable components are proposed
to improve the misalignment tolerance. In [51], a shape-independent reconfigurable coil
array based on the variable capacitors is proposed to tolerate the misalignment, which can
be applied to any conventional coil. By switching the parallel-compensated capacitance
of the LCC–LCC topology under misalignment conditions, the constant output power can
be maintained over a wide coupling variation [52]. However, for a significant tolerance to
coil misalignment and load variation, the switchable compensation components should be
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designed with a wide resonant matching range in the above methods [53]. Furthermore,
multi-coil-based reconfigurable topologies are proposed in [54–56]. The stable output is
obtained by switching the multi-coils according to the coil misalignment position. A digital
transmitter (TX) coil composed of multiple parallel sub-coils is proposed in [57]. The radius
of the digital TX coil can be switched to an optimal value for maximum coil-to-coil efficiency,
depending on the position of the receiver coil. In [58], a reconfigurable topology linking
Two-, Three-, and Four-Coil operation modes is proposed to tolerate air-gap change. By
optimizing the turn ratio of the coils, the system can output the desired power with a large
air-gap range with ZPA and ZVS-ON conditions. In [59], an intermediate coil, which can be
switched by an additional inverter between the repeater-aided and power-interactive modes,
is designed to enhance the system efficiency and misalignment tolerance. A novel magnetic
coupler with a flexible coil structure according to the relative position of the primary and
secondary coils is proposed to enhance the horizontal misalignment tolerance [60]. A stacked
coil is designed to tolerate lateral misalignment [61]. The stacked coil is integrated with three
layers of coils of different sizes. By switching the coil pair depending on the misalignment,
high transfer efficiency can be maintained with an extreme misalignment.

To realize the reconfigurable circuit, numerous selection switches and/or passive
components should be added to the primary and/or secondary sides, increasing the sys-
tem losses, cost, weight, and volume. Furthermore, the switchable passive compensation
components used in the above methods are mostly nonlinear adjustments with a limited
matching range and difficulty guaranteeing matching accuracy. To ensure precise com-
pensation, the switches must be equipped with a detector and controller, despite applying
the linear components [62–64]. Moreover, the potential communication delay and inter-
ruption issues will result in unreliability for tolerating the coil misalignment and load
variations [65–70]. The control strategies will be discussed in Section 4.

As analyzed, Table 2 gives a summary of the comparison of the characteristics of
different highly flexible compensation topologies.

Table 2. Comparison of different highly flexible compensation topologies.

Compensation Topology Type Advantages Disadvantages

High-order topology

• The degree of design freedom is high.
• The CC/CV charging profiles with ZPA

input can be implemented by changing
the resonate frequency.

• The constant output can be maintained in
a certain coil misalignment range.

• More compensation components increase
the system volume, cost, and power losses.

• The high-frequency inductor leads to core
loss and thermal management challenges.

• Misalignment tolerance capacity is
insufficient.

Reconfigurable
topology

Topology switching

• It combines the advantages of two topolo-
gies.

• The primary purpose is to tolerate the
load variation.

• A specific coil structure needs to be designed
to achieve coil misalignment tolerance.

• More switches and compensation compo-
nents are required, increasing the system
volume, cost, and power losses.

• An additional control circuit is needed, in-
creasing system design complexity.

Switchable compensation
component

Reconfigurable coil
structure

• A much higher capacity for tolerating coil
misalignment and load variation can be
achieved.

• The system can offer higher power trans-
fer efficiency.

• ZPA input cannot be maintained in all con-
ditions.

• More switches and compensation compo-
nents are required, increasing the system
volume, cost, and power losses.

• An additional control circuit is needed, re-
sulting in complex system design.

• The switchable components have a limited
matching range and matching accuracy.

3. Topology Integration Principle and Implementation
3.1. Design Objectives for Integration

Although the reconfigurable compensation topologies can mitigate the effects of
coil misalignment and load variations on system output, the introduced switches and
passive components usually make the system bulky, increasing system volume and losses
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and causing thermal issues [10,71]. Therefore, compact design and integration for those
inductors are necessary [72,73]. The inductors integrated as the compensation coils create
more MIs between the primary and secondary pads, as shown in Figure 2. Based on Table 1,
the effects of the compensation coils on the input and output profiles of the high-order
compensation topologies are shown in Table 3, where Mps is the MI between the primary
and secondary main coils, Mfp, Mfs, Mf1p, Mf1s, Mf2p, Mf2s, and Mf1f2 are the MIs between
the compensation coil and primary and secondary main coils.

Vin

Lf

Cf

Cp

Lp

Cs

Ls

Iin Io

VoVoR

Mps

RVin

Cp

Lp

Lf

Cf

Cs

Ls

Iin Io

VoVo

Mps

Vin

Cp

Lp

Cs

Ls Lf

Cf
Iin Io

VoVoR

Mps
Cs

Ls

Cp

Lp

Mps
Lf

Cf

Vin

Iin Io

VoVoR

Vin

Lf

Cf

Cp

Lp CsLs

Iin Io

VoVoR

Mps

RVin

Lf1

Cf1

Cp

Lp

Lf2

Cf2

Cs

Ls

Iin Io

VoVo

Mps

(a) (b) (c)

RVin

Lf1

Cf1

Cp

Lp

Lf2

Cf2

Cs

Ls

Iin Io

VoVo

Mps

RVin

Lf1

Cf1

Cp

Lp

Lf2

Cf2

Cs

Ls

Iin Io

VoVo

Mps

Mfp Mfs

Mfs

Mfp

Mfp

Mfs

MfsMfp MfsMfp Mf1sMf1p

Mf2s Mf2p

Mf1s Mf2p
Mf2sMf1p

(d) (e) (f)

(g) (h)

Figure 2. Conventional high-order network topologies for WPT considering extra couplings brought
by the compensation inductors. (a) S-LCC topology. (b) S-CLC topology. (c) CLC-S topology. (d) LCC-
S topology. (e) LCC-P topology. (f) Primary-side-integrated LCC-LCC topology. (g) Secondary-side-
integrated LCC-LCC topology. (h) Double-side-integrated LCC-LCC topology.

As shown in Table 3, only the secondary-side-integrated LCC-LCC topology can
maintain the CC output. However, it lost the ZPA input condition. For the rest of the
topologies, the ZPA input and load-independent constant output cannot be obtained using
the original compensation conditions, resulting in high reactive power and reduced power
transfer capability. It poses a challenge for achieving high-performance WPT systems.
Furthermore, when the misalignment occurs in a large range, especially in the dynamic
WPT system, the WPT systems usually experience output power pulsation and efficiency
decrease. Therefore, the integration of a compensation topology supporting misalignment
tolerance is preferable.

Numerous coil topologies with decoupling designs are proposed to eliminate the
effects of the introduced additional MIs due to compensation coils on the original input and
output properties of the compensation topologies [74–76]. In those designs, compensation
coils are decoupled from all coils, which means the magnetic fields they generate have
not participated in the power transfer. Moreover, the decoupling design limits the design
freedom of compensation coil integration.
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Table 3. Operational characteristics of high-order compensation topologies with extra couplings
using conventional resonant calculation methods.

Topology Operating Angular Frequency Input Characteristic Output Characteristic

S-LCC ω = 1√
LpCp

= 1√
(Ls−Lf)Cs

= 1√
LfCf

Non-ZPA input
Inductive circuit (Lf > Mfs)

Vo ∝ R

S-CLC ω = 1√
LpCp

= 1√
(Ls+Lf)Cs

= 1√
LfCf

Non-ZPA input
Inductive circuit (Lf > Mfs)

Vo ∝ R

CLC-S ω = 1√
(Lp+Lf)Cp

= 1√
LsCs

= 1√
LfCf

Non-ZPA input
Inductive circuit

(Lf > Mfp, Mfs > Mps)

Vo ∝ R

LCC-S ω = 1√
(Lp−Lf)Cp

= 1√
LsCs

= 1√
LfCf

Non-ZPA input
Capacitive circuit

Vo ∝ 1
R

LCC-P ω = 1√(
Lp−Lf− M2

Ls

)
Cp

= 1√
LsCs

= 1√
LfCf

Non-ZPA input
Capacitive circuit

Io ∝ 1
R

LCC-LCC
(primary-sided integration)

ω = 1√
Lf1Cf1

= 1√
(Lp−Lf1)Cp

= 1√
(Ls−Lf2)Cs

= 1√
Lf2Cf2

Non-ZPA input
Capacitive circuit

Io ∝ 1
R

LCC-LCC
(secondary-sided integration)

Non-ZPA input
Capacitive circuit (Lf2 > Mfs)

Io
Vin

= j −M
ωLf1(Lf2−Mf2s)

LCC-LCC
(double-sided integration)

Non-ZPA input
Capacitive circuit (Lf2 > Mf2s)

Io ∝ 1
R

To improve the design freedom of high-order compensation topologies integration,
the design objectives for topology integration can be summarized as follows:

(1) To reduce the reactive power and system losses, the ZPA input should be obtained.
(2) Decoupling between the compensation coils and the original primary and secondary

coils are not required to improve the design freedom.
(3) The load-independent constant output should be obtained to meet the specific charg-

ing conditions.
(4) To achieve stable charging, the tolerance for misalignment should be supported.

Many works have been performed on topology integration for high-tolerant WPT sys-
tems. These approaches can be classified into two categories: (1) single-sided integration and
(2) double-sided integration. A brief literature survey is given on these integration designs.

3.2. Integrated Hybrid Topologies

Hybrid compensation topologies are presented to overcome the limited misalignment
tolerance of a single compensation topology. Combining the advantages of two or more
topologies, the hybrid compensation topologies provide higher tolerance to the MI and load
variations. Based on [77–82], the overall schematics of the hybrid compensation topologies
are illustrated in Figure 3, including the input-parallel-output-parallel (IPOP), input-series-
output-parallel (ISOP), input-parallel-output-series (IPOS), and input-series-output-series
(ISOS) topologies. The primary and secondary pads consist of m and n coils, respectively,
where m ≥ 1, n ≥ 1, and m = n = 1 refer to the conventional integrated topologies, as
shown in Figure 2. Moreover, multi-inverter/rectifier WPT systems are proposed based on
the hybrid compensation topologies for applications with high output power and flexible
output power levels. Based on [31,83–86], the schematics of the multi-inverter/rectifier
WPT system are shown in Figure 4, including the IPOP, ISOP, IPOS, and ISOS structures. In
addition, the two types of structures shown in Figures 3 and 4 can be combined [87–90].
The additional MIs between the primary and secondary coils provide more induced voltage
in the secondary coils to tolerate the misalignment. However, more MIs, especially the
cross-coupling on the primary and secondary sides, will complicate the compensation
topology parameter design. Meanwhile, higher power losses and current stresses will
be introduced.
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Figure 3. Schematics of the hybrid compensation topologies. (a) IPOP topology [77]. (b) ISOP
topology [78,79]. (c) IPOS topology [80]. (d) ISOS topology [81,82].
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Figure 4. Diagram of multi-inverter/rectifier WPT modules based on (a) IPOP structure [83,84].
(b) ISOP structure [85,86]. (c) IPOS structure [31]. (d) ISOS structure.

Since coupling coils replace the compensation inductors to participate in the power
transfer, the topology integration is designed in conjunction with some special magnetic
couplers to address the aforementioned issues. Table 4 provides the basic coil structures
utilized in the integration design. Different integration methods are reviewed as follows.
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Table 4. Comparison of magnetic couplers used for compensation topology integration design.

Magnetic Coupler
Integration Features

Type Shape

Circular

• They can be used in the integrated reversely connected coil structures [91–93].
• They are decoupled from DD coils under an aligned position [76].
• The rectangular coil is more interoperable than the circular coil in integration

designs.
Rectangular

Solenoid
• The magnetic flux leakage is more than circular/rectangular coils [94].
• It has a risk of magnetic saturation, which could lead to thermal issues in the integrated

design [31].

Double-D (DD)

• Due to the coupling null, it has a higher tolerance to misalignment only in one direction [95].
• It is less interoperable with unipolar coils and is decoupled from unipolar coils under the

aligned position [95–97].
• It is decoupled from orthogonal DD and BP coils [83,88].
• Various coil shapes can be used based on the DD coil winding principle [93].

Bipolar (BP)
• It has a higher tolerance to misalignment than DD coils [97].
• It is decoupled from orthogonal DD coils [83].
• The ideal decoupled overlapping value complicates its design [88].

DD quadrature (DDQ)

• It is an integrated coupler integrating DD and Q coils, where DD and Q coils can be
integrated with any form [80,95,98].

• It has a higher tolerance to misalignment in both the lateral and horizontal directions [95].
• It has a higher core loss and thermal issues at the pad center [31].

Tripolar (TP)

• It can be designed with three mutually decoupled coils. The design is complex, and a
complicated control strategy is needed [89,99].

• It has a higher rotational misalignment tolerance [89].
• It is suitable to use for multiple transmitters/receivers and high-power WPT systems [94].

3.2.1. Single-Sided Integration

Based on the special magnetic couplers, a series of integration methods are proposed
based on the reversely connected coil structures [91,92], as shown in Figure 5a. Multiple
anti-parallel square coils are integrated into the main coil to maintain the load power under
horizontal misalignment [100,101]. By integrating the reversely connected inner coil into
the main coil, the decline in the mutual inductances between the transmitter and receiver
coils, the receiver and reversely connected coils can be the same within a certain range of
misalignment. As a result, the constant MI difference is achieved to stabilize the system
output. In [102], an optimization design based on a cost function is proposed to increase
the degree of freedom for the reversely connected coil structure, as shown in Figure 5b. By
optimizing the parallel-compensated capacitance in the LCC network, the restriction on
the variation correlation of the MIs between the primary and secondary pads is eliminated.
However, the design of constant MI difference will decrease the equivalent MI between
the primary and secondary pads, resulting in reduced power transfer capability. In [103],
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identical compensation and transmitter coils configured in a reversed-series structure are
firmly connected to increase the magnetic flux density.

Contrary to the reversely connected coil structures, a structure with complementary-
coupling effects of both compensation and main coils is another effective solution to mitigate
the misalignment effects. A transmitter integrated by two asymmetrically decoupled
unipolar coils is proposed based on the dual-coupled LCC-S compensation topology [104].
The high misalignment tolerance is achieved with the opposite impacts of MIs between the
two decoupled coils and the receiver coil on output power. In [105], a primary integrated
LCC-LCC compensation topology based on a dual-channel DDP-type transmitter coil is
proposed. The DDP coil is combined with a DD coil and a flux pipe (or solenoid coil) (P coil).
A hybrid magnetic coupler integrated by DD and solenoid coils, as shown in Figure 5c, is
proposed to enhance the misalignment tolerance [106,107]. Similarly, a new hybrid XPAD
derived from solenoids is proposed in [108]. The dual-channel DDP and XPAD coils both
consist of a series-connected DD and a solenoid coil, where the solenoid coil is arranged in
the gaps between the turns of the DD coil. The system has a higher tolerance to vertical
and lateral misalignments by providing horizontal and vertical coupling effects.

For the secondary side, a secondary-sided integration design for the input-parallel
output-series structure with LCC-S compensation is proposed in [109]. The primary and
secondary coils are orthogonal decoupled transformers consisting of the DD and solenoid
coils, as shown in Figure 5d. In [110], a high-misalignment tolerate S-S/LCC hybrid WPT
with two receivers is proposed. The primary coils are composed of two overlapped DD coils
connected reversely in series, as shown in Figure 5e. The two receiver coils are rectangular,
have the same size, and are designed to be BP coils. To reduce the receiver volume, a
compact DD two-quadrature (DD2Q) receiver is designed as an S/P-P converter to reduce
output fluctuation under lateral and longitudinal misalignments [87]. In this design, two
rectangular coils are designed to be BP-type coils and integrated into the symmetrical
positions of the DD coil, as shown in Figure 5f. Table 5 summarizes the main features of
different single-sided integration designs.

Table 5. Summary of the single-sided integration designs.

Reference Integration Structure ZPA Input Output
Characteristic

Misalignment Tolerance (x- and y-Axes)
(Percentage of the Primary Coil Length)

[87] DD2Q coils Yes CV x-axis: ∼ ±80 mm (55%) y-axis: ∼ ±37 mm (44%)
[91] Reversely series coils Yes CC x-axis: ±180 mm (40%) y-axis: ±180 mm (40%)

[102] New reversely series coils Yes CC x-axis: ±140 mm (50%) y-axis: ±140 mm (50%)
[103] Reversely series coils Yes CC x-axis: ±200 mm (44.4%) y-axis: ±200 mm (44.4%)
[107] SDDP coils Yes CV x-axis: ±140 mm (67%) y-axis: ±110 mm (44%)

[109] Orthogonal decoupled
transformer Yes CV x-axis: ±200 mm (33.3%) y-axis: ±200 mm (33.3%)

[110] Overlapped DD coils Yes CC/CV x-axis: ±30 mm (5%) y-axis: ±250 mm (41.7%)

3.2.2. Double-Sided Integration

Double-sided integration designs are proposed to make the system more compact
and improve misalignment tolerance. Generally, the double-sided integration designs are
used for hybrid compensation topologies due to the multi-transmitter/receiver structure.
For multiple WPT systems, a general design method for a family of hybrid compensation
topologies is proposed in [111–113] to maintain the system output under misalignment con-
ditions. In [80], a hybrid topology formed by an LCC-S topology and an S-LCC topology is
proposed based on overlapped rectangular and DD coils. The two topologies are connected
in parallel at the primary side and series at the secondary side. However, the current in S
compensation topology increases exponentially and even destroys the system when there
is a high misalignment. To avoid the overcurrent in the S compensation topology, a hybrid
WPT topology in which the primary LCC and S topologies are connected in series based on
the Quadruple-D Quadrature Pads (QDQPs) is proposed [78], as shown in Figure 5g.
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Figure 5. Integrated magnetic coupler topologies. (a) Reversely series coils [91,92]. (b) New reversely
series coils [102]. (c) SDDP coils [106,107]. (d) Orthogonal decoupled transformer [109]. (e) Over-
lapped DD coils [110]. (f) DD two-quadrature (DD2Q) coils [87]. (g) Quadruple-D Quadrature
Pads (QDQPs) [78]. (h) Overlapped rectangular and DD coils [114]. (i) Orthogonal overlapped DD
coils [79]. (j) Cross-shaped hybrid DD coils [81]. (k) Overlapped rectangular and multi-DD coils [83].
(l) Decoupled Multi-Unipolar Coils [90].

Since the non-polarized and polarized coils are inherently decoupled under over-
lapped conditions, the overlapped rectangular and DD coils, and the orthogonal over-
lapped DD coils are designed to eliminate the effects of the cross-couplings [79,114], as
shown in Figure 5h,i. As shown in Figure 5h, it can be regarded as a DDQ coil [80]. It should
be noted that the position and size of the rectangular and DD coils can be changed [115].
In [79], an orthogonal DD coils-based hybrid compensation is proposed for an input-series-
output-parallel (ISOP) WPT with a single-ended resonant converter. An integration method
for a double-sided S-LCC hybrid compensation topology based on a cross-shaped hybrid
DD coil is proposed in [81], as shown in Figure 5j. In [98], DD coils are integrated into
the rectangular main coils to enhance the front-to-rear and vertical misalignments of LCC-
LCC-compensated WPT. The DD coils are small enough to eliminate the extra couplings
even under the misalignment conditions. In [83], an integrated LCC-LCC compensation
topology in a multi-transmitter/receiver structure is proposed. The DD and rectangular
coils are adopted as the main coils of the two inverters to eliminate the cross-coupling
effects. All the compensation coils are DD-type coils placed orthogonally to the DD main
coils, as shown in Figure 5k. The coupling between the main coils is not affected by the
compensation coils under the misalignment condition. Based on DD and rectangular coils,
an integrated topology with parallel S- and LCL-type compensations in the primary is
proposed in [116]. In the LCL network, inductances are composed of two orthogonally
overlapped DD coils. Without considering the decoupling between the compensation coils
and the original primary and secondary coils, a hybrid compensation topology with a
dual-concentric-coil transmitter and single-coil receiver is proposed in [117].

However, in the design of double-sided integration, some issues still need atten-
tion. In [84], an LCC-LCC-compensated input-parallel-output-series (IPOS) multiple WPT
system is presented. Although both the two transmitters and the two receivers use the
non-polarized and polarized coils, the effect of cross-couplings can be avoided only un-
der one misalignment direction. As the misalignment increases, the cross-couplings will
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present again, and the stable power transfer capacity and ZPA input will be lost. A novel
integrated double-sided LCC compensation is introduced in [88]. The naturally decoupled
DD and rectangular coils are used as the transmitter, and the BP coil is used as the receiver.
However, the BP coil is difficult to design to achieve the decoupled overlapping value. An
integrated TP coil using double-sided LCC-compensated WPT is proposed to achieve hori-
zontal, vertical, and rotational misalignments [89]. Orthogonal DD coils are integrated as
the transmitter, but the decoupling design for the TP coil increases the system’s complexity.
In [90], an integrated LCC-S-compensated multiple-transmitter-multiple-receiver system
is proposed. In this design, two unipolar decoupling coils (L3 and L4) are integrated into
two unipolar main coils (L1 and L2) to mitigate the MIs of the same-side coils. As shown in
Figure 5l, L1 and L2 and L3 and L4 are connected in series to form two transmitting coils,
respectively. The decoupling between the same-side coils is obtained by designing L3 and
L4. Meanwhile, the low-power areas of the two unipolar coils are mitigated. However, the
compensation inductances in these designs are not integrated, and bulky volume and high
power losses are still unsolved.

Furthermore, since the DD coils have a good misalignment tolerance in only one
direction, multi-DD coils [81], compact quadruple-D quadrature pad (QDQP) coils [78],
and compact double-D quadrature pad (DDQP) coils [82], combined with a hybrid com-
pensation topology design, are proposed to improve the misalignment tolerance capability
on the horizontal plane. The equivalent MI is stabilized with the opposite gain trends of the
two hybrid compensation topologies under misalignment conditions [82]. Table 6 provides
some key features of the double-sided integration designs.

Table 6. Summary of the double-sided integration designs.

Reference Integration Structure ZPA Input Output
Characteristic

Misalignment Tolerance (x-and y-Axes)
(Percentage of the Primary Coil Length)

[78] QDQP coils Yes CV x-axis: ±150 mm (37.5%) y-axis: ±150 mm (37.5%)

[79] Orthogonal overlapped
DD coils Yes CC N/A

(Coupling range: 0.1–0.345)
[81] Cross-shaped hybrid DD coils Yes CC N/A

(Coupling range: 0.135–0.345)
[82] DDQP coils N/A CC x-axis: ±200 mm (50%) y-axis: ±45 mm (11.3%)

[83] Overlapped Q and multi-DD
coils N/A CP x-axis: ±200 mm (50%) y-axis: ±200 mm (50%)

[90] Decoupled Multi-Unipolar
Coils Yes CV x-axis: ±200 mm (50%) y-axis: ±150 mm (37.5%)

[114] Overlapped Q and DD coils N/A CP x-axis: ±150 mm (33.3%) y-axis: ±150 mm (33.3%)

4. Control Systems

This section provides an overview of the WPT control systems to tolerate coil mis-
alignment and load variations to achieve a stable output. The aims of the system controls
can be described as the following three:

(1) Ensuring the required power is transferred to the load even under misalignment con-
ditions.

(2) Maintaining the load-independent constant output to meet the specific charging needs.
(3) Achieving maximum system efficiency with the ZPA input condition.

A number of control schemes have been proposed to achieve the load-independent CC
and/or CV output and misalignment tolerance, such as additional DC-DC converter [118–120],
frequency tuning [52,121], maximum frequency tracking [122], phase shift control [123–125],
duty-cycle control [126,127], load identification [128], and hybrid control strategy [129,130].
These strategies can be classified as single-sided control and double-sided control. The
overviewed schematic of control systems is illustrated in Figure 6.
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Figure 6. Schematic of possible control strategies for WPT systems.

4.1. Single-Sided Control
4.1.1. Primary-Sided Control

The inverter is commonly controlled in the primary-sided control strategies based on
the information on the battery voltage/current, which is measured by a load identifica-
tion system and delivered to the primary side by a wireless communication module. By
analyzing that information, the firing angle of the thyristors and duty-cycle and switching
frequency of the inverter are controlled by the frequency tuning, phase shift, and duty-cycle
controllers to obtain the desired input voltage.

In [131], a multi-band frequency tracking control is proposed for S-LCC-compensated
WPT to match CC and CV modes and to mitigate the misalignment effects. For misalign-
ment cases, two narrow frequency bands are selected for control to maintain the CC output
and limit reactive power. The duty ratio of the inverter is controlled to maintain the CV
output. A hybrid control strategy based on the phase shift control and the switch-controlled
capacitor is presented for an LCC-S-compensated WPT system in [129]. In the whole
voltage regulation range, the reactive current in the resonant tank is minimized due to the
switch-controlled capacitor while achieving ZVS. Moreover, the phase shift control reduces
the power losses of the primary coil at a light load. The variable frequency control method
can also be used to regulate the CC and CV outputs with the ZPA condition [132]. However,
the frequency splitting phenomenon could lead to system instability [80,133].

Furthermore, the information of the battery voltage/current can be used to control the
reconfiguration of the compensation topology. As a result, the output can be regulated to
stable under the misalignment and load variation conditions. Based on the pulse width
modulation (PWM)-controlled inductor and capacitor, a control method to improve power
output under weak coupling is proposed in [134]. The ZPA input and full output power can
be maintained under the misalignment condition by regulating the inductor and capacitor.
Meanwhile, an auxiliary MI identification method based on the primary side parameters is
utilized to achieve parameter regulation.

Moreover, the DC input voltage for the primary inverter can be adjusted by controlling
the primary DC-DC converter to track the constant output based on the information of
the battery voltage/current [135]. For the LCC-N compensation topology, a primary-side
linear control based on an improved load parameters identification method is proposed
in [119]. By changing the duty of the buck converter, the CC/CV output under a wide
load variation is achieved. On the other hand, the inverter can be controlled based on the
primary voltage/current information without any communication between the primary
and secondary sides, which has cost benefits [136].

4.1.2. Secondary-Sided Control

In secondary-sided control, the system output can be stabilized in three ways: (i) the
controlled active rectification, (ii) the additional DC/DC converter, and (iii) the compensa-
tion topology. None of these methods need to communicate with the primary side; however,
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the information of the battery voltage/current still needs to be measured. Moreover, the
secondary active rectifier can be controlled by only the current information of the receiver
without sampling the load condition.

For the LCC-S-compensated WPT system, a novel pulse density modulation (PDM)
control based on load-independent CC/CV output for the SAR is proposed in [137]. The
CC/CV output can be regulated in a wide load range without wireless communication. A
novel operation approach combining the merits of load-independent transfer characteristics
and load impedance matching is provided in [138]. By controlling the switch-controlled
capacitor and the SAR on the secondary side, the constant power (CP) output and load
matching for maximum efficiency is obtained.

Furthermore, detecting misalignments is another way to tolerate and correct misalign-
ments [139]. In this method, positioning control based on misalignment-sensing coils is
proposed to reduce the misalignments. In [140], a receiver position identification method
based on integrated LCC-S compensation topology is proposed. The compensation induc-
tance, constituted by four symmetrical Q coils connected in series, is integrated into the
main coil. By sampling the voltage and current of the compensation and transmitter coils,
the accurate identification of the receiver’s position is achieved, thereby suppressing the
misalignment. The back-end DC/DC converter-based approach is proposed in [118]. How-
ever, extra weight/volume, cost, and power losses will be unavoidable for the additional
DC/DC converter.

Both in the primary- and secondary-sided controls, self-tuning methods based on
switched components with simplified control parameters are proposed to improve the
misalignment tolerance. Those control methods are generally used in reconfigurable and
hybrid compensation topologies. In [141], a self-tuning method based on switch-controlled
capacitors for a series-series (S-S)-compensated WPT system is proposed. In this method,
the resonant parameters are not required. Similarly, a controlled capacitor matrix and a
continuously controlled variable inductor are designed in [142–144], respectively. However,
for a large tolerance to misalignment and load variation, the controlled composition compo-
nents should be designed with a wide resonant matching range in the above methods [145].
Regardless of the extra costs, reliability issues could be introduced due to the speed and
accuracy of the control.

4.2. Double-Sided Control

In double-sided control, the primary and secondary sides should be controlled simul-
taneously, in which fast and reliable communication between the primary and secondary
sides is generally required.

To reduce the converter losses and avoid the hard switching and harmonics in duty-
cycle controls for a large load range, a multivariable control strategy based on the optimal
combination of all control variables is proposed to achieve constant output under large
coil misalignment and load variations and improve the system efficiency [126]. Based
on a software phase-locked-loop (SPLL), the phase error between the secondary side
current and the reference of the pulse width modulation (PWM) modules is filtered to
synchronize the primary and secondary-side driving signals. In [146], a double-side self-
tuning method is proposed to tolerate the mutual inductance variation based on the LCC-S
topology. However, the parameter recognition method is required to recognize both the self-
and mutual inductances. The potential risks, such as latency and data losses of wireless
communication, will cause a breakdown or even destruction of the WPT system. A self-
tuning method based on two switch-controlled capacitors on each primary and secondary
side is proposed [147]. Without wireless communication or parameter identification, the
design can maintain a high power factor and the desired output power against self- and
mutual inductance variation. In [148], a control strategy with ZPA and optimal load
conditions is proposed to cope with large coil misalignment without reliable wireless
communication. In this control, the primary inverter and the secondary converter can be
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operated independently with control freedom. Nevertheless, the stability issues should be
considered carefully using two independent controllers [149].

As analyzed, in the integration design of WPT systems, control is implemented to im-
prove the power transfer efficiency and misalignment tolerance, and to regulate the CC/CV
charging profiles of the battery. Table 7 summarizes the advantages and disadvantages of
different control strategies.

Table 7. Summary and comparison of the control strategies.

Control Type Control Target Advantages Disadvantages

Single-sided
control

Primary-sided
control

DC/DC converter

• It is easy to regulate the output
voltage.

• It has a higher power transfer
efficiency.

• Communication is required to
tolerate coil misalignment.

• The maximum efficiency can-
not be tracked.

Inverter

• There are many control meth-
ods.

• It can offer the maximum effi-
ciency transfer.

• It could be affected by the fre-
quency splitting phenomenon.

• Communication is usually re-
quired to tolerate coil misalign-
ment.

Compensation topology
• It has a better tolerance to coil

misalignment and load varia-
tions.

• A complex matching network
is needed.

• More switches and compen-
sation components increase
power losses.

• Communication is required to
tolerate coil misalignment.

secondary-sided
control

DC/DC converter

• No communication is required.
• The control design is simple.
• It can be compatible with dif-

ferent charging devices.

• It brings extra weight/volume,
cost, and power losses.

Controlled rectifier

• No communication is required.
• It can achieve bi-directional

WPT.
• No DC/DC converter is

needed.

• The primary- and secondary-
sides driving signals should be
synchronized.

• The design complexity is high.

Compensation topology

• No communication is required.
• It has a better tolerance to coil

misalignment and load varia-
tions.

• A complex matching network
is needed.

• More switches and compen-
sation components increase
power losses.

Double-sided control

DC/DC converter
Inverter

Compensation topology
Controlled rectifier

• It can provide the best toler-
ance to coil misalignment and
load variations.

• The system has a higher power
transfer efficiency.

• Communication is required to
tolerate coil misalignment.

• The design is relatively compli-
cated.

5. Challenges and Future Developments

Based on the extensive review in this paper, the stability, reliability, and efficiency of
WPT systems suffer significantly due to coil misalignment and load variations. Integrated
high-order compensation topologies and control methods have been proposed to address
the issues. Although the topology integration can reduce the system volume and increase
the design freedom, the following challenges need to be overcome in future studies:

(1) Innovate new integrated topologies to improve the coupler performance. The topol-
ogy integration is encouraged to be unaffected by parameter changes and enhance
the output to tolerate lateral, vertical, and rotational misalignments. The design
complexity and lightweight coupler should be considered. Furthermore, the ZPA
input condition should be maintained to reduce power losses during the integration
design. In addition, the heat and thermal issues in the topology integration design
also need to be concerned.

(2) The development of an integration method for the dynamic wireless power transfer
(DWPT) to adapt to the development of autonomous driving. Due to more severe
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misalignment, the integration design, especially the primary side, should enable
extensive horizontal misalignment tolerant range while maintaining high system
efficiency. Moreover, the fast and reliable control and position detecting systems, if
necessary, can be utilized.

(3) The integration design should guarantee interoperability between different charging
systems. Therefore, a more general integration design featuring compensation network
and coil interoperability should be studied, which can maintain the misalignment
tolerance capacity between different systems and meet the performance requirements.

(4) Space electromagnetic safety is quite a challenge. Electromagnetic interference (EMI)
caused by leakage in the magnetic field can lead to the poor performance of electronics
and even malfunction or stop working altogether. Furthermore, excessive magnetic
field radiation could bring about adverse health effects or even harm human body
tissue. In addition, leakage in the magnetic field can be coupled with the implanted
device. Therefore, more effective shielding technology should be studied. A more
compact topology integration design can also be the solution to achieve this goal.

(5) The design of a fast, stable, and reliable control system. A control strategy that
achieves the desired performances with the fewest design parameters and control
variables can reduce design complexity and system cost. Moreover, the accuracy,
security, and less latency communication between the primary and secondary sides
are essential to tolerate coil misalignment and load variations.

(6) Optimize metal object detection methods in high-power WPT systems. The metal
objects between the primary and secondary coils will decrease the power transfer
efficiency and cause safety issues, such as heating and accidental fire. For the inte-
grated topologies, the complex coupling conditions will increase the design difficulty
of the detection system based on detection coils. Therefore, integrating the detection
coils into the integrated topology without affecting the performance of the integrated
topology is a challenge for the design of the detection system. Moreover, the detection
methods should be designed with high sensitivity and reliability, no blind zone, and
be cost-effective.

6. Conclusions

This paper reviews some recent advances in the high-order compensation topology
and the integration design for WPT systems to address the misalignment issues. Various
high-flexible compensation topologies and control strategies are summarized to improve
the tolerance to coil misalignment and load variations. The effects of the additional coupling
due to the compensation inductance on the system performance are analyzed. Due to the
extra couplings, the ZPA input and load-independent constant output will be lost using
conventional resonant calculation methods. This paper provides the integration principles
of the compensation topology. The existing integration methods combine the compensation
topology and specific magnetic coupler to improve the tolerance to coil misalignment and
load variations are summarized and compared. The design objectives, challenges, and
suggestions for future development are presented.
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