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Abstract: The rotary engine (RE) is a potential power plant for unmanned aerial vehicles (UAVs) and
automobiles because of its structural and design merits. However, it has some serious drawbacks,
such as frequent maintenance requirements and excessive fuel consumption. This review paper
presents the current status of hydrogen-fueled rotary engine (HRE) technology and identifies the
existing research and development gaps in combustion efficiency and performance of this engine
that might benefit transportation sector. Focusing primarily on the research from past ten years, the
crucial challenges encountered in hydrogen-powered rotary engines have been reviewed in terms
of knock, hydrocarbon (HC) emissions, and seal leakages. The paper identifies the recent advances
in design concepts and production approaches used in hydrogen-fueled rotary engines such as
geometric models of trochoid profiles, port configurations, fuel utilization systems, and currently
available computational fluid dynamics (CFD) tools. This review article is an attempt to collect and
organize literature on existing design methods up to date and provide recommendations for further
improvements in RE technology.

Keywords: rotary engine; hydrogen injection; rotor profile; seal leakage; computational fluid dynamics

1. Introduction

The rotary engine (RE) has been employed as a power plant for unmanned aerial vehi-
cles [1,2] due to its high power density, compact size, light weight, and low vibration [3].
Nevertheless, the RE still lacks rapid development and its numerous unexplored applica-
tions can be further expanded. Industry and academia have recently taken full benefit of its
unique features (small engine size, lightweight, and high-power density) by using rotary
engines as the power source for range extenders. A cross-sectional schematic diagram
of the RE powered by hydrogen is shown in Figure 1. On the subject of RE extenders,
Antonelli et al. [4] and Ribau et al. [5] conducted some useful experimental investigations.
These effective uses of REs demonstrate that this engine has a wide range of potential
applications in the field of extended range power production, and several automakers are
actively working to further improve this technology by utilizing an RE as the power source.
The REs based on conventional methods are currently facing low combustion efficiency and
emission issues due to the trend of high efficiency, energy conservation, and low emissions
needs of the internal combustion engine [6]. Keeping in view the market competition,
the RE is in dire need of new developments in technologies suitable for upgrading RE
performance. Therefore, it is crucial to develop new technologies that are appropriate
for the RE in order to enhance its performance and satisfy the market demand. In this
regard, several researchers have suggested new methods to enhance the RE combustion
and emission features.

This article is organized into five chapters which comprehensively cover different
aspects of REs. Chapter One describes the introduction to the RE, its advantages and
disadvantages, and a brief history of its evolution. Chapter Two highlights the use of
hydrogen as fuel and the challenges faced by the rotary engine in terms of leakages,
knock, and toxic emissions when fueled by hydrogen. Chapter Three, which is the main
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chapter, reports the potential developments in design and various influential strategies
such as fuel enrichment techniques, ignition strategies, and the exhaust gas recirculation
(EGR) method considering the combustion efficiency, seal leakages, knock, and toxic
emissions. Chapter Four presents the computational fluid dynamics (CFD) methods used
to establish simulation models for predicting and estimating the combustion efficiency, seal
leakages, and fluid flow dynamics. Chapter Five concludes the main research outcomes and
addresses the research gaps and recommendations for further research and development
in REs.
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1.1. A Brief History of the Rotary Engine

The concept of the Wankel rotary engine, first introduced in 1951 by Felix Wankel [8],
was that an orbiting rotor in the shape of a curved equilateral triangle served the purpose
of traditionally moving pistons in internal combustion engines. Later, in 1961 [9], Mazda,
the Japanese automaker, licensed the Wankel engine and began installing it in its vehi-
cles. Mazda gradually upgraded the RE to improve its fuel efficiency, and by the end of
that decade its sports cars had become popular in the market [10]. In the mid-1960s, the
Curtiss-Wright Corporation, which controlled the North American rights to the RE, began
investigating spark-assisted stratified-charge rotary engines as a method of improving
power while reducing fuel consumption [11]. This exploration prompted the advancement
of multi-fuel-fit rotating motors [12]. Due to uncertainties about aviation gasoline costs and
availability, general aviation aircraft engines that could burn gasoline became important
during the end of the 1970s and beginning of the 1980s. Because of its use in commercial
aircraft at the time, the general aviation community proposed gasoline or jet fuel [13].
The National Aeronautics and Space Administration’s (NASA) preliminary engineering
study identified the stratified-charge rotary engines from the Curtiss-Wright Corporation
as the best design for this application above gas turbines, diesel engines, and spark-ignition
reciprocating engines [14,15]. The Curtiss-Wright Corporation was granted the Rotary
Engine Technology Enablement Program by NASA in 1983. The Curtiss-Wright Corpora-
tion’s rotary engine division was purchased by John Deere, Inc. in 1984 [16]. John Deere
suggested the construction of multi-fuel-capable rotary engines for a variety of US Marine
combat vehicles in the late 1980s [12]. John Deere and NASA tested a stratified-charge
rotary engines with a brake-specific fuel consumption of 310 g/kWh (0.51 lb/hp-h) at 160
horsepower at 8000 rpm in 1986. They proposed a brake-specific fuel consumption target
of 213 g/kWh (0.35 lb/hp-h) by employing super compounding, adiabatic components, a
lightweight rotor, and reduced contact [15]. According to the findings of their research, a
lean combination may reduce the brake-specific fuel consumption [17]. Rotary engines are
also a fascination of small, miniature, and microscale powerplants. Recently, the rotating
motor concept has been used for miniature electro-mechanical systems [18–20]. Although
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rotary engines are not as efficient as reciprocating engines, they can still be employed in
applications where size, weight, and vibration are critical. Rotary engines can improve
fuel economy by designing modified rotary engines such as the rotary Atkinson or Miller
cycle engines, enhancing combustion, minimizing seal leakage, and lowering heat loss in
the working chambers. Dating back to early 1990s, Mazda has been developing hydrogen-
powered rotary engines [21], and then in 2003 they developed the RX8 hydrogen rotary
engine which not only could use hydrogen as fuel but also gasoline as fuel. In recent years,
hydrogen has gained a lot of attention for its increasing benefits [22–26]. The hydrogen-
fueled rotary engine (HRE) can compete with the gasoline-powered reciprocating engine’s
thermal efficiency and power density [27]. Moreover, the HRE produces very low HC
and carbon monoxide (CO) emissions in comparison to gasoline-fueled rotary engines
(GRE) [28]. HRE has a greater burst pressure and thermal efficiency than GRE [29]. Despite
having low power density, the HRE is capable of producing the same power density as the
GRE [30].

1.2. Goal of This Review Article

The article is aimed at highlighting the current challenges and recent advancements in
hydrogen-fueled RE in the fluid power field. The challenges faced by rotary engines with
regards to fuel economy, emissions, knock, and leakages due to incapable sealing—which
leads to reduced combustion efficiency and unburnt carbon and nitrogen oxides (NOx)
emissions—are emphasized in this article. Keeping these challenges in view, this review
paper highlights the past ten years’ evolution in RE design with regards to trochoidal
profiles, hydrogen usage as an alternative fuel, and the use of CFD technology. The study
compiles and provides guidelines and the current focuses of industry and academia through
the literature review to identify appropriate research that could be beneficial to deal with
the current issues faced by the rotary engine.

2. Effects of Hydrogen Enrichment on Rotary Engine’s Performance
2.1. Hydrogen as an Alternative Fuel

At present, hydrogen is majorly fueled in automobiles either in the form of hydrogen-
fueled cells (HFC) or hydrogen-fueled internal combustion engines (HICEs) [31]. Either
of the two ways can attain reliable emission performance. In addition to having great
emission performance, HFCs also have an efficiency of over 50%; however, due to their
high cost and structural drawbacks, their design and implementation on wide scale is a
great challenge [32]. HICEs, on the other hand, are currently cost-effective while being less
efficient than HFCs. Additionally, a robust infrastructure can guarantee the upgradation of
HICEs [33]. In the 21st century, vast contributions have been made by many countries to
the progress of HICEs [34–37].

In comparison to fossil fuels, using hydrogen in internal combustion engines (ICEs)
has a number of other benefits [38] including high diffusivity, high combustion efficiency,
short quenching distance, high thermal efficiency, fast flame speed, and high combustion
temperature [28]. However, there are three inherent drawbacks for the prevalent port injec-
tion HICE—including excessive NOx emission [39], low output power [29], and greater risk
of abnormal fuel burning [40]—that hinder the commercialization of hydrogen-powered
reciprocating piston engines (PEs). Specifically, backfire [41] is one the responsible factors
in ICEs, which is much likely to occur during the combustion of hydrogen-powered PEs,
causing a high risk of instability. Several techniques, including exhaust gas recirculation
(EGR) [42], direct injection (DI) [43], lean combustion combining turbocharge [44], etc., have
been implemented; however, there is a scarcity of ICE design types, which may essentially
prevent the shortcomings of hydrogen as a fuel in these engines. The rotary engine [45],
having high-power, low-efficiency, and poor-emissions [46], is superior in this regard from
the reciprocating piston engine [47] to the extent that it is applicable in drones, sports cars
and military equipment [48] due to its design merits [49]. The high-power feature enables
hydrogen-fueled REs (HREs) to suffice the power requirements. Meng et al. [50] made a
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comparison of REs and PEs powered by gasoline and hydrogen and revealed that HREs can
provide more power per displacement while maintaining a comparable degree of efficiency.
In addition, they discovered that hydrogen’s physiochemical properties can considerably
increase the thermal efficiency and emission of REs. It is important to note that an RE is
less likely to backfire due to its unique structure [51]. HRE therefore has the potential to be
a power source with zero carbon emissions because of a RE’s high tolerance for hydrogen.
In fact, an HRE is inferior to a hydrogen-powered PE, which requires further analysis with
regards to efficiency, durability, and fuel economy.

Despite the numerous advantages of hydrogen over traditional fuels, there are signif-
icant scientific, technical, and economic barriers that have made it challenging to switch
easily from fossil-fueled to hydrogen-fueled REs. Hydrogen is more difficult to store and
transport than energy produced from other fuels, such electricity or a battery, since it differs
from other fuels [52]. Hydrogen needs energy to produce and is less stable than fossil
fuels [53]. Specific precautions are required since hydrogen is extremely flammable and
rapidly oxidizes and rusts storage containers and pipelines [54]. In order to use it as a fuel
in automobiles and industrial and other energy sectors safely, its physical state requires
changes [55]. Although hydrogen is often used in the chemical and refinery sectors, the
costs associated with its production, storage, and transportation make it unsuitable for
use in the majority of energy-related applications. At present, extensive research is being
performed in expanding the scope of the energy system due to the immense advantages of
hydrogen [56].

2.2. Knock Issues

Knock, which is regarded as one of the abnormal combustions in engines [57], causes
significant pressure fluctuations in the combustion chamber, which adversely affects the
engine’s performance and potentially causes irreparable mechanical damage [58]. Ac-
cording to research and the Motored Octane Number, hydrogen can be regarded as a
superior anti-knock fuel; yet, under identical operating conditions, HICEs often exhibit
greater knock than ICEs powered by gasoline [33]. According to Dhyani et al. [59], knock
in HREs raise engine component temperatures, which might result in hot spots and severe
backfire in succeeding cycles and is undesirable to the engine’s stability. Figure 2 shows the
correlation between backfire and knocking. The combustion analysis was carried out by the
authors on a cyclic basis in order to investigate backfire at various equivalency ratios. The
combustion conditions were examined using the recorded in-cylinder pressure-crank angle
data from each cycle as input. The cycle-based analysis was performed at an equivalent
ratio of 0.82 to determine the backfire occurrence. A rapid fluctuation in pressure at the end
of the compression stroke in the 444th cycle indicates a high-intensity knock. Backfire was
observed during the suction stroke in the 445th cycle, causing the peak pressure to drop to
25 bar. The 446th cycle had knocking without a backfire. As additional cycles passed, the
knock level steadily rose until the engine stopped on the 490th cycle.

Based on the research of Szwaja [60], unlike gasoline-fueled REs, which often experi-
ence knock at the end of combustion, HREs experience knock immediately after ignition
and during the entire combustion process. In a further study [61], Szwaja and Naber inves-
tigated that the fast and unstable burning of hydrogen in HICEs generates weak knock. The
light knock occurs during the combustion at CR = 11. As shown in Figure 3a, the pressure
pulsations start at 0◦. Even the highest pressure pulsation does not exceed 0.1 MPa and no
irregular pressure peaks are observed. This depicts, the combustion of hydrogen does not
cause auto-ignition. On the contrary, spontaneous burning of the end gas generates strong
knock. Figure 3b indicates pressure pulsation condition during combustion at CR = 12. It
can be seen the pressure pulsation peak drastically rises up to 0.32 MPa. The abrupt rise in
pressure pulsation occurs due to auto ignition which results in severe knocking.
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In contrast to conventional fuel, the knock of a hydrogen engine is caused by the
mutual development of flame and pressure wave rather than the end mixture spontaneously
igniting [62]. Salvi et al. [63] reported that as the equivalence ratio increases, an HRE is more
prone to knock. Szwaja [60] found that knock level has a direct relation with the combustion
rate in HICEs. The knock intensity for the ninety-fifth percentile of peak pressure vs. the
maximum rate of mass fraction burnt at three different compression ratios is shown in
Figure 4. At a compression ratio of six, the knock is minor. When the compression ratio
reaches eight, the knock is significant, but it does not intensify and affect the engine as the
spark timing advances. A considerably high knock of approximately 100 kPa occurred
at a compression ratio of 10. The knock increases rapidly as the 50% mass fraction burnt
approaches the top dead center (TDC), which corresponds to advancing spark timing.

Scholars have shown that lubricating oil has a significant effect on knock in HICE [64],
while the spark plug configuration also plays a key role in knock [57].

2.3. Leakage Issues

Although the RE has certain benefits over reciprocating engines, lower combustion
efficiency [65] and high HC and CO emissions [66] are the major shortcomings because of
the significant gas leakage issues [49]. The leakage is one of the main drawbacks of the
RE. The small molecular weight and fast flame speed of hydrogen leads to greater risk of
leakages in HREs in comparison to GREs [67]. The flame propagation speed at various
hydrogen mass fractions and equivalence ratios is shown in Figure 5. The solid curved
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line in the figure represents the normalized laminar speed (indicated by the arrow to the
left y-axis) as a function of hydrogen mass fraction in total mixture. The doted curved
line represents the hydrogen mole fraction in total fuels (indicated by the arrow to the
right y-axis) as a function of hydrogen mass fraction in total mixture. The normalized
laminar flame speed is the ratio between SL (laminar flame speed of gasoline–air mixtures
at an equivalence ratio Φ of 0.75) and SL0 (laminar flame speed of hydrogen–gasoline–air
mixtures under different hydrogen mass fractions βH2 at an equivalence ratio Φ of 0.8). The
highest ratio is approximately 1.4 when the hydrogen mass fraction is between 1.5% and
2.0%, and the highest flame speed is thrice that of SL0. As a result, the optimal hydrogen
mass fraction and distributions efficiently increase the flame speed.
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In addition, the inherently longer sealing line makes sealing a challenging task, because
the geometry of an RE’s sealing system is much more complicated than that of a PE,
comprising the apex seals, corner seals, side seals, and the seal springs that activate the
sealing. The primary leakage in an RE gas sealing system is the apex seal leakage, especially
for an HRE [68], and the apex seal leakage ranges in 65–75% of the total leakage. Several
factors play their role in the apex seal leakage. Depending on the location and mechanism,
the apex seal leakage consists of the spark plug cavity, the side piece, the corner seal (refer
to Figure 6), the groove flanks, and the running face [69].
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The major leakages among all these types are the leakages at the spark plug cavity
and the corner seal gap. In his research, Picard reported that the leakages at the spark
plug cavities and the corner seal are nearly 29% and 28% (refer to Figure 7) of the total
leakage [70].
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The fuel injection method of a peripheral-ported natural gas blended with hydrogen
in an RE under the action of apex seal leakage was investigated by Fan [71]. Fluid flow
and flame propagation in an RE can be significantly altered by the apex seal leakage [72].
Additionally, the apex seal leakage to a greater extent affects the motion of the air fuel
mixture and the burning process in REs [73]. The high temperature and high pressure fluid
in the combustion chamber leaks through the clearances into the adjacent chambers (as
shown in Figure 8), directing the flame movement towards the compression chamber [74].

In a one-dimensional simulation analysis, the volumetric efficiency and peak pressure
of REs are drastically reduced due to the apex seal leakage [75]. Additionally, the greater
the apex seal leakage, the shorter the time span of the choked flow [76]. The leakage
comparison between hydrogen and air by Hsieh [77] shows that a greater vortex number
of hydrogen than that of air results in a greater risk of leakage by using hydrogen as
fuel as compared to air. According to research on the impact of apex seal leakage on
NOx emissions, final NOx concentrations significantly decrease as apex seal leakage area
increases. In addition, the rise in HC content at low engine rpm is mostly caused by apex
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seal leakage [69]. Zhang et al. [78] investigated the variation in oil film thickness between
the apex seal and the epitrochoidal housing of a rotary engine at various operating speeds
(7000, 9000, 11,000, 13,000, 15,000, and 17,000 rpm). The apex seal leakage considerably
alters gas pressure, further affecting the oil film thickness. Figure 9 depicts the pressure
distribution of oil films. The leading arc has a relatively higher oil film pressure than
the trailing arc. The maximum pressure value increases significantly as the crank angle
turns. Because of the periodic change in gas pressure in the leading and trailing chambers,
the apex seal moves laterally. As a result, the gas pressure varies drastically with lateral
movement, and the abrupt change of gas pressure affects the pressure distribution.
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Currently there is a lack of research on the mechanism of spark plug cavity leakage,
with the majority of studies concentrating on the ignition performance of spark plugs.
Harikrishnan also reached the conclusion that the combustion rate and fuel conversion
efficiency depend on the spark plug location relative to the chamber walls [79], and Hwang
found that combustion efficiency can be improved by an earlier leading spark plug ignition
for REs [80], while the combustion efficiency can be enhanced by reducing the distance
between the leading spark plug and the top dead center line. Figure 10 shows temperature
distribution at various spark plug positions.
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3. Research Methods

Apex seals are located at the apexes of the rotor, and the configuration is such that the
seals engage with the inner wall of the epitrochoidal bore. As the rotor rotates, the apex
seals are displaced relative to the inner walls of the epitrochoidal bore but remain in sealing
engagement throughout the rotor operation. The apex seals have always been one of the
most critical parts in rotary engines [81]. It is not surprising that development of apex seals
is one of the subjects that has received the most attention by engineers working on rotary
engines. The poor sealing of the engine chambers at the rotor apexes leads to lower fuel
efficiency and high hydrocarbon emissions.

Sealing performance has been improved over the years, but the rotary engine is still in
dire need of improvement in terms of the fuel leakage, wear, friction, fuel consumption,
and emissions. Targeting these challenges, the critical factor determining improvement
in performance is the rotary engine design. Various methods used in recent years to
design REs, following the apex seal profiles for a wider range of RE rotor profile varieties,
conforming housing profiles, and different apex seal configurations for a wider variety of
optimal sealing possibilities have been reviewed in this article.

3.1. Trochoidal Profile Methods

Until 2013, rotary engines were designed using trochoidal type housing profile, while
spring loaded apex seals were employed to seal the chambers at the rotor apexes. Rose
and Yang for the first time developed the design of rotary engines based on the apex seal
profile deviation function (DF) approach of conjugate pair design. Using this method, the
engine housing is constructed conjugate to the apex seal while the conformity between
housing and the seal improves the sealing ability and efficiency, thus improving the engine
efficiency. In addition, the load at the apex seals can be minimized, thus improving the
friction losses on the rotor apex. Moreover, the authors designed the housing for a broader
apex seal, consisting of several seals employed at each rotor apex. When each of the apex
seals are in direct contact with the housing, various constraints are constructed to prevent
gas leakage. Due to interference between the seals and the bore, the feasibility of wider apex
seals has not been proven for conventional engines. In a subsequent study, the DF approach
for engine design by apex seal profile shows best sealing between the seal and bore. They
reported that the DF method allows the selection from a range of apex seal profiles and
geometries, and wider apex seals have a greater sealing index [82–84]. Figure 11 represents
the deviation function method for drawing the envelopes of the deviation circles.
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Figure 11. Deviation-function method (Warren and Yang [82]).

Hsieh and Cheng used CFD methods to analyze the effect of variations in the geometric
design curve (K factor) on the flow characteristics of rotary engines. They found that a
lower K factor produces more leakage, high internal pressure variations, and unstable
inlet pressure. In contrast, a high K factor reduces the leakage followed by lower internal
pressure variation, and stable inlet pressure [85]. Figure 12 shows the design for various K
factors of REs. In Figure 12a–c, the sun gear constructed from the theoretical rolling circle
is shown in blue and the fixed circle is shown in red. Based on the movement trajectory
principle of points the housing curve constructed should confirm with the rotor profile
such that the fixed circle rotates along rolling circle. Figure 12d presents design results of
three different K factors analyzed. The small K factor (K = 6) is shown in pink color, the
medium K factor (K = 7.5) is shown in blue color and the large K factor (K = 10) is shown in
red color.
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Bhoir and Tambuskar, using CFD methods, revealed that the deviation function
approach for epitrochoidal engine design is instrumental to generate several profiles from
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noncircular pitch curves without using higher order nonlinear equations. Noncircular pitch
designs can improve the chamber shape, the apex sealing, or the thermodynamic phase
timing at varying speed ratios. By adjusting the pitch curves, varying the speed ratios
between the rotor and main shaft can change the velocities of the apex seals. Thus the
DF-designed profiles allow more design flexibility and enable variable speed ratios [86].

Hsieh, in a recent study, has proposed chamber profiles and triangular rotor profiles
in an RE. Using the epitrochoid and envelope concepts for the dynamic analysis of the
kinematics and stresses at the apex seals, it was found that a higher trochoid ratio decreases
system stability and raises vibrations, stress variations, and stress intensity. When taking
into account combustion chamber displacement, compression ratio, operation stability, and
parts load capacity, the trochoid ratio of 0.4 is recommended [87]. The theoretical profile
design results for various trochoid ratios are presented in Figure 13. Figure 13a–c shows
the sun gear constructed from the theoretical rolling circle shown in blue and the fixed
circle shown in red for trochoid ratio λ = 0.3, 0.4 and 0.5 respectively. Figure 13d shows the
sun gear constructed from the theoretical profile for trochoid ratio λ = 0.6, which means
the internal gears are not feasible and thus for production the trochoid ratio is proposed to
be less than 0.6. Figure 13e presents design of housing and rotor profile for three different
trochoid ratios. The large, medium and small trochoid ratios (λ = 0.5, 0.4, and 0.3) are
shown in pink, blue and red color respectively.
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3.2. Fuel Utilization Methods

Despite its benefits, REs confront several technical hurdles, including flame propaga-
tion issues [88,89] due to the its inherent structure and large surface area, which results in
high fuel consumption and hydrocarbon emissions [90].

Enhancing combustion efficiency is the most effective way to address the existing
challenges of REs [91]. Numerous innovative techniques have been suggested to increase
the combustion efficiency of REs. Amrouche et al. [92] used hydrogen in an RE and im-
proved the combustion and heat efficiency, reduced hydrocarbon emissions, enhanced
engine stability and engine life. Fan et al. [93], studied the influence of injection angle and
injection timing on hydrogen distribution in an RE. For improving the combustion effi-
ciency, their findings suggest the hydrogen injection angle of +45◦ and hydrogen injection
timing of 155◦CA as the optimal hydrogen injection strategy. This strategy yields a higher
concentration of hydrogen near the spark plug and lowers the leakages; however, this
approach increased NOx emissions. Yang et al. [67] revealed that by combining both side
port system and a peripheral port intake system increases the peak cylinder pressure and
thermal efficiency by 4.5% and 3.9%, respectively, reduces the formation time of the main
flow field in the cylinder, increases the average in-cylinder flow velocity, and accelerates
the flame propagation velocity in the same direction as the main flow field. According to
Pan et al. [94], as the intake port timing was advanced, the engine power initially increased
and subsequently declined. Additionally, they noticed that if the inlet or outlet port opening
duration or outlet port timing were prolonged, the engine power enhanced.

Despite the fact that all of these techniques can increase rotary engine efficiency, flame
propagation remains a challenging problem in rotary engines due to the difficulty of the
flame dispersion in the direction opposite to the rotor movement. This problem is a built-in
feature of RE combustion. It causes substantial unburned hydrocarbon (HC) emissions
and incomplete combustion. In order to solve this issue, the cylinder must have sufficient
fuel distribution, which entails distributing as much gasoline as feasible to the combustion
chamber’s front side while using an effective injection technique [95]. By adjusting the
fuel injection time, injection direction, injection pressure, and other variables, a direct
injection technology may effectively regulate the fuel distribution in the cylinder [96].
Direct injection is the most effective method to counter incomplete combustion of the
RE [97]. Peter et al. [98] observed that the fuel distributes irregularly when the fuel injection
timing was delayed. Meanwhile, for advance fuel injection timing, both the in-cylinder
pressure and the gas temperature reduced. Chen et al. [99] investigated the effect of fuel
injection time on the air-fuel mixing and combustion processes of a dual-fuel natural gas
diesel rotary engine. Their findings revealed that by delaying the fuel injection timing, the
mixture became more concentrated due to a shorter mixing period. Delaying the injection
time raised the cylinder pressure and combustion speed. However, because of the high fuel
concentration, soot and CO emissions drastically increased. Sergey et al. [100] discovered
that various injection approaches resulted in diverse fuel distributions, and that several
injections may tolerate a larger equivalency ratio in order to attain a better power density.
Ji et al. [101] demonstrated that when the injection time was near the top dead center (TDC)
and the fuel spray angle was greater, the fuel enrichment region shifted forward from
the rear to the front side of the combustion chamber. These results demonstrate that an
adequate fuel injection method may increase RE performance. The combined effects of
oxygen intake, as well as intake pressure and temperature at various elevations on early
flame development, combustion dynamics, and exhaust emissions of small-scaled REs were
computationally explored by Zou et al. [102]. Their findings revealed that intake oxygen
enrichment enhances the generation of hydroxyl (OH), O, and H radicals, which resulted
in considerable improvements in early flame development, particularly near the leading
spark plug. Ji et al. [101] investigated the influence of injection height and injection angle
on mixture formation and combustion in a direct injection GRE. The injection angles were
0◦, 25◦, and 50◦ for the three injection positions, respectively. Their findings demonstrated
that the upper injection position serves to concentrate fuel distribution towards the spark
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plug, whereas the lower injection position would direct fuel to the rear of the combustion
chamber. Chang et al. [103] investigated the impact of combining port injection with
direct injection in a GRE. The injection point is located along the longitudinal axis, and the
injection direction is downward. Their findings revealed that direct injection produces a
greater mean in-cylinder pressure than port injection. Earlier studies [104] indicate that
deviating the intake tube angle to the left can cause a significant tumble movement in
the cylinder. Since tumbling flow has high kinetic energy than swirling flow, it is capable
of accelerating the mixing of fuel and air. Tumbling flow is a key source of turbulence,
which can enhance combustion. Shi et al. [46] examined the effects of an RE with a new
turbulence-induced blade arrangement. Their findings demonstrate that turbulence can
increase the combustion and thermal efficiency of the rotor chambers.

Research conducted by Wang et al. on the enrichment of hydrogen by direct injection
in an RE with various gas injection shapes (trapezoidal, wedge, slope, triangular, and
rectangular) revealed that the rectangular shape produces a faster flame speed, a higher
peak pressure in the cylinder, and a larger knock index (KI) [105], as shown in Figure 14.
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3.3. Ignition Methods

Scholars have examined the in-cylinder combustion process and ignition mode in
order to solve the combustion issues induced by the intrinsic structure and operating
mechanism of REs. With regards to ignition mode, Jiao et al. [106] developed an in-
cylinder spark ignition (ICSI) system to increase the RE’s ignition performance. The electric
spark produced by this ICSI mode is positioned inside the cylinder, allowing for direct
ignition of the mixture. Zambalov et al. [107] used the laser ignition method to enhance
the ignition stability of an RE. The results demonstrated that laser ignition can achieve
high-energy ignition of the mixture in the cylinder, considerably increasing the combustion
rate. Furthermore, the turbulent jet ignition method has been applied in reciprocating
engines, bringing attention to the advancement of RE ignition methods. Currently, only
Taskiran et al. [108] have performed early computational modeling investigations on
REs by utilizing the turbulent jet ignition method. The findings show that turbulent
jet ignition may achieve multi-point ignition, which is a viable ignition mode for rotary
engines. Nevertheless, it is evident that research on the jet ignition mechanism in REs is
severely lacking.

3.4. Exhaust Gas Recirculation (EGR)

Focusing on emissions, output power, and backfire concerns, HREs could be uti-
lized as great replacements to reciprocating gasoline engines, which is still challenging for
hydrogen-enriched reciprocating piston engines. However, the NOX emissions and the
strong knock [51] are generated by the HRE’s irregular thermal load and expanded combus-
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tion chamber [50], which perplexes hydrogen-powered reciprocating engines as well [109].
Therefore, a solution to these problems must be explored to address the disadvantages
of HREs.

Exhaust gas recirculation (EGR) is one of the effective approaches to enhance ICE com-
bustion [110]. EGR was originally developed for compression ignition internal combustion
engines, and it also performs well in spark ignition internal combustion engines (SI) [111].
In addition, EGR is also an effective method to significantly reduce NOx emissions [112]
and knock [113] in ICEs, particularly for HICEs prone to high NOx emissions [39]. Ver-
helst et al. [114] found that EGR is a significant means of increasing power output and
thermal efficiency while reducing NOx emissions. EGR’s thermal and dilution effects re-
duce cylinder temperature, thereby decreasing NOx production. EGR’s knock suppression
allows the ICE to provide a greater maximum power output during high load conditions,
where thermal efficiency is often compromised to minimize knocking [115]. EGR is often
classified into two types: hot EGR and cold EGR. In the former, the exhaust gas is mixed
directly with the fresh charge, while in the latter, the cold exhaust gas is mixed with the
fresh charge. The primary constituents of the exhaust gas in HICEs are nitrogen (N2)
and vapor, with the former having a lesser specific heat capacity than the latter, resulting
in a better thermal effect of the hot EGR versus the cold EGR. The high temperature of
the hot EGR, on the other hand, results in a lesser charge in the cylinder. Chaichan [116]
analyzed hot and cold EGR in an HICE and determined that cold EGR enables greater
volumetric efficiency, lower exhaust temperatures, and fewer NOx emissions than hot EGR.
Safari et al. [117] studied the use of EGR in HICEs and concluded that cold EGR is superior
than hot EGR in terms of reported thermal efficiency and performance.

4. Computational Fluid Dynamics Methods

By surveying the literature, CFD methods have been widely used for performance
prediction of rotary engines based on flow characteristics including mass flow rate, pressure
fluctuations, leakage analysis, vortex statistics, and fluid moment. The simulation of
dynamically moving fluid is a challenging task which has been modelled and applied to
estimate the flow field in rotary engines [3,47,77,86,99,107,118–124]. In addition, apex seals
must be properly modeled to ensure the gas tightness of separated combustion chambers.
Taskiran, et al. solved these problems by using the User Defined Function (UDF) of ANSYS-
Fluent that rotates motor eccentrically in a specified speed and enables dynamic mesh
motion in the fluid region. Hexahedral and tetrahedral mesh structures were used in the
regions of port channels and combustion chambers, respectively [125]. The efficacy of CFD
approaches have been validated in previous research and the computational calculations
with regards to the flow characteristics of rotary engines are found to be in good agreement
with experimental results [126]. Thus, CFD methods are recognized technologies that, to
date, allow industries and academia to analyze the advantages and disadvantages of the
new developments in rotary engines.

4.1. Dynamic Mesh Generation

Since the computational models include the unsteady fluid flow with moving volume
of the working chamber, a dynamic mesh is therefore incorporated into the moving fluid
model domains such as the rotating rotor and boundary walls [118,127]. It is important
to choose a suitable mesh size for conducting simulation in order to save computational
time resource; therefore, this computational method must satisfy the mesh convergence
criteria to achieve minimum time required. The mesh size validation study includes two
approaches. Initially, the grid independence test is conducted by fixing the time per step
while the grid size is varied. The next approach is to fix this grid size achieved in previous
approach while time per step will be varied to determine the most accurate time step size.
Once the mesh convergence criteria are confirmed, the number of cells, faces, and nodes
can be obtained [3,77].
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4.2. Operating Conditions

For computational modeling of rotary engine, in the solution of Navier Stokes equa-
tions, the pressure implicit splitting of operators (PISO) scheme is used by researchers for
pressure velocity coupling; the first order upwind scheme is used for turbulence kinetic
energy and turbulence dissipation rate terms, and the second order upwind scheme is
to differentiate energy, density, and momentum terms. Since turbulence modeling is im-
portant in studying the flow field calculations of the internal combustion engines, RNG
(renormalization group) and realizable k-ε turbulence models were tested in validation
studies of numerical calculations. Turbulence models (refer to Figure 15) tested on a rotary
engine of which flow field was experimentally obtained and published by Fan et al. [118].
Though some researchers still use the standard k-εmodel, improved versions of k-εmodels
were generated for special applications. For example, the RNG k-ε model is well suited
to numerical simulations of ICEs, since it has a higher accuracy for vortex flow [128]. The
RNG model, in contrast to the normal k-ε turbulence model, contains an effective viscosity
component (µeff) and the following extra term (Rε) in the transport equation, which im-
proves numerical simulations. The realizable k- model is a version of the conventional k-ε
model that includes a new formulation for defining eddy viscosity and a new transport
equation for the dissipation rate [129]. Satisfying certain constraints on Reynolds stresses,
the realizable k-εmodel offers consistent results with the physics of turbulent flows and
more accurately predicts flow fields that have strong streamline curvature, vortices, and
rotation [130]. Taskiran et al. [125] assumed air to be at atmospheric pressure at the inlet
and outlet boundaries of intake and exhaust channels. A constant temperature of 300 K and
no slip conditions were set on the wall boundaries. The results of the RNG and realizable
k-εmodels are demonstrated in Figure 15. Though both turbulence models present very
similar results, the RNG model predicts more accurately the location of rotational flow and
velocity vectors. The difference between turbulence models arises at regions close to the
walls as seen on trailing side of the rotor.
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Hsieh and Cheng [85], in their research, conducted a 3D simulation of an RE by setting
the inlet pressure to 2 atmospheric pressure and outlet pressure to 1 atmospheric pressure
while the rotation speed was 1800 rpm. It considered a turbulent model (k-εmodel) and
a clearance constant of 0.15 mm for apex sealing, and captured stream lines and vortex
formation for three different chamber designs based on K factors (case1 = 10, case2 = 7.5,
case3 = 6), as shown in Figure 16.

Hsieh et al. [77] conducted a 3D CFD analysis using air and hydrogen as fuels to
investigate the flow characteristics of RE along with leakage analysis. The rotor speed
was set to 1000 rpm, the temperature to 300 K, and the inlet and outlet pressures were set
to pressure 2 atm and 1 atm, respectively. The authors found that an excess of leakage
occurs at the apex of rotors affecting the engine performance adversely. The stream lines
indicating the flow leakage are shown in Figure 17. As the fluid flows from high pressure
to low pressure zone while circulating between the chambers, a significant amount of
fluid leaks to the peripheral region of the rotor due to the effect of cavity wall and rotor
apex. The streamline visuals obtained from three dimensional simulation results give
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information regarding fluid motion and fluid flow path. The red color streamlines indicate
high pressure field and blue color streamlines as low pressure field. Multiple streamlines
in red color can be seen at the upper rotor apex which depict that some of the fluid gets
discharged without being circulated.
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5. Conclusions and Future Prospects

The rotary engine has made important developments in the transport and energy
sectors, bringing convenience to human society. However, in order to continue fulfilling a
wide range of market demands as an automobile engine, the rotary engine must improve
fuel efficiency and exhaust gas pollutions. Targeting mainly improvement in fuel economy
and the reduction of exhaust emissions, there are numerous prospects to explore for
improvements, including hydrogen enrichment, rotor designs, fuel utilization methods,
and the implementation of latest computer software technologies.

Although the rotary engine has several advantages over the reciprocating engine, the
high hydrocarbon emissions and low combustion efficiency are two major disadvantages
affected by the gas leakage issues. The leaking issue is a significant drawback of the RE,
which hinders its commercialization. In addition, the sealing of the rotary engine is more
difficult due to the longer sealing line, and the gas sealing system of the rotary engine is
much more complicated than that of the reciprocating engine. From a fuel perspective,
the hydrogen-powered rotary engine (HRE) has better power density and less risk of
backfire compared to gasoline engines, although it has knock problems due to its extended
combustion chamber.

Since the design model accuracy influences the fluid flow, leakages, flow path prob-
lems to a great extent, any inaccuracy may considerably affect the engine’s efficiency and
performance. The deviation function method can therefore be a key aspect to new de-
signs and development for trochoid profiles. The trochoid profiles can be modified using
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mathematical equations and profile curves derived from traditional designs available in
the literature for guidance. Relevant information on different aspects, including ignition
timing, spark plug number, spark plug location, excess air ratio, and engine speed, have
been provided for the design of hydrogen-specific RE.

The modeling of rotary engines is generally not easy to perform due to its moving
boundaries and flow complexity. These technical aspects make the simulation challenging.
By employing three-dimensional CFD methods, which includes fluid combustion model
and turbulence models, while considering the clearances, gaps, boundary walls, and
interacting surfaces of the designed models is a recognized and feasible method to predict
the fluid and combustion models close to real prototype rotary engines.

Hence, focusing on the apex seal as a crucial subject, the combustion chamber profile,
the rotor profile, and port designs (peripheral and side ported) of REs require an in-depth
investigation. Three-dimensional CFD analysis is therefore an instrumental approach to
study the pros and cons of new rotary engine designs with respect to leakages, combustion,
and fluid flow dynamics. Taking into account port designs with a novel chamber design
and various rotor profiles can be key considerations which significantly influence the
combustion efficiency, leakages, and flow pattern. The working chamber design can be
modified using the trochoid-based models in order to examine the apex sealing condition.
The sealing condition can be determined by leakages and streamlines which can be achieved
using numerical methods.
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