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Abstract: Considering some unmeasurable states, a fuzzy static output control problem of nonlinear
stochastic systems is discussed in this paper. Based on a modelling approach, a Takagi–Sugeno
(T–S) fuzzy system, constructed by a family of stochastic differential equations and membership
functions, is applied to represent nonlinear stochastic systems. Parallel distributed compensation
(PDC) technology is used to construct the static output controller. A line-integral Lyapunov function
(LILF) is used to derive some sufficient conditions for guaranteeing the asymptotical stability in the
mean square. From the LILF, a potential conservatism produced by the derivative of the membership
function is eliminated to increase the relaxation of sufficient conditions. Furthermore, those conditions
are transferred into linear matrix inequality (LMI) form via projection lemma. According to the
convex optimization algorithm, the feasible solutions are directly obtained to establish the static
output fuzzy controller. Finally, a numerical example is applied to demonstrate the effectiveness and
usefulness of the proposed design method.

Keywords: T–S fuzzy systems; static output control; stochastic system; line-integral Lyapunov
function; projection lemma

1. Introduction

The fuzzy set provides a concept differing from the crisp set for discussing the prob-
lems of economics, management, and control. During fuzzification, the states in the
nonlinearity are usually premise variables. Moreover, the linear systems and the mem-
bership function can be determined via the chosen equilibrium points to build the T–S
fuzzy system. Furthermore, the center of gravity method [1] is a common defuzzification
technique method and is used to convert the fuzzified output into a single crisp value with
respect to a fuzzy set. Referring to [2], the fuzzy set was applied to formulate the mathe-
matical model of optimization of sustainable waste management. In the past decades, the
Takagi–Sugeno (T–S) fuzzy system has been widely used by blending some subsystems and
the specific membership function to represent nonlinear systems. In the literature [3–13],
several results for the control problem of nonlinear systems have been already dealt with
using linear control theories through the T–S fuzzy system. T–S fuzzy systems have also
been investigated for their use in stability issues of practical systems such as turbocharged
gasoline engines [9], flexible wings [10], and vessel dynamic positioning [11]. To develop
the controller design method for T–S fuzzy systems, the parallel distributed compensation
(PDC) concept was first proposed [12]. Similar to the structure of the T–S fuzzy system, the
PDC technique involves setting up a unique subcontroller for each linear subsystem and
blending them with a specific membership function. Referring to the literature [5,6,9–12],
the PDC concept has been applied successfully and widely to design corresponding fuzzy
controllers. Most of the existing PDC-based controller design methods [5,6,9–12] were
proposed using a state-feedback scheme. The control problems of nonlinear systems with
unmeasurable states were discussed by designing observer-based controllers [13,14], a
dynamic output controller [15], and a static output controller [16]. It is well-known that the
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static output feedback control scheme [16] is a reasonable and easy method for solving the
stabilization issue of systems with unmeasured states. Because of this, the control prob-
lem of the output feedback technique, which uses measurable states as feedback signals,
becomes a worthy issue for discussion and investigation regarding T–S fuzzy systems.

The output control problems of polynomial systems, such as the T–S fuzzy sys-
tem [17,18] and the linear parameter varying system [19], usually become complex and
difficult according to the number of sufficient conditions. Some potential conservatisms for
the static output feedback controller design method are caused by separating the variables
to convert the sufficient conditions into linear matrix inequalities (LMIs). To propose the
static output controller design method, some equalities are required [18] such that the
derived conditions belong to LMI problems. However, those equalities cause some restric-
tions for specifying the positive definite matrix when designing the static output controller.
An iterative LMI algorithm [20,21] has been proposed to deal with the static output control
problem described by the LMI form. Thus, a parameter-dependent Lyapunov function
has been applied [22,23] to develop some relaxed stability conditions. The parameter-
dependent Lyapunov function is composed of several positive definite matrices that can
relax the restrictions in finding a common positive definite matrix. Even though relaxed
conditions can be obtained by a parameter-dependent Lyapunov function, the derivative
of the membership function is necessarily bound, causing a potential conservatism [22,23]
in the stability analysis. A line-integral Lyapunov function (LILF) was proposed to avoid
the conservatism caused by the derivative of the membership function, and to keep the
relaxation caused by the multiple positive definite matrices [24]. Relaxed fuzzy controller
design methods have been developed via the LILF [24–26]. Although the LILF provides
relaxations in the stability criterion, the special structure of the positive definite matrix is
dependent on the premise variables. The structure of the positive definite matrix creates
difficulties when deriving the LMI form of sufficient conditions. In the literature [27],
an iterative LMI algorithm was proposed to search for feasible solutions. Generally, the
iterative LMI algorithm provides conservatism caused by linear transformations or in-
equalities. Extending the results of [22], the stability criterion was therefore developed via
guaranteeing the stability and performance of the T–S fuzzy stochastic systems based on
LILF in this paper.

For stochastic systems, several works [28–32] have discussed their stability and stabi-
lization problems. Some results for stability criteria of nonlinear stochastic systems were
developed by the T–S fuzzy system and the Itô equation. The Itô equation is regarded as
the combination of a common differential equation and a multiplicative noise term [28].
The stability of stochastic systems is based on the concept of root mean square because of
their unpredictability [28–32]. The Itô formula [28–32] is usually applied to derive some
sufficient conditions. Based on the Itô formula, some static output feedback controller
design methods have been proposed by [28–30] so that the stability of nonlinear stochastic
systems is guaranteed in the mean square. In the literature [31], the parameter-independent
Lyapunov function was selected to develop their stability criterion. The relaxed output
feedback controller design methods for polynomial stochastic systems [32] were proposed
via applying the parameter-dependent Lyapunov function. Generally, the convex optimiza-
tion algorithm [33] is an efficient method for solving the control problems; moreover, it is
widely employed in discussions of the stabilization problem of T–S fuzzy systems. How-
ever, the algorithm requires the sufficient condition being converted into LMI form [33].
Because of the output feedback scheme, the stabilization problem belongs to the strict
bilinear form that is hard to convert into LMI form. Thus, some equalities [27] and extra
algorithms [20,21] have been proposed such that the bilinear problem can be calculated
via the convex optimization algorithm. However, potential conservatism was caused
during use of the technologies and extra algorithm. Thus, a relaxed stability criterion is
an important issue so that the nonlinear stochastic system is asymptotically stable in the
mean square.
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Based on the above motivation, an output feedback control problem of the nonlinear
stochastic system is discussed in this paper. With reference to the modeling approach and
the Itô differential equation, the T–S fuzzy system with multiplicative noise terms can
be constructed to represent the nonlinear stochastic system. Using the PDC concept, the
static output feedback controller is established to deal with the stabilization problem of the
considered system with unmeasurable states. For the stabilization problem, the LILF is
chosen to derive some sufficient conditions such that the potential conservatism produced
by the derivative of the membership function is eliminated. Some technologies [14,34]
are applied to convert the sufficient conditions into a strict LMI form that can be directly
solved by the convex optimization algorithm. Through solving the conditions, the feedback
gains can be obtained to design a static output controller to guarantee the asymptotical
stability in the mean square. Finally, a numerical is provided to verify the effectiveness and
application of the proposed static output controller design method.

This paper is structured as follows: In Section 2, the output feedback stability problem
of nonlinear stochastic system is investigated via the T–S fuzzy system. In Section 3, some
sufficient conditions are derived by the LILF and Itô formula. In Section 4, the simulation
results of a numerical example are presented. In Section 5, some conclusions are given.

I represents the identity matrix with appropriate dimension, E{·} represents the
expected value of ·, He{·} represents the [·] + [·]T , and ∗ represents the symmetric parts in
the block matrix.

2. System Descriptions and Problem Statements

According to the T–S fuzzy system and Itô equation, the nonlinear stochastic system
can be described as follows:

If x1(t) is Mαi1
1 and x2(t) is Mαi2

2 and . . . and xn(t) is Mαin
n , then

dx(t) = (Aix(t) + Biu(t))dt +
(
Aix(t) + Biu(t)

)
dβ(t) (1)

y(t) = Cix(t) (2)

where xT(t) ∈ Rn is the state vector, uT(t) ∈ Rm is the control input vector, y(t) ∈ Rq

is the measured output, and Mαij
n are the fuzzy sets for i = 1, 2, . . . , N. Then αij is the

scalar representing the xj-based fuzzy set used in the ith fuzzy rule. β(t) is a scalar
continuous-type Brownian motion [30] satisfying the independent increment properties
as E{dβ(t)} = E{x(t)dβ(t)} = 0 and E{dβ(t)dβ(t)} = 1. Ai, Bi, Ai, Bi, and Ci are
constant matrices with compatible dimension. Thus, the system in (1)–(2) can be furtherly
represented as follows:

dx(t) =
N

∑
i=1

hi(t)
{
(Aix(t) + Biu(t))dt +

(
Aix(t) + Biu(t)

)
dβ(t)

}
(3)

y(t) =
N

∑
i=1

hi(t)Cix(t) (4)

where µ
αij
j
(

xj(t)
)

=
µ

αij
j (x(t))

∑N
i=1 µ

αij
j (x(t))

, hi(x(t)) = ∏n
j=1 µ

αij
j
(
xj(t)

)
, 0 ≤ hi(x(t)) ≤ 1 and

∑N
i=1 hi(x(t)) = 1.

Based on the PDC concept, the following output controller is considered for the system
in (3)–(4):

If x1(t) is Mαi1
1 and x2(t) is Mαi2

2 and . . . and xn(t) is Mαin
n then

u(t) = −Fiy(t) (5)
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or

u(t) =
N

∑
i=1

hi(t)(−Fiy(t)) (6)

The following closed-loop system can be constructed by substituting the output
controller in (6) into (3)–(4).

dx(t) =
N
∑

i=1

N
∑

j=1

N
∑

k=1
hi(t)hj(t)hk(t)

{(
Ai − BiFjCk

)
x(t)dt +

(
Ai − BiFjCk

)
x(t)dβ(t)

}
=

N
∑

i=1

N
∑

j=1

N
∑

k=1
hi(t)hj(t)hk(t)

{
Rijkx(t)dt + Rijkx(t)dβ(t)

} (7)

where Rijk = Ai − BiFjCk and Rijk = Ai − BiFjCk.
Due to the stochastic behaviors, the following definition is applied to ensure the

stability of the closed-loop system in (7):

Definition 1 [30]. For the closed-loop system in (7), the solution is asymptotically stable in the
mean square when E{x(t)} and E

{
xT(t)x(t)

}
are converged to zero as t→ ∞ .

To solve the stabilization problem, several useful lemmas are applied as follows so
that the derived conditions can be converted into LMI form.

Lemma 1 [34]. For some given matrices K = KT > 0, Z = ZT and Y, there exists a matrix H
such that the following conditions are equivalent:

K + YTZY < 0 (8)

and [
K ∗

HY −H−HT + Z

]
< 0 (9)

Lemma 2 [14]. Giving the matrices, Φ = ΦT ∈ <nΦ×nΦ , ψ ∈ <nψ×nΦ , and Λ ∈ <nΛ×nΦ ,
which satisfy rank(ψ) < nΦ and rank(Λ) < nΦ, if there exists the matrix X such that[

Ξ + G− He{J} ∗
ψTXΛ + J −G

]
< 0

then the following inequalities are held:

ψT
⊥Φψ⊥ < 0 and ΛT

⊥ΦΛ⊥ < 0 (10)

where ψT
⊥ and ΛT

⊥ are the matrices whose columns form a basis of the null-space of ψ and Λ,
respectively.

In the next section, a stability criterion is proposed to ensure the closed-loop system in
(7) is asymptotically stable in the mean square. Some sufficient conditions described in an
LMI form are derived to find the gains for designing the fuzzy controller in (6).

3. Stability Criterion with Output Feedback Controller

In this section, the LILF and Itô formula are employed to derive some sufficient condi-
tions and to avoid the potential conservatism caused by the derivative of the membership
function. The lemmas are used to convert the conditions into an LMI form so that the
feasible solutions can be directly obtained by the convex optimization algorithm. With
the solutions, the PDC-based output controller in (6) can be established to guarantee the
asymptotical stability of the closed-loop system, shown in (7), in the mean square.
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Theorem 1. The closed-loop system (7) is asymptotically stable in the mean square if there exist

feedback gains Fi and positive definite matrices
^
Pi such that

RT
ijk

^
Pi +

^
PiRijk + RT

ijk
^
PiRijk < 0, i, j, k = 1, 2, · · · , N (11)

where
^
Pi = Di + P, P =


0 p12 · · · p1n

p12 0 · · · p2n
...

...
. . .

...
p1n p2n · · · 0

 and Di =


dαi1

11 0 · · · 0
0 dαi2

22 · · · 0
...

...
. . .

...
0 0 · · · dαin

nn

.

Proof. To avoid the conservatism caused by the derivative of the membership function,
the following LILF [24] is used to develop the stability criterion for the closed-loop system
in (7).

V(x(t)) = 2
∫

Γ(0,x)
f(ϕ)·dϕ (12)

where Γ(0, x) is a path from the origin to the current state, ϕ is a dummy vector for the

integral, and f (ϕ) =
^
Pi(x(t))x(t) =

N
∑

i=1
hi(t)

^
Pix(t).

Applying Itô’s formula, we find the following derivation of V(x(t)) in (12) along the
trajectories of (7)

dV(x(t)) = LV(x(t))dt + 2
N

∑
i=1

N

∑
j=1

N

∑
k=1

hi(t)hj(t)hk(t)
{

xT(t)
^
PiRijkx(t)dβ(t)

}
(13)

where

LV(x(t)) =
N

∑
i=1

N

∑
j=1

N

∑
k=1

hi(t)hj(t)hk(t)
{

xT(t)
(

RT
ijk

^
Pi +

^
PiRijk + RT

ijk
^
PiRijk

)
x(t)

}
(14)

Taking the expectation of (13), the following equation can be inferred due to the
independent increment property of β(t).

E{dV(x(t))} = E{LV(x(t))dt} (15)

Obviously, if (11) holds, then E{LV(x(t))} < 0 can be obtained from (14). Since
E{LV(x(t))} < 0, E{dV(x(t))} < 0 can be further found by (15). Referring to the Defini-
tion and E{dV(x(t))} < 0, the asymptotical stability of the closed-loop system in (7) is
guaranteed in the mean square. �

To establish the controller in (6), the feasible solutions as Fi and
^
Pi are required to

satisfy Theorem 1. Nevertheless, the condition shown in (11) in Theorem 1 cannot be
directly solved by the convex optimization algorithm due to the bilinear terms composed

by Fi and
^
Pi. Therefore, the lemmas are applied to find the corresponding LMI form of (11).

Theorem 2. The closed-loop system in (7) is asymptotically stable in the mean square if

there exist matrices X, Fj, H, and Ji, and positive definite matrices
^
Pi and Gi such that[

Ξijk + Gi −He{Ji} *
Tijk + Ji −Gi

]
< 0, i,j,k=1,2,. . . ,N (16)
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where Ξijk =


0

^
Pi 0 0

^
Pi −2

^
Pi RT

ijk 0
0 Rijk 0 −I

0 0 −I
^
Pi

 and Tijk =


−I 0 0 0

RT
ijk + I 0 0 0

0 0 −X X
0 0 Q −Q

 with Q =

HX.

Proof. Firstly, the following inequality can be inferred from (16).[
Ξijk + Gi − He{Ji} ∗

ψT
ijk

^
XΛijk + Ji −Gi

]
< 0 (17)

where ψijk =

[
−I Rijk + I 0 0
0 0 −I HT

]
, Λijk =

[
I 0 0 0
0 0 I −I

]
, and X̂ =

[
I 0
0 X

]
.

Applying Lemma 2 and (17), we find the following inequalities by choosing the
null-space matrices ψT

ijk⊥ and ΛT
ijk⊥.

ψT
ijk⊥Ξijkψijk⊥ < 0 (18)

and
ΛT

ijk⊥ΞijkΛijk⊥ < 0 (19)

where

ψT
ijk⊥ =

[
RT

ijk + I I 0 0
0 0 H I

]
, ΛT

ijk⊥ =

[
0 I 0 0
0 0 I I

]
and Ξijk =


0

^
Pi 0 0

^
Pi −2

^
Pi RT

ijk 0
0 Rijk 0 −I

0 0 −I
^
Pi

.

Based on Lemma 1, if there exists a matrix H satisfying the following condition, then
the condition in (11) in Theorem 1 holds. RT

ijk

^
Pi +

^
PiRijk RT

ijkHT

HRijk −H−HT +
^
Pi

 < 0 (20)

Arranging (18), we can directly find the following inequality:

ψT
ijk⊥Ξijkψijk⊥ =

 RT
ijk

^
Pi +

^
PiRijk RT

ijkHT

HRijk −H−HT +
^
Pi

 < 0 (21)

Form (21), the inequality in (20) is equal to (18). Thus, if the condition in (16) holds,
then the condition in (11) in Theorem 1 is also satisfied. According to Theorem 1, the
closed-loop T–S fuzzy system in (7) is asymptotically stable in the mean square. In addition,
the inequality in (19) also holds because (17) and Lemma 1 can be further demonstrated by
the simulated results. The proof of Theorem 2 is completed. �

According to the lemmas, the conditions in Theorem 1 are transferred into LMI form
shown by the conditions in Theorem 2. Therefore, the feasible solutions for Theorem 2
can be directly found via the convex optimization algorithm. With the obtained solutions,
the static output controller in (6) is established to ensure the asymptotical stability of the
closed-loop system, as shown in (7), in the mean square. To demonstrate the proposed
method, a numerical simulation and some comparisons are proposed in the following
section.
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4. Numerical Simulation

In this section, two cases are proposed to show the contribution of this paper. In Case
1, the method of [18] is applied to discuss the conservatism of the proposed design method.
In Case 2, a comparison between the method of [18] and the proposed method is provided
to show the importance of considering stochastic behavior. Consider the following T–S
fuzzy system:

dx(t) =
2

∑
i=1

hi(t)
{
(Aix(t) + Biu(t))dt +

(
Aix(t) + Biu(t)

)
dβ(t)

}
(22)

y(t) =
2

∑
i=1

hi(t)Cix(t) (23)

where A1 =


0.56 + ∆ 0 0.4 −0.2

0 −0.4 −0.1 −0.5
0 0.2 −0.1 0

0.1 0 0.36 + ∆ −0.4

, B1 = B2 =


1.5
0

0.1
0.2

, A2 =


0.56 + ∆ 0 0.4 −0.2

0 −0.4 −0.1 −0.5
0 0.2 −0.1 0

0.1 0 0.36 + ∆ −0.4

, C1 = C2 =
[

1 0 0 0
]
, A1 = A2 =


0.6 0 0 0
0 0.5 0 0
0 0 −0.1 0
0 0 0 0.1

, and B1 = B2 =


0.2
0
0
0

.

where ∆ is a given scalar. By setting ∆, the conservatism of the proposed design method
and the method of [18] can be discussed by searching the feasible solutions. In this simu-
lation, x2(t) ∈

[
0, ±π

6
]

is assumed as the premise variable for building the following
membership function and x1(t) is used as the feedback signal of the designed static out-
put controller.

h1(x2(t)) =
{

1− 1
1 + e−7(x2(t)−π/4)

}
× 1

1 + e−7(x2(t)+π/4)
and h2(x2(t)) = 1− h1(x2(t)).

Case 1. Through ignoring the multiplicative noise term in the system (22)–(23), the method
of [18] and Theorem 2 are separately applied to find the feasible solutions with the max-
imum value of ∆. By using the method of [18], the maximum value of ∆ is 0.004. The
maximum value of ∆ found by Theorem 2 is 0.009. It is obvious that the bigger value of
∆ is found by the proposed design method than the one found by [18]. Thus, this paper
provides a less conservative design method than [18]. Moreover, if the number of premise
variables is increased, then the relaxation of the proposed design method is manifested.

Case 2. With ∆ = −0.16, the method of [18] is applied to design the following PDC-based
output controller for the system (22)–(23).

u(t) =
2

∑
i=1

hi(x2(t))(−Fiy(t)) (24)

where F1 = 0.5710 and F2 = 0.5710. Based on the controller in (24), the response of
x1(t) of the system (22)–(23) is stated in Figure 1 with the initial condition as x(0) =[

0.2 −0.75 0.3 0.55
]
. The following feasible solutions are found by satisfying the

condition in (16) in Theorem 2:
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P1 =


1.1004 0.0392 −0.0317 0.0035
0.0392 0.9380 0.0157 0.0177
−0.0317 0.0157 0.9334 −0.0051
0.0035 0.0177 −0.0051 0.9375

, F1 =
[
−0.1216 1.7736

]
,

P2 =


1.1004 0.0392 −0.0317 0.0035
0.0392 0.9569 0.0157 0.0177
−0.0317 0.0157 0.9334 −0.0051
0.0035 0.0177 −0.0051 0.9375

 and F2 =
[
−0.1205 1.8149

]
.

(25)
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To demonstrate the satisfaction of (19), the obtained feasible solutions in (25) are
applied to ensure the following inequality:

ΛT
ijk⊥ΞijkΛijk⊥ =

[
−2Pi RT

ijk
Rijk Pi − 2I

]
< 0.

Based on the solutions in (25), the PDC-based output feedback controller is designed
as follows:

u(t) =
2

∑
i=1

hi(x2(t))(−Fiy(t)) (26)

Along with the designed controller in (26), the responses of x1(t) of the system
(22)–(23) are also presented in Figure 1 with the same condition. Referring to Figure 1,
although stability can be achieved, the poor response of the system (22)–(23) driven by the
controller in (26) is provided according to the stochastic behavior. Moreover, the transient
response of the system (22)–(23) driven by the designed controller in (26) is better than one
driven by (24).

Regarding robustness, the responses of the system (22)–(23) driven by the fuzzy con-
troller in (26) are stated with three initial conditions as x(0) =

[
0.2 −0.75 0.3 0.55

]
,

x(0) =
[

0.55 −0.9 0.45 0.75
]
, and x(0) =

[
0.8 −1 0.6 0.9

]
in Figures 2–6.

As shown in Figures 2–6, all states of (22)–(23) with different initials converge to zero,
although the only measured output signals are used as feedback signals. The vibrations in
those figures are caused by their stochastic behavior. Thus, the proposed design method is
less conservative than the method of [18]. Moreover, the system (22)–(23) driven by the
controller in (26) provides better transient response than the one driven by the controller
designed by the method of [18].
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In order to emphasize the advantage of the output feedback controller, the control
method in [27] is applied to design a state-feedback controller. In [27], all states are assumed
as measurable and applied to design the fuzzy controller. Based on the method of [27], the
fuzzy controller can be designed as follows:

u(t) =
2

∑
i=1

hi(x2(t))(−Fix(t)) (27)

whereF1 = [−0.8670 −0.0185 −0.2540 0.0393] andF2 = [−0.9364 0.3253 0.1446 −0.0199].
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Figure 6. Response of u(t).

With the fuzzy controller in (27) designed by [27], the response of x1(t) shown in
Figure 7 cannot converge on zero. Therefore, the proposed design method is meaningful
and practical for the control problem of nonlinear stochastic systems with unmeasurable
states. Moreover, the asymptotical stability of nonlinear stochastic systems with unmeasur-
able states can be guaranteed by the proposed static output controller design method.
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5. Conclusions

This paper addressed the static output control problem of nonlinear stochastic systems
through application of the T–S fuzzy model and Itô’s equation. Based on the PDC concept,
the output controller was constructed with measured states to keep the relaxation of
multiple matrices and, to avoid the derivative of the membership function, the LILF was
applied to develop the stability criterion. Because of the structure of LILF, some lemmas
were applied such that the sufficient condition could be solved via the convex optimization
algorithm. Based on the proposed design method, some relaxations caused by LILF were
demonstrated via the comparison in Case 1. When considering stochastic behavior, the
proposed design method provides better transient performance than [18], as shown by
Case 2 and Figure 1. Therefore, feasible solutions can be obtained to design an output
controller to that guarantees the asymptotical stability of nonlinear stochastic systems in
the mean square. We found that the output feedback controller is more feasible when
dealing with a system with an unmeasurable state than the state-feedback controller, which
is relevant to the discussion in [27].
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