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Abstract: One of the most important directions for environmental remediation is the effective
removal of dyes and toxic heavy metals from water using newly fabricated nanoadsorbents. Here,
magnetic Fe3O4 nanoparticles were combined with nitrogen-containing functional group polymers
chitosan (CS) and polypyrrole (ppy) to synthesize a nanocomposite (polypyrrole@magnetic chitosan)
useful for removing methyl orange (MO) and hexavalent chromium (Cr (VI)) from water. The
physicochemical properties of the nanocomposite were determined using SEM, TEM, XRD, FT–IR,
and TGA techniques. The effect of different factors on the adsorption system was studied including
the contact time, pH, and the effect of co-existed ions. The kinetic study illustrated that the adsorption
fit well with Langmuir isotherm. The maximum adsorption capacity of MO and Cr (VI) was found to
be 95 and 105 mg/g, respectively. The reusability of the nanocomposite was studied for up to five
cycles using 0.1 M NaOH as eluent with a slight decrease of adsorbent efficiency. Furthermore, the
removal mechanism studied suggested the removal of MO via adsorption and Cr (VI) via chemical
reduction and adsorption. This study suggests that a ppy@magnetic chitosan nanocomposite is a
promising nanoadsorbent for removing MO and Cr (VI) from water.

Keywords: environment; polymers; nanomaterials; water treatment

1. Introduction

Environmental degradation and the lack of clean water have become universal prob-
lems associated with the fast increase in industrial activity and social economy and should
be solved to maintain a high-quality life [1–3]. Recently, great attention has been paid to
water treatment for heavy metals [4,5] resulting from steel fabrication, leather tanning,
and metal processing and from toxic dyes from the paper, cosmetics, plastics, textile, and
food industries. Among these pollutants, the organic dye methyl orange (MO) can cause
severe health problems like jaundice, tissue necrosis, tachycardia, vomiting, and cyanosis.
Furthermore, as a conventional toxic heavy metal, chromium not only causes significant
damage to human health, but also generates extreme environmental contamination that is
hard to remediate [6]. Trivalent chromium Cr (III) and hexavalent chromium Cr (VI) are
the two oxidation states of chromium [7]. Cr (VI) is carcinogenic and known to be a very
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dangerous contaminant, while Cr (III) is less toxic to humans and other organisms and is
less movable in environmental systems [8]. According to the World Health Organization
(WHO), the allowable level of Cr (VI) in water must not exceed 0.05 mg/L [9]. However, in
wastewater from chromium electroplating, the Cr (VI) levels were found to reach 100 to
500 mg/L. Thus, the transformation of Cr (VI) to Cr (III) via an efficient reduction concept
and the efficient adsorption of MO can greatly decrease the possible hazard of Cr (VI) and
MO dye to animals, humans, and the environment [10,11]. Water contamination from
chromium and dye has been widely remediated over the past years. In this context, Cr
(VI) and MO have been efficiently removed using various techniques including adsorption,
electrochemical methods, reduction, biological remediation, ion exchange, and chemical
precipitation [12–15]. Due to its low cost, great efficiency, and simple processing proce-
dures, adsorption is considered the most promising method. Several adsorbents have
been proposed for the effective removal of MO and Cr (VI): carbon nanomaterials [16,17],
layered double hydroxides [18,19], agricultural waste [16], chitosan [20], metal oxides [21],
zeolites [22], and clay minerals [23]. The biocompatibility, nontoxicity, and biodegradabil-
ity of chitosan make it attractive among other materials for removing of pollutants from
water. Chitosan is a polysaccharide with a linear structure resulting from the alkaline
treatment of the second-most abundant biopolymer in nature (chitin), which is present in
the shells of lobsters, crabs and shrimp [24]. Chitosan is bio-attracted to negatively charged
moieties and is water soluble because of an amino group that has a pKa of 6.5, causing it
to be easily protonated in a neutral medium and acidic solution. Its molecular structure
has large numbers of hydroxyl and amino groups that provide chelation power toward
different metal ions [25]. Although adsorption is the most efficient method for Cr (VI) and
MO removal, it is considered to be nondestructive, and the regeneration of the adsorbed
materials limits the application of chitosan to treat real wastewater. Additionally, only
the phase transition of contaminants can be realized by adsorption alone although their
intrinsic essence (physicochemical property and toxicity) remains unchanged. Therefore,
the best solution is to fabricate a material that can provide in situ chemical reduction of
Cr (VI) to Cr (III) (considered less toxic with useful characteristics for organisms) and the
simultaneous adsorption of both MO and Cr (VI); however, the association of reduction
removal with adsorption has rarely been studied. Moreover, the common recovery tech-
niques used for adsorption—centrifugation, sedimentation, and filtration—have several
problems, including cost, high energy consumption, and low potency. The continued
recycling of chitosan powder may not be easy due to its biodegradability; however, its
adsorption ability has been improved using nanotechnology, which allows the incorpo-
ration of nanomaterials in the adsorbent materiel providing very small particle size and
large surface area. However, these types of nanoadsorbents still suffer from decreased
recycling performance and a complex separation process. Lately, as an adsorbent and ad-
sorbent carrier, magnetic nanoparticles have shown exceptional properties such as simple
chemical modification, a large specific surface area, and excellent magnetic characteristics
and have attracted the attention of environmental engineers [26,27]. However, the lack of
functional groups and the agglomeration of magnetic nanoparticles reduce their adsorp-
tion of pollutants. Accordingly, the development of a novel recyclable material having
a high adsorption ability necessitates combining the benefits of polymer materials and
magnetic nanoparticles (NPs). In recent years great attention has definitely been paid to
magnetic chitosan nanocomposites constructed with a magnetic core of hematite (Fe3O4)
NPs and a chitosan shell [28]. The fast and easy separation of an adsorbent by a commercial
magnet as well as excellent mechanical features were provided via the combination of
both magnetic NPs and a chitosan biopolymer. Furthermore, the adsorption capacity of
magnetic chitosan can be increased by surface modification through the existing amino
and hydroxyl groups on its surface. As previously reported, the modification of chitosan
with different organic functional moieties (xanthate, α-ketoglutaric acid, thiourea, and
ethylenediamine) could enhance its adsorption capacity toward different pollutants [29].
The low synthesis cost, biocompatibility, and better environmental stability enhanced the
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application of a polypyrrole (Ppy)-conducting polymer for heavy metal removal from
water [30]. Polypyrrole is a polymer with a molecular structure containing high numbers of
imine groups that provide adsorption sites toward different dyes and metals. In addition
to that, the imine groups provide a reduction capacity to convert Cr (VI) to Cr (III). Thus,
Ppy can remove hexavalent chromium ions from water via both reduction and adsorption,
and remove MO via adsorption. Based on this information, the in situ chemical reduc-
tion of Cr (VI) and the simultaneous adsorption of both Cr (VI) and MO could enhance
the adsorption capacity. Interestingly, excellent separation ability could be obtained by
fabricating a novel nanocomposite containing the three parts to exploit the advantages
offered by each component: (i) reductant and adsorbent ability of polypyrrole; (ii) large
number of hydroxyl and amino groups of chitosan; and (iii) magnetic characteristics of
hematite nanoparticles (Fe3O4). As far as we know, there is no similar study. In particular,
this novel nanocomposite detoxified water of both hexavalent chromium Cr (VI) and MO.
Herein, the novel nanocomposite was synthesized via the combination of CS, Fe3O4 NPs,
and polypyrrole. First, a one-step co-precipitation method was used to synthesize magnetic
chitosan by mixing two oxidation states of iron with chitosan followed by the modification
of magnetic chitosan with polypyrrole using oxidative polymerization to produce the
nanocomposite ppy@CS/Fe3O4. This nanocomposite was tested to remove MO and Cr (VI)
from water. The chemical composition, surface structure, and morphology of synthesized
ppy@CS/Fe3O4 were characterized via XRD, FT–IR, SEM, and TEM. In order to understand
the removal mechanism, the effect of different factors on adsorption behavior (contact time,
initial concentration, and pH) was studied. Lastly, the ppy@CS/Fe3O4 nanocomposite was
found to remove Cr (VI) via in situ chemical reduction and adsorption while MO was also
adsorbed. This nanocomposite was found to be very promising for removing metals and
dyes from water as shown by its recyclability and the stability of the obtained data.

2. Materials and Methods
2.1. Chemicals

Chitosan was used as received (Winlab Company, Leicester, UK, molecular wei-
ght = 100,000–300,000) while polypyrrole and pyrrole (98.0%) were supplied from Sigma-
Aldrich (St. Louis, MO, USA). Sodium sulfate (99.0%), sodium chloride (99.9%), sodium bi-
carbonate (99.0%), hydrochloric acid (35.0%), sodium hydroxide pellets (97.0%), methyl or-
ange (95.0%) and potassium dichromate (99.9%) were supplied from CDH chemicals (New
Delhi, India), while ammonium persulfate, ferrous sulfate heptahydrate, and ferric chloride
hexahydrate were supplied from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China).
All chemicals were of analytical grade and used without any additional purifications.
Distilled water was used for the preparation of all experimental solutions.

2.2. Polypyrrole Magnetic Chitosan Synthesis

Firstly, the magnetic chitosan was prepared via the co-precipitation method as de-
scribed in our previous work [31]. Briefly, two oxidation states of iron (FeCl3 and FeSO4
solutions) were mixed in a conical flask in 2:1 molar ratios, respectively, followed by the
dropwise addition of aqueous ammonia (33%, v/v) accompanied by vigorous stirring
under a nitrogen atmosphere for 30 min. After that, the nanoparticles were washed four
times with distilled H2O and collected with a permanent magnet. Then, a reverse-phase
suspension method was used for the synthesis of magnetic chitosan in which a mixture
of 0.6 mL of tween 80, 54 mL of mineral oil, and 200 mg of synthesized Fe3O4 NPs) was
supplemented with 1% (w/v) of chitosan dissolved in an acetic acid solution. For 40 min,
the resulting magnetic chitosan was stirred and sonicated followed by the addition of
(4 mL, 25% w/v) glutaraldehyde. Stirring continued up to 5 h. Then, a permanent magnet
was used to separate the synthesized magnetic chitosan, which was washed several times
with acetone followed by drying at 45 ◦C in a vacuum. Secondly, the synthesized magnetic
chitosan was modified using pyrrole monomers according the oxidative polymerization
method, and 0.6 g of magnetic chitosan was added to 100 mL of water. Then, 2.5 mL
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of pyrrole was added to the previous mixture followed by the addition of (5.0 mL, 1M)
HCl solution. For 30 min, this mixture was stirred in an ice bath. An aqueous solution
of ammonium persulfate (4 g in 20 mL) as initiator, was added to the mixture and stirred
vigorously for four hours in an ice bath. Then, to 100 mL aqueous ammonia (33%, v/v) the
recovered nanoparticles were added under continuous stirring for 13 h. Then, the product
was washed several times with distilled water and ethyl alcohol followed by separation
with a magnet and dried for 13 h at 75 ◦C.

2.3. Nanocomposite Characterization

The synthesized ppy@magnetic chitosan nanocomposite was characterized using
different instruments including a UV/vis spectrometer, Raman spectrometer, magnetome-
ter, thermogravimetric analysis (TGA) measurement, Fourier transform infrared (FT–IR)
spectrophotometer, X-ray diffraction (XRD), scanning electron microscope (SEM), and
transmission electron microscope (TEM). A UV spectrometer (UVD-2960, Labomed Inc.,
Los Angeles, CA, USA) was used to measure UV-visible absorption spectra. A triple Raman
spectrometer (Horiba, Horiba Inc., Ann Arbor, MI, USA) was used to measure Raman
spectra. A vibrating sample magnetometer (Lake Shore 7410, Lake Shore Cryotronics Inc.,
Westerville, OH, USA) was used to measure the magnetization of the nanocomposite. A
Perkin Elmer, STA 6000 (PerkinElmer Inc., Shelton, CT, USA) was used to perform the
thermogravimetric analysis in the temperature range of 30–800 ◦C with 30 ◦C min−1 of
heating rate under a nitrogen atmosphere. A Bruker, Tensor 27 FT–IR (Karlsruhe, Germany)
spectrophotometer was used to perform FT–IR spectra in the range of 400–4000 cm−1 at
room temperature and collected at a resolution of 4 cm−1. A GNR APD-2000 PRO (GNR,
Cairo, Egypt) diffractometer was used to measure XRD using Cu Ka radiation (λ = 1.5406 Å)
operated at 45 kV. The diffraction intensities were recorded over the 2θ ranging from 5
to 90◦ with the constant scanning rate of 1◦·min−1. A TEM (JEM-2100F, Hillsboro, OR,
USA) operating at 200 kV and a SEM (Hitachi S4800, Hitachi, Tokyo, Japan) were used,
respectively, to study the size and morphology of the nanocomposite.

2.4. Adsorption Batch Experiments

A stock solution (1.0 g/L) of MO and dichromate salt (K2Cr2O7) were prepared
in distilled water and used for further dilution. For the study of the effectiveness of
ppy@magnetic chitosan for removing MO and Cr (VI), adsorbent experiments were con-
ducted in batch mode using 100 mL bottles. In each batch, 100 mg of the adsorbent
(ppy@magnetic chitosan) was added to 50 mL of the pollutant solution (100 mg/L). The pH
was adjusted using 1.0 M of HCl and 1.0 M of NaOH. Then, the samples were incubated
under shaking (200 rpm at 25 ◦C) using a thermostated shaker. A permanent magnet
was used to recover the adsorbent at certain intervals. The remaining supernatant was
analyzed for MO and Cr (VI) residual concentrations using a UV–Vis spectrophotometer
at λmax of 465 and 541 nm, respectively. The effect of different parameters on adsorption
performance (pH, contact times, and competing ions Cl−, HCO3

−, and SO4
2−) was studied.

The recyclability of the adsorbent was also studied by immersing it after the experiment in
1.0 M NaOH as eluent (for one hour) then shaking it for 13 h. To examine the ppy@magnetic
chitosan stability, the recovered adsorbent (with a magnet) was washed with water and
ethyl alcohol four times, and then vacuum dried at 75 ◦C for 1 day. All adsorption experi-
ments were performed in triplicate. The removal percentage (%) and adsorption capacity
(mg/g) were determined according to the following equation:

Adsorption capacity (mg/g) = ((Ci − Ct)/m) × V (1)

Each symbol of the above two equations has a well-known meaning. V denotes the
volume of solution, m denotes the mass of ppy@magnetic chitosan, and Ci and Ct represent
the initial and final concentration of MO and Cr (VI) pollutants, respectively.
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3. Results and Discussions
3.1. Nanocomposite Characterization

The morphology, size, and shape of synthesized magnetic chitosan and ppy@magnetic
chitosan were characterized using SEM and TEM images as shown in Figure 1. According
to Figure 1a, the SEM image of magnetic chitosan indicated the presence of abundant pores
with rough surfaces. The surfaces of the material showed the presence of several spherical
particles of about 26 nm that represent the magnetite nanoparticles (Fe3O4), thus signifying
their effective construction in the fabricated composite.
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Figure 1. SEM image of (a) magnetic chitosan and (b) ppy@magnetic chitosan; TEM image of (c) magnetic chitosan and
(d) ppy@magnetic chitosan (EHT: electron high tension, WD: working distance).

As observed, there was no clear aggregation phenomenon to indicate the excel-
lent distribution of magnetite nanoparticles over the surface of composite. According
to Figure 1b, the ppy loading over magnetic chitosan for the synthesis of the ppy@magnetic
chitosan nanocomposite provided a smoother surface compared to that of magnetic chi-
tosan. Polypyrrole was successfully loaded over the magnetic chitosan, which clearly
indicated the presence of coated Fe3O4 nanoparticles, which were mainly implanted be-
tween the chitosan and polypyrrole (in the interior of the formed ppy@magnetic chitosan
nanocomposite). According to Figure 1c,d, the ppy@magnetic chitosan nanocomposite
and magnetic chitosan showed granular and irregular particles, respectively, with a size of
1.00–10.00 µm.
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Polypyrrole, chitosan, and polypyrrole @magnetic chitosan nanocomposite XRD are
shown in Figure 2a. Data for chitosan and polypyrrole were used for comparison. The
amorphous structure of ppy was indicated from the wide peak observed at 2θ = 22.85 [32].
The two peaks of chitosan at 2θ = 20.35 and 9.95 are characteristic of the biopolymer
chitosan. The definite regularity in the chitosan structure was attributed to the strong intra-
inter-molecular hydrogen bonds formed by the plentiful amount of amino and hydroxyl
groups in the chitosan structure [33]. Many diffraction peaks were present in the XRD of
ppy@magnetic chitosan nanocomposite (as shown in Figure 2a) representing the planes
(533), (620), (440), (511), (422), (400), (311), (220), and (111) of crystalline magnetite [34–36].
The small crystalline size of magnetite nanoparticles is indicated by very wide peaks
compared to the bulk one. Using the Scherrer equation, the average crystalline size of the
magnetite nanoparticles was found to be 10 nm by selecting the highest peaks for calcula-
tion. FT–IR spectroscopy was further used to characterize the synthesized ppy@magnetic
chitosan nanocomposite as shown in Figure 2b. The broad peak of ppy@magnetic chitosan
nanocomposite at 3357 cm−1 corresponds to the chitosan O–H axial stretching vibration
band (3435 cm−1) and ppy N–H stretching vibration band (3450 cm−1), which are shifted
in the spectrum of the nanocomposite. Also, the shift of the ppy peak at 1548 cm−1 to
1559 cm−1 in the synthesized nanocomposite as well as the disappearance of the chitosan
peak at 1645 cm−1 indicated the strong interaction of both chitosan and ppy with the
magnetite nanoparticles. The peaks at 1465 and 1559 cm−1 indicated the strong inter-
action and coating of chitosan and polypyrrole over the magnetite nanoparticles. The
appearance of the new band at 571 cm−1 indicates the presence of magnetite as this band
is characteristic of magnetite. The strong electrostatic interaction between NH4

+ groups
in both polymers (chitosan and ppy) and the negatively charged magnetite surface was
indicated from the shift of the Fe–O bond peak at 581 and 585 cm−1, which is characteristic
of magnetite (571 cm−1). FT–IR results indicate the good integration of chitosan, ppy, and
Fe3O4 nanoparticles in the fabricated ppy@magnetic chitosan nanocomposite.
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Figure 2. (a) XRD and (b) FT–IR of polypyrrole (ppy), chitosan (CS), and polypyrrole@magnetic chitosan nanocomposite
(ppy@magnetic chitosan).

Raman spectroscopy was used to confirm integration among the three components of
the nanocomposite as shown in Figure 3a. The observed two bands at 450 and 625 cm−1

are characteristic of Fe3O4 and were shifted from 533 and 669 cm−1, respectively.
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role@magnetic chitosan nanocomposite.

This Raman shift was an additional indicator of the strong interaction between the
functional groups of chitosan and ppy polymers with the surface of Fe3O4 nanoparticles.
For further data about the synthesized nanocomposite, the TGA investigation was achieved
under N2 atmosphere to obtain the thermal properties of the polypyrrole@magnetic chi-
tosan nanocomposite as shown in Figure 3b, which shows three weight loss steps. Firstly,
the weight loss between 41 and 166 ◦C corresponds to moisture loss from the polymer ppy.
Secondly, the weight loss between 166 and 318 ◦C corresponds to the chitosan degradation.
The last weight loss, between 318 and 489 ◦C, corresponds to the ppy main-chain degra-
dation. One of the main advantages of the synthesized polypyrrole@magnetic chitosan
nanocomposite is its simple separation from the medium by using a magnet. The magnetic
properties of the nanocomposite were studied and provided in Figure 3c, which shows the
relation between the applied field at room temperature and the magnetization of the stud-
ied nanocomposite. According to the magnetization curve, the lack of a hysteresis loop (Hc
equal 0) indicates a superparamagnetic nature with no permanent magnetic moment. The
high magnetic saturation moment (Ms) of polypyrrole@magnetic chitosan nanocomposite
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(equal to 28.99 emu/g) was attributed to the magnetic Fe3O4 great loading. Due to its
simple separation from medium solutions using external magnet, the superparamagnetic
nanocomposite has attracted great attention for its application in water treatment All the
above characterization results approved the good integration and construction among the
three parts of the polypyrrole@magnetic chitosan nanocomposite.

3.2. pH Effect on the Adsorption

The adsorbent active binding sites and surface chemistry are greatly influenced by the
pH, which affects adsorption efficiency. Herein, we study the pH effect on MO, and Cr (VI)
adsorption using polypyrrole@magnetic chitosan nanocomposite over a wide pH range
from 2 to 12. Figure 4a illustrates the results. %clearpage
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The adsorption investigations to study the pH effect were performed at 25 ◦C with a
contact time of 40 min, adsorbent dosage of 100 mg, initial concentration of both pollutants
of 100 mg/L, and shaking rate of 200 rpm. The results showed that the removal of both
Cr (VI) and MO are pH dependent. The pH increase led to a decrease in MO and Cr (VI)
removal capacity due to the strong electrostatic interaction between the adsorbent positive
charge at low pH and pollutants negative charge [37]. Additionally, at pH below 4.5, a high
MO concentration could precipitate [38]. For Cr (VI), HCrO4

− is the dominant anion at pH
lower than 6 while at pH higher than 6 the dominant form is CrO2

4− that cause electrostatic
repulsion between different ions. Thus, at high pH the major reason for the decreased
adsorption efficiency of MO and Cr (VI) was electrostatic repulsion. Consequently, the
removal of MO and Cr (VI) over a polypyrrole@magnetic chitosan nanocomposite is very
suitable in a neutral or acidic medium at an optimal pH value between 2 and 4.5. This
behavior concerning the removal of both pollutants at different pH values is similar to
another study reported in the literature [39].

3.3. Contact Time Effect on the Adsorption

The adsorption of MO and Cr (VI) over polypyrrole@magnetic chitosan nanocom-
posite was performed at different reaction times ranging from 0 to 300 m as shown in
Figure 4b. The adsorption investigations to study the contact-time effect were performed at
25 ◦C, pH 4.5, agitation speed 200 rpm, and adsorbent dosage 100 mg with initial pollutant
concentrations of 100 mg/L. During the initial stage as shown in Figure 4b, there was rapid
adsorption efficiency of MO and Cr (VI). The synergistic effects between adsorbate and
adsorbent in the aqueous solution were responsible for a clear high adsorption efficiency.
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This stage is the saturation phase in which all possible adsorption sites are saturated with
the pollutants. In the case of the present adsorbent, saturation was achieved after 40 min
due the interaction between adsorbent surface sites and the adsorbate ions. After the
saturation phase, there was no substantial change. Thus, the adsorption of MO and Cr (VI)
over the nanoadsorbent polypyrrole@magnetic chitosan is related to the physicochemical
interactions between the adsorbate and adsorbent in water. Particle diffusion and mass
transfer indicate that this system is chemically rate controlled.

3.4. Competitive Ions Effect

The selectivity of any promising adsorbent must be studied for different competing
co-ions. Therefore, we studied the adsorption efficiency of polypyrrole@magnetic chitosan
nanocomposite toward Cr (VI) and MO in the presence of bicarbonate, sulfate, and chloride
co-ions, which may be present in drinking water (Figure 5a). These co-existing ions usually
competed with the pollutants on the adsorption active sites over the polypyrrole@magnetic
chitosan nanocomposite surface. To study the effect of co-ions, the adsorption experiment
was performed at 25 ◦C, pH 4.5, agitation speed 200 rpm, contact time 40 m, and adsorbent
dose 100 mg, with co-ion concentrations of 200 mg/L.
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According to Figure 5a, among the tested ions, sulphate showed the greatest effect
for adsorption efficiency. This may be related to the higher affinity of the adsorbent amino
group for SO4

2−, which has higher electronic charge. On the other hand, chloride allowed
an important reduction in the removal efficiency of both MO and Cr (VI). This may be
attributed to their greater negative density charge compared to other negative ions. The
similarity of ionic charge between Cr (VI) and bicarbonate ions had a greatly competitive
effect on Cr(VI) adsorption [40]. In contrast, MO adsorption was not significantly affected
by the bicarbonate ions.

3.5. Reusability of the Adsorbent

Reusability of any adsorbent is the main factor determining its economic feasibility
for application in real water treatment. In order to study the reusability of polypyr-
role@magnetic chitosan nanocomposite for the removal of both MO and Cr (VI), 5 succes-
sive cycles were performed using adsorbent dose of 100 mg in an adsorption–desorption
experiment as shown in Figure 5b. During the desorption process, we applied 0.1 M
sodium hydroxide as eluent. According to the Figure 5b, there was a little decrease in
removal efficacy after each cycle. This decrease was attributed to the damage of the polypyr-
role@magnetic chitosan nanocomposite reactive groups on the surface as well as to the loss
of its integrity. Consequently, the excellent polypyrrole@magnetic chitosan nanocomposite



Processes 2021, 9, 576 10 of 15

performance and reusability was approved for water treatment of MO and Cr (VI) after
5 regeneration cycles.

3.6. Adsorption Isotherm

The adsorption isotherm experiments were done to calculate the maximum adsorption
efficiency of a polypyrrole@magnetic chitosan nanocomposite on MO and Cr (VI). The ex-
periments were performed at 25 ◦C, pH 5.4, agitation speed 200 rpm, and adsorbent dosage
100 mg with initial MO and Cr (VI) concentrations ranging from 20 to 200 mg/L. Freundlich
and Langmuir isotherms were used to study the relation between the initial concentration
and the adsorption isotherm according to the following two equations, respectively.

Ce/qe = (1/qm
b) + (Ce/qm), (2)

log qe = logKF + 1/n(logCe), (3)

where n and KF are isotherm constants of the adsorption efficacy; b is the equilibrium
constant; and qm denotes maximum MO and Cr (VI) adsorption. Isotherm parameters here
were calculated using Langmuir and Freundlich isotherms and tabulated in Table 1. The
results are shown in Figure 6.

Table 1. Freundlich and Langmuir isotherm parameters for the removal of MO and Cr (VI) using polypyrrole@magnetic
chitosan nanocomposite.

Pollutant Freundlich Langmuir

qe
(mg/g)

qm
(mg/g)

KF
(L·mg/g) n R2 qe (mg/g) qm

(mg/g)
KL

(L·mg/g) R2

MO 88.8 97.9 46.9 4.789 0.880 94.9 97.9 0.323 0.998
Cr (VI) 101.5 106.4 32.7 4.679 0.847 104.8 106.4 0.268 0.997
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Homogeneous adsorption sites and monolayer interaction between the nanocomposite
surface and adsorbates (MO, Cr (VI)) were confirmed from the regression coefficient (R2),
which indicated that the Langmuir isotherm was more fit than the Freundlich isotherm as
shown in Table 1. This was an indication of the behavior of the nanocomposite adsorption
monolayer besides active sites homogeneity. Also, it showed that the different active sites
on the nanocomposite surface have energetically equivalent properties. According to this,
the chemical bonds between the adsorbent and adsorbates primarily showed monolayer
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adsorption over the studied nanoadsorbent with no additional interaction between the
adsorbed pollutant molecules and other pollutants. Interestingly, the MO and Cr (VI)
maximum removal capacity over the polypyrrole@magnetic chitosan nanocomposite was
found to be 95 and 105 mg/g, respectively, which is higher than previous reported studies
as tabulated in Table 2.

Table 2. The comparison between the removal of MO and Cr (VI) over polypyrrole@magnetic chitosan nanocomposite and
previous studies.

Adsorbent Operating Conditions
Removal Efficiency (mg/g)

Ref.
MO Cr (VI)

ppy@magnetic chitosan dosage: 100 mg/L, contact time: 40 min,
25 ◦C; 200 rpm, pH 4.5 95 105 This study

Magnetic biochar dosage: 200 mg/L; contact time: 5 days,
25 ◦C, 160 rpm, pH 5 - 77.54 [41]

Chitosan/diatomite composite dosage: 0.2 g/L, contact time: 40 min,
25 ◦C, pH 5 35 - [42]

CuO NPs
Graphene oxide

dosage: 25 mg/L, contact time: 100 min,
25–40 ◦C, pH 3 - 16.83 [37]

Banana peel dosage: 100 mg/L, contact time: 24 h,
30 ◦C, 180 rpm, pH 6–7 21 - [43]

Cetylpyridinium bromide
modified Montmorillonite

Dosage: 50 mg/L, contact time: 60 min,
25 ◦C,150 rpm, pH 4 6.54 - [44]

Modified wheat straw
Hydrotalcite

Dosage: 5–10 mg/L; contact time: 24 h,
30 ◦C, 250 rpm, pH 6 - 17 [45]

Hydrotalcite
sepiolite-supported nanoscale

zero-valent iron (S-NZVI)

Dosage: 0.05–3.2 g/L contact time:
11 min, 28 ◦C, 200 rpm, pH 6 43.86 [23]

TiO2@MIL-101 core–shell Dosage: 150 mg/L contact time: 4 h 19.23 - [46]

Chitosan/alumina composite Dosage: 10 mg/L contact time: 60 min,
303 ◦C, 200 rpm, pH 4 - 6.127 [47]

Nano-hydrotalcite SiO2 composite Dosage: 1 g/L contact time: 24 h 35 - [48]

Chitosan/organic rectorite-Fe3O4
Dosage: 40 mg/L contact time: 80 min,

25 ◦C, 200 rpm, pH 3 5.56 [49]

3.7. Adsorption Mechanism

FT–IR and XPS investigations were used to study the composition of ppy@magnetic
chitosan before and after the adsorption of MO and Cr (VI) to determine the mechanisms
of pollutant removal. FT–IR of ppy@magnetic chitosan nanocomposite before and after
adsorption of MO and Cr (VI) is shown in Figure 7a. The MO characteristic stretching bands
corresponding to C–C, C–N, S=O, and C–H appear at 1607, 1369, 1121, and 826 cm−1 [50]
in FT–IR results of ppy@magnetic chitosan adsorbed MO. The slight displacement of bands
from their locations was likely observed in FT–IR of ppy@magnetic chitosan adsorbed Cr
(VI). In order to approve these results, full range XPS before and after the adsorption of
target pollutants was used to identify the adsorbed species over the adsorbent as shown
in Figure 7b. The MO and Cr (VI) characteristic peaks appeared as shown in Figure 7b,
indicating the effective accumulation of Cr (VI) and MO over the adsorbent surface through
the adsorption process.

Furthermore, the XPS spectrum was used to identify the adsorbed species of chromium
ions (Figure 8a). XPS analysis showed two satellite bands of Cr (VI) and Cr (III) that appear
at 577 and 587 eV, respectively.
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These results suggested that Cr (III) ions are present as chromium species over the
surface of the adsorbent. Additionally, the existence of satellite bands of both Cr (VI) and Cr
(III) confirmed the adsorption of Cr (VI) over ppy@magnetic chitosan besides the chemical
reduction of Cr (VI) to Cr (III) during the adsorption. Subsequently, the chromium removing
mechanism can be explained as follows: under acidic conditions, the NH-functional groups
were protonated followed by the adsorption of Cr (VI) species (HCrO4

−) over the adsorbent
via bonding with nitrogen species and via electrostatic interactions.

This chemical bonding associated with the oxidation of -NH- to =N- was subsequently
accompanied by the reduction of hexavalent chromium to Cr (III). The redox activity
of =N-/-NH- pairs is responsible for the reduction of Cr (VI) in addition to their minor
oxidation potential compared to the Cr (III)/Cr (VI) redox pair. In addition, few Cr (III)
species may be dissolved in water, and others could be removed via complexation with
ppy@magnetic chitosan nitrogen functional groups. On the other hand, the XPS spectrum of
ppy@magnetic chitosan after the adsorption of MO showed a satellite peak at 169 eV, which
indicated the adsorption of MO over the binding sites of the nanocomposite. In general,
the redox activity of ppy@magnetic chitosan, besides the existence of different functional
groups over its surface, gave the adsorbent amazing in situ chemical reduction properties
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and adsorption toward Cr (VI) and MO removal from aqueous solution. Consequently,
this innovative adsorbent could be used for water detoxification from pollutants.

4. Conclusions

In this study, a novel ppy@magnetic chitosan nanocomposite was synthesized. This
novel adsorbent contained magnetic Fe3O4 nanoparticles and several N-containing func-
tional groups giving it an effective application for water detoxification from both MO and
Cr (VI). This nanocomposite was successfully characterized using different techniques
including SEM, TEM, TGA XRD, and FT–IR. The effect of different factors on the adsorption
of MO and Cr (VI) over the synthesized nanocomposite was studied, including contact time,
pH, and co-existed ions. The study of the contact time effect indicated that the adsorption
system was chemically rate-controlled. The pH effect study revealed that MO and Cr (VI)
adsorption over the studied adsorbent was pH dependent and more suitable for an acidic
environment at pH between 2 and 4.5. The study of the co-existing ions effect revealed that
the most affected co-ion on adsorption efficiency was sulfate, while bicarbonate had the
lowest effect. The adsorption isotherm suggested monolayer adsorption of MO and Cr (VI)
over a polymeric–inorganic nanocomposite due to its good fit with the Langmuir isotherm.
MO and Cr (VI) maximal removal efficiencies over this magnetic polymer nanocomposite
reached 95 and 105 mg/g, respectively. The reusability study using 0.1 M NaOH as eluent
also indicated an excellent reusability of the nanocomposite up to 5 successive cycles with
a slight reduction in the removal efficiency toward MO and Cr (VI), which was attributed
to the loss of functional group activity. FT–IR and XPS studies approved the successful
adsorption of both MO and Cr (VI) over the adsorbent surface in addition to the reduction
of Cr (VI) to Cr (III). Finally, we can conclude that ppy@magnetic chitosan nanocomposite
is a promising adsorbent for removing MO and Cr (VI) from water.
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