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Abstract: Nowadays, network attacks are the most crucial problem of modern society. All networks,
from small to large, are vulnerable to network threats. An intrusion detection (ID) system is critical for
mitigating and identifying malicious threats in networks. Currently, deep learning (DL) and machine
learning (ML) are being applied in different domains, especially information security, for developing
effective ID systems. These ID systems are capable of detecting malicious threats automatically and on
time. However, malicious threats are occurring and changing continuously, so the network requires
a very advanced security solution. Thus, creating an effective and smart ID system is a massive
research problem. Various ID datasets are publicly available for ID research. Due to the complex
nature of malicious attacks with a constantly changing attack detection mechanism, publicly existing
ID datasets must be modified systematically on a regular basis. So, in this paper, a convolutional
recurrent neural network (CRNN) is used to create a DL-based hybrid ID framework that predicts
and classifies malicious cyberattacks in the network. In the HCRNNIDS, the convolutional neural
network (CNN) performs convolution to capture local features, and the recurrent neural network
(RNN) captures temporal features to improve the ID system’s performance and prediction. To
assess the efficacy of the hybrid convolutional recurrent neural network intrusion detection system
(HCRNNIDS), experiments were done on publicly available ID data, specifically the modern and
realistic CSE-CIC-DS2018 data. The simulation outcomes prove that the proposed HCRNNIDS
substantially outperforms current ID methodologies, attaining a high malicious attack detection rate
accuracy of up to 97.75% for CSE-CIC-IDS2018 data with 10-fold cross-validation.

Keywords: intrusion detection system; machine learning; recurrent neural network; deep learning;
convolutional neural network; big data

1. Introduction

Nowadays, information and communication technology (ICT) systems play a crucial
role in every area of business and people’s lives. At the same time, cyber-attacks on ICT
systems are becoming more complex and are steadily increasing. Therefore, ICT systems
need a very efficient network security solution. An intrusion detection (ID) system is one
of the widely used tools for detecting various types of malicious attacks in the network.
Initially, a substantial amount of work in the ID domain was done by John Anderson in
1980 [1]. In most cases, an ID framework traces all interior and exterior packets in a network
to find out if any of them have signs of interruption. A good-quality ID system can identify
the characteristics of various cyberattacks’ actions and react automatically by sending out
warnings. An ID is classified into three categories according to the network architecture:
(1) network-based ID systems, which evaluate the contents of distinct packets to detect
malicious network traffic behavior; (2) host-based ID systems, which evaluate the event
log files of each host separately to determine malicious attacks; and (3) hybrid ID systems,
which combine both host and network-based ID systems with better-quality security
mechanisms [2–4]. The classification and evaluation of collected network traffic packets are
generally classified into anomaly detection, signature detection, and state protocol analysis.
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The signature detection technique utilizes the predefined patterns and filters that efficiently
detect malicious attacks. The signature detection technique uses existing knowledge to
identify malicious threats, which is why it is referred to as a knowledge-based approach.
The signature recognition method attains a low false alarm rate (FAR) and high accuracy;
however, it cannot detect a new attack in the network [5]. The anomaly detection technique
depends on heuristic methods to detect unknown attacks. However, the performance of
the anomaly detection technique is effective and has a high false-positive rate. To overcome
this issue, various organizations have used state protocol analysis, which combines the
benefits of both signature and anomaly-based systems [6]. Two main types of ID systems
can be identified according to their deployment structure: distributed and non-distributed.
The first type contains numerous ID subsystems, and these subsystems connect over a
large network, known as distributed implementation, while a non-distributed structure, on
the other hand, may be placed in a unique location, such as an open-source snort [7].

Nowadays, statistical tests and threshold computing techniques are used in the current
approaches to network intrusions in commercial markets. This statistical-test-based ID
system depends on several traffic constraints, including packet arrival time, packet length,
and network traffic flow size, on the model’s network traffic in a predefined time. These
kinds of approaches may not be efficient due to the complex nature of malicious attacks
that are occurring nowadays. So, the most efficient intelligent solution is required instead
of these statistically based approaches. ML-based approaches have been extensively used
in detecting several types of malicious attacks and ML techniques can assist the network
administrator with taking the appropriate actions to prevent these malicious attacks in
the network [8]. Ensemble learning (EL) also helps us to boost the machine learning (ML)
results by combining several models. Yong et al. [9] used ensemble ML-based approaches
for web shell attack detection in Internet of things (IoT) environments. To develop a secure
IoT system, authors apply machine learning models to detect web shells to create safe
solutions for IoT networks. Future ensemble ML algorithms, such as extremely randomized
trees (ET), random forest (RF), and Voting, are used to increase the performances of these
machine learning models. Folino et al. [10] developed a novel ensemble-based deep
learning framework for the analysis of non-stationary data, such as those that typically
occur in IDS logs. The ability to design a better detection system is desired to achieve a
higher detection rate, particularly when using ensemble learners. The choice of available
base classifiers and the choice of available combiners are two major challenges when
designing an ensemble. Tama et al. [11] provide a comprehensive review of ensemble
learning for intrusion detection systems. However, most conventional ML methods belong
to the shallow learning category and are less focused on feature engineering and selection;
they are unable to effectively solve the massive attack data classification problem that occurs
in a real-world network application context. As dataset sizes increase continuously, multi-
classification attack detection tasks will lead to reduced accuracy. So, ML is incompatible
with intelligent evaluation and the forecasting prerequisites of high-dimensional learning
with an enormous amount of data [12]. Deep learning (DL) algorithms have recently gained
popularity as powerful algorithms due to promising results in image processing, computer
vision (CV), natural language processing (NLP), and other fields [13]. DL is popular among
researchers due to its two primary characteristics: hierarchical feature representations
and learning long-term temporal pattern dependencies. Therefore, DL methods have
recently been considered to increase the intelligence of ID techniques, although there is
a shortage of research to benchmark such ML techniques with publicly existing datasets.
In a nutshell, DL has a nonlinear structural design that enables high-quality learning
for complex data analysis. The fast development of parallel computing technology has
delivered an extensive hardware foundation for DL methods. The most popular problems
with current ML-based models are: (1) these models have a high false-positive rate (FPR)
with a larger range of malicious intrusions [14]; (2) these models are not generalizable,
as most of the existing ID systems miss novel attacks due to outdated ID datasets; and
(3) state-of-the-art solutions are needed to maintain today’s quickly growing high-speed
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network traffic in a heterogeneous environment. These challenges are the motivation to
develop a hybrid convolutional recurrent neural network-based ID system using a real-
world dataset with a focus on evaluating the efficacy of ML and DL classifiers in the ID
domain. As mentioned above, ID methods have their limitations; so, in our proposed ID
system, we merge the two approaches to overwhelm their disadvantages and propose a
new classical method combining the advantages of two approaches that have enhanced
performance over traditional methods. To improve the learning capacity and performance
of the ID system, we propose an improved IDS that consists of up-to-date DL methods,
such as CNN, and classical ML, such as RNN. The important contributions of our research
can be summarized as follows.

• We developed the HCRNNIDS, which combines both deep and shallow models
to reduce analytical overheads and maximize benefits. The proposed HCRNNIDS
focuses on identifying whether network traffic behavior is normal or malicious because
attacks can be classified into the corresponding intrusion class.

• We address the problem of class imbalance that is common in ID data.
• We equate the proposed method with popular ML approaches. The empirical out-

comes express that the HCRNNIDS very appropriate for attack detection and can
accurately identify the misuses in 97.75% of incidents with 10-fold cross-validation.

• The output of the hybrid convolutional recurrent neural network-based network
intrusion detection system is higher than that of traditional classification techniques
when conducting experiments on the well-known and contemporary real-life CSE-
CIC-IDS2018 dataset; it improves the accuracy of ID, thus providing a novel research
method for ID.

To address the abovementioned challenge, we developed a hybrid convolutional
recurrent neural network-based intrusion detection system (HCRNNIDS). The remainder
of the article is arranged as follows. We introduce the background of the NID in Section 2.
In Section 3, we provide an overview of the proposed HCRNNIDS structure as well as a
comprehensive explanation of the ID data. The HCRNNIDS simulation is described in
Section 4. Lastly, the conclusion of our research is illustrated in Section 5.

2. Related Work

During the last two decades, machine learning (ML) techniques have been used exten-
sively in the network security domain because of their capability to extract the concealed
information on the distinctions among malicious and normal behaviors [15–18]. So, the ear-
lier researchers used various approaches based on conventional ML for intrusion detection
(ID). Xu et al. [19] applied K-nearest neighbors (K-NN) for anomaly ID, and evaluated the
efficacy of the proposed ID system using the KDDCup ID dataset. Bhati et al. [20] applied
variants of support vector machine (SVM), such as quadratic, linear, fine, and medium
Gaussian, to analyze the performance of SVM techniques using the NSL-KDD dataset. An
integrated ID system was developed by Sumaiya et al. [21] using correlation-based feature
selection and an artificial neural network (ANN). The authors performed an experimental
analysis on the UNSW-NB and NSL-KDD ID datasets. Similarly, a Random Forest (RF)-
based ID system was presented by Waskle et al. [22], and an ID system based on several
classical ML classification methods was presented by Alqahtanet al. [23]. However, prior
techniques used in the domain of ID have poor classification efficiency, with a high FAR
and a low DR in the ID system. Deep learning (DL) is a subset of ML that consists of several
hidden layers used to obtain the deep network’s characteristics. Due to their deep structure
and ability to learn the important features from the dataset on their own and produce an
output, these techniques are more effective than ML [24].

DL has grown in popularity in recent years and has been applied for intrusion detec-
tion (ID); studies have shown that DL outperforms conventional methods. The authors
of [25] use a DL method for flow-based anomaly ID based on a deep neural net (DNN), and
the experimental results show that DL can be used for anomaly ID in a software-defined
network. Nowadays, auto-encoders (AE), convolutional neural networks (CNNs), and
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deep neural networks (DNNs), as well as variants of these methods, are used for ID [26].
Long-short-term-memory (LSTM) can be effective in the field of network security. Various
LSTM deep-learning-based security policies have been investigated for ID [27], classifi-
cation and detection of malicious apps [28], phishing exposure [29], and time-dependent
botnet ID [30]. The ability to model the sequence is the primary benefit of a recurrent
neural network (RNN) over a conventional network. Oliveira et al. [31] developed an
intelligent ID and classification framework using LSTM deep learning and evaluated the
proposed framework by using the CIDDS-001 dataset to achieve a higher ID accuracy
as compared with traditional ML approaches. The convolutional neural network (CNN)
is another popular DL approach that learns directly from the dataset without requiring
manual feature extraction algorithms. A typical CNN consists of convolutional, pool-
ing fully connected, input, and output layers. Even though CNNs are widely used to
analyze visual images, they can also be utilized in the field of security. For example, in
IoT networks [32], CNN-based models are used for ID, such as denial-of-service (DoS)
ID [33], and android malware [34]. An auto-encoder (AE) [35] is a kind of ANN that is
applied to economically learn data codes in an unsupervised fashion. An AE aims to learn
a representation for a dataset by training the network to disdain “noise” signals to reduce
the number of dimensions. An auto-encoder has three components: encoder, message,
and decoder. A deep AE can be used to construct a useful security model in cybersecurity.
As a result, the AE-based feature learning (FL) model in cybersecurity outperforms other
advanced algorithms. The AE-based FL model uses the fewest security features when
compared with other sophisticated algorithms in cybersecurity. The model is more effective
and functional, even in small spaces like the IoT, because of the rich and tiny latent repre-
sentation of security features. [36]. The authors in [37] provide an AE-based FL prototype
for security purposes, proving its effectiveness in malware classification and detection. The
authors in [38] propose a deep AE-based anomaly detection model. To create an effective
ID model, the Restricted Boltzmann Machine (RBM) can be used. Yadigar et al. [39] present
a denial-of-service attack detection model and achieve a higher attack detection accuracy
with a RBM. The summary of various approaches in the ID domain is given in Table 1.

Table 1. Summary of different approaches in the ID domain.

Reference Dataset ID Technique Performance

Tanet et al. [40] KDD’99 MCA + EMD 99.95%
Tanet et al. [40] ISCX 2012 MCA + EMD 90.12%

B. Inger et al. [41] NSL-KDD ANN 99.67%
Casas et al. [42] KDD’99 Clustering-based IDS 92.0%

Ludwig et al. [43] NSL-KDD Deep learning ensemble 92.49%
Shone et al. [44] KDD’99 Non-symmetric deep AE 97.90%

Kakavand et al. [45] ISCX 2012 Ada boost+ DT 97.2%
Yu et al. [46] CTU-UNB Stacking dilated CAE 87.14%

Kumar et al. [47] ISCX 2012 PCA 94.05%
Akyol et al. [48] ISCX 2012 MHCVF 68.2%
Omar et al. [49] ISCX 2012 HADM-IDS 87.2%

Monshizadeh et al. [50] UNSW-N15 SVM, J48 89.01%
Wang et al. [51] ISCX 2012 HAST-IDS 96.9

Recently, applications of the hybrid model have made various researchers attempt to
develop an efficient and robust ID system in the cybersecurity domain. These ID systems
have been found to be competent against malicious attacks as compared with separate
conventional ML and DL-based ID systems [52]. Wang et al. [51] transformed two packets
into an image and used the 2D-CNN to learn the characteristics of packet bytes while using
the LSTM to learn the characteristics of the packet sequence, resulting in the simultaneous
learning of two spacing and timing characteristics. Chencheng et al. [53] developed a
hybrid ID system for the evaluation of multiple types of flow features using a hybrid NN
and tested the efficacy of the proposed hybrid ID system in real-time using the ISCX2012
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ID dataset. Zeng et al. [54] used a hybrid NN with a stack autoencoder (SAE) to evaluate
the traffic features and chose the best feature vectors from the network traffic as label
results. Hosseini et al. [55] used a fusion-based method that combined an ANN and a SVM
and tested it on the benchmark NSL-KDD dataset, where the SVM was used for feature
selection and the ANN was used for attack classification.

Most of the researchers in the ID domain use simulated datasets, such as NSL-KDD
or KDDcup99, but these kinds of ID databases cannot accurately represent the scenarios
of realistic network traffic. Erhan et al. [56] note that DDOS attacks are one of the most
annoying types of malicious attacks for online activities on the internet. DDoS attacks are
generally classified into two types: bandwidth depletion and resource depletion attacks.
The authors created resource-depletion-type DDoS attacks and recorded the traffic from
the backbone router’s mirror port of the Bogaziçi University network. This dataset contains
both attack-free and attack traffic, making it appropriate for testing network-based DDoS
detection methods. Attacks are directed at a single victim server that is linked to the
campus’s backbone router. Damasevicius et al. [57] developed an annotated real-world
network flow dataset for network ID called LITNET-2020. It consists of modern network
traffic and various types of malicious attacks that occurred over 10 months. This gives an
advantage over synthetically created ID datasets because an artificial synthesis of traffic
might lead to inaccurate network attack models and behaviors. It is essential to utilize
realistic flow-based ID datasets to guarantee accurate valuation of techniques [58]. As a
result, in this study, the practical CSE CIC dataset was used to demonstrate a change from
static datasets to dynamically created datasets that not only represent network traffic and
log files at the time of the study, but can also be updated, reproduced, and extended.

3. Proposed Approach

Figure 1 shows the ID system’s architecture. It consists of two learning steps, sketched
as follows. In this approach, we proposed to construct an IDS using a HCRNN-based deep
learning approach. Our proposed HCRNNIDS is economical in terms of computational
complexity while using datasets with full features and offers improved accuracy with a
minimal chance of a FAR.
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Figure 1. Overview of the HCRNNIDS.

3.1. Overview of the HCRNNIDS

HCRNN-based deep learning focuses on solving realistic ID problems with a big data
processing framework. Due to a lack of time and space, resolving such a problem is not
an easy job. Big data presently has huge, and increasing, volumes but needs an enormous
amount of power, specialized resources, and a computational device to assist with the
learning process that can handle the data competently.
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HCRNN-based deep learning decreases these challenges by using a RNN with a CNN
DL model. The source of the experiment is the key structure of the HCRNNIDS that exists
here. The detail of the HCRNNIDS is depicted in Figure 1.

The overview of the HCRNNIDS shows that a CNN has two fundamental components:
(i) a feature extractor; and (ii) a classifier. The feature extractor consists of two layers called
convolution and pooling layers. The extracted output, which is known as the feature
map, becomes the input to the second component for the classification. This way, the
CNN learns the local features very well. However, the weakness is that it misses the
temporal dependency among important features. Therefore, to capture both spatial as well
as temporal features more robustly, we introduced recurrent layers after the CNN layers.
This way, we addressed the vanishing and exploding gradient problems effectively, which
improves the capability to capture spatial and temporal dependencies and learn efficiently
from variable extent sequences. In the HCRNN network, the input is initially processed by
the CNN, and then the output of the CNN is passed through the recurrent layers to generate
sequences at each timestep, which helps us model both spatial and temporal features. Then,
the sequence vector is passed through a fully connected layer before being fed into a
Softmax layer for the probability distribution over the classes. The network traffic was
first organized and preprocessed in the data pre-processing part. During pre-processing,
all necessary conversions were made that used or were helpful for the HCRNNIDS and
IDS-supported data formats. In the original CSE CIC IDS2018, a few features, such as
IP addresses and timestamps, have slight importance on whether the network traffic is
benign or malicious. The timestamp features are used to record the time when malicious
traffic happened and provide only slight support when training the process, so during
the pre-processing phase we removed these kinds of features. As in an anomaly intrusion
detection system (AIDS), most of the traffic is categorized based on the traffic behavior, and
should not be biased, conflicting with the IP address, so we also removed the IP address
characteristics. Data pre-processing operations were implemented using Pandas NumPy
and Scikit-learn libraries developed for the Python programming language. The research
community has drawn substantial attention to the class imbalance issue. The problem of a
class imbalance is created by an insufficient data distribution; one class contains most of
the samples, while others contain comparatively few. The classification problem becomes
more complicated as the data dimensionality increases due to unbounded data values
and unbalanced classes. Bedi et al. [59] utilized several ML approaches to deal with the
class imbalance issue. Thabtah et al. [60] also evaluated various approaches to the class
imbalance problem. Most data samples are targeted by most of the algorithms, which miss
the minority data samples. As a result, minority samples appear irregularly but constantly.
The main algorithms for solving an unbalanced data problem are data pre-processing
and feature selection techniques, and every approach has both benefits and shortcomings.
The ID dataset has a high-dimensional imbalance problem, including missing features of
interest, missing feature values, and the sole existence of cumulative data. The data appear
to be noisy, containing errors and outliers, and unpredictable, comprising discrepancies in
codes or names. We used over-sampling to resolve the imbalance problem; this involved
enlarging the number of instances in the minority class by arbitrarily replicating them
to increase the presence of the minority class in the sample. Although this procedure
carries some risk of overfitting, no information was lost, and the over-sampling approach
was found to outperform the under-sampling alternative. After finishing the data pre-
processing, we split the dataset into testing, training, and validation sets, which were 9, 90,
and 1% of the initial network traffic, respectively. The training set was utilized for training,
the validation set was applied for fast evaluation of the prototype during training, and the
testing set was utilized for the final evaluation of the model. Furthermore, we discovered
that the dataset included far too many samples of normal network traffic, which could
easily distort the model’s classification preference.
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3.2. Datasets

Since choosing proper ID data to assess the ID system plays a critical role, we selected
the data before we performed the simulation of the proposed approach.

Explanation of the ID Data

Although numerous ID datasets are freely available, some of them contain old-
fashioned, inflexible, under-verified, and irreproducible intrusions. To overcome these
deficiencies and produce modern traffic patterns, the well-known CSE-CIC-DS2018 [61]
dataset was produced by the Amazon Web Services (AWS) platform. It contains various
types of datasets used to evaluate anomaly-based techniques. The CSE-CIC-DS2018 intru-
sion dataset presents real-time network behavior and comprises several intrusion states.
Moreover, it is distributed as a whole network encapsulates all of the inner network traces
to calculate payloads for data packets. These characteristics of the CSE-CIC-DS2018 dataset
bring us to utilize it for the proposed intrusion detection system in our research. It is
expected that the proposed HCRNN-based ID system will result in a more rational and
valuable direction in the network security domain.

This dataset contains several intrusion profiles that can be utilized in the security
domain and apply to a wide range of network protocols and topologies. This dataset was
enhanced by the IDS2017 criteria. IDS2018 is a publicly available dataset that currently
has two profiles and seven intrusion methods. Several data states were gathered, and the
unprocessed data were edited regularly. So, IDS2018 has 80 statistical properties, including
packet length, volume, and number of bytes, that were calculated in forward and reverse
mode. Finally, the dataset was made available to all researchers via the internet, with
approximately 5 million records. The CSE-CIC IDS2018 dataset is accessible in two formats:
PCAP and CSV. The CSV format is primarily used in AI, while the PCAP format is utilized
to extract new features [62,63].

This CSE-CIC IDS2018 dataset contains seven different types of attacks:

• Brute-force DOS attacks;
• DDOS attacks;
• Brute-force SSH;
• Infiltration;
• Heartbleed;
• Web attacks; and
• Botnet.

The dataset-attacking infrastructure consists of 50 computers, while the attacking
companies consist of 30 servers and 420 terminals. CSE-CIC IDS2018 data signify the
captured network traffic of AWS and a system log with 80 extracted attributes utilizing
CICFlowMeter-V3. The size of the CSE-CIC IDS2018 dataset is around 400 GB, which is
larger than that of CIC-IDS 2017. Table 2 presents a few extracted features of the CSE-
CIC2018 dataset.

We compared the sample size of the CSE-CICIDS2018 dataset with that of CICIDS2017.
The results are displayed in Table 3. The sample size of CSE-CICIDS2018 was significantly
increased compared with the CICIDS 2017 ID dataset, particularly in the Botnet and
Infiltration attacks, where it has risen by 143 and 4497, respectively. However, the number
of Web Attacks available is extremely small (928) in CSE-CICIDS2018.
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Table 2. Overview of the extracted features of the CSE-CIC IDS2018 ID dataset.

Features Explanation

Fl-dur Flow interval
Fl-iat-max Maximum time between two flows
Tot-fw-pk Aggregate data packets in a forward way

Tot-l-fw-pkt Overall size of the packet in an up way
Tot-bw-pk Overall data packets in a back way

Fw-pkt-l-min The lowest volume of the packet in a further way
Fw-pkt-l-avg The average amount of data in the packet in an up way
Fw-iat-min Smallest time between two packets delivered in an onward way
Bw-iat-tot Overall time between two packets delivered in a back way
Bw-iat-avg Mean period between two packets delivered in a back way
Bw-iat-std Average period between two packets forwarded in a back way

Bw-iat-max Highest period between two packets forwarded in a back way
Bw-iat-min Least time between two packets delivered in a forward way
Bw-iat-min Lowest time between two packets forwarded in a reverse way

Table 3. Comparison of the CSE-CIC 2018 ID dataset with CICIDS-2017.

Dataset Normal DDoS Dos Botnet Brute
Force Infiltration Web

Attacks Port Scan

CICIDS-
2017 1,743,179 128,027 252,661 1966 13,835 36 2180 158,930

CSE-
CICIDS2018 6,112,151 687,742 654,301 286,191 380,949 161,934 928 -

3.3. Experimental Details

We implemented the HCRNN method in Java with Deeplearning4j to validate the
efficacy of the proposed ID scheme. The experiment was done on a cluster computer (64-bit,
32 GB RAM, 32-core processor, desktop computer Core I7). The software stack contained
Java (JDK) 12, Deeplearning4j 1.0.0. alpha, and Spark v2.3.0. The deep learning (DL)
algorithm was trained on an NVIDIA GTX 1080 Ti GPU with cuDNN support to increase
the pipeline speed. To evaluate the output of the HCRNNIDS, we first had to divide the
data into training and testing sets. To develop an effective HCRNNIDS, we used a training
set and analyzed our ID approach with the testing set. To show the dominance of the
proposed solution, we used the CSE-CIC-IDS2018 dataset with all its original features. The
network traffic was mixed with malicious and non-malicious data, which were classified
into malicious and non-malicious groups by the HCRNNIDS. The proposed method
reduces the computational complexity by using extensive features from the CSE-CIC-
IDS2018 dataset to achieve high ID accuracy and a low FAR value. Though 90% of the
CSE-CIC-IDS2018 data were used for training purposes with 10-fold cross-validation, the
model was evaluated on a 10% held-out dataset. During the training phase, first-order
gradient-based optimization techniques, such as Adam, Ada Grad, RMSprop, and Ada
Max, with varying learning rates were used to optimize the binary cross-entropy loss of
the predicted network packet, and the actual network packet was optimized with different
combinations of hyperparameters from a grid search and 10-fold cross-validation to train
each model on the batch size. We observed the performance by adding Gaussian noise
layers followed by convolutional and recurrent layers to improve the model generalization
and reduce overfitting.

4. Experimental Results

The HCRNNIDS’s superiority was assessed by the false positive (FP), true positive
(TP), false negative (FN), true negative (TN), ID accuracy, and error rate using the CSE-
CIC-DS2018 ID dataset.
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4.1. Evaluation Metrics

The confusion matrix (CM) supports the identification of the actual and predicted
classification. The result of a categorization is based on two classes: Normal and Anomaly.
In the confusion matrix, there are four critical states that we must measure.

• True Positive (TP): this indicates that the model is accurate and normal and predicts
positive outcomes.

• False negative (FN) is characterized by incorrect prediction. It recognizes instances
that are malicious with certainty as natural, and the model predicts negative outcomes
incorrectly.

• False positive (FP): the model predicts a positive outcome when, in fact, the number
of observed attacks is normal.

• True negative (TN): denotes instances that are properly monitored as an attack and
predicts negative results. The overview of the overview of the confusion matrix is
given in Table 4.

Table 4. Overview of the confusion matrix.

Predicated Value

Actual value
Normal TP FN

Anomaly FP TN

We can calculate the system’s output using the above specifications of the confusion
matrix (CM). DR and FAR are two crucial and common parameters for the analysis of an
IDS. The sum of misclassified regular instances is identified as FAR, while the amount of
intrusion incidents identified by the model is recognized as DR.

FAR = FP/(TN + FP) (1)

DR = TP/(TP + FN) (2)

We say that the HCRNNIDS approach is better as compared with traditional ap-
proaches as DR rises and FAR drops.

4.2. Evaluation of the Proposed HCRNNIDS

Table 5 shows the classifier’s performance with CSE-CIC-DS2018. The results were
created through the random search hyperparameter optimization technique. The ensemble
classifier XGB manages to boost the attack classification performance significantly, with
an accuracy of 83%. The tree-based classifier gives better accuracy as compared with the
ensemble-based classifiers.

Table 5. Classifier performance with CSE-CIC-DS2018.

Classifier Precision Recall F1-Score DR FAR

LR 0.781 0.801 0.791 0.80 11.50
XGB 0.845 0.834 0.839 0.83 9.13
DT 0.8733 0.885 0.879 0.88 7.8

HCRNN 0.9633 0.9712 0.976 0.97 2.5

We had also tried different combinations of the algorithm. We used several tradi-
tional machine-learning-based classifiers, but as our main aim was to use the HCRNN
to capture both spatial as well as temporal features more robustly, we introduced recur-
rent layers after the CNN layers. This way, we attempted to address the vanishing and
exploding gradient problems effectively, which improves the capability to capture spatial
and temporal dependencies and learn efficiently from variable extent sequences. While
traditional machine-learning-based classifiers are not suitable and computationally efficient
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for high-dimensional data (imbalances), typically the number of variables largely exceeds
the sample size. Its scale invariance makes it a good candidate for such a high-dimensional
dataset. However, the most important improvement was obtained with advanced the DL
approaches like CNNRNN, which accurately detected misuse in up to 97.6% of instances.
The performance enhancement was due to the long-term dependency among nonlinear
features and implementation details are given in Supplementary Materials.

4.3. Overall Evaluation

Table 6 summarizes the outcomes with the existing methods for the CSE-CIC-IDS2018
dataset. Since these datasets were created after the DARPA and KDD data, there are a
few preliminary results available. Because of the current simulation performance, the best
outcomes for each phase in terms of FAR and accuracy were determined. The proposed
HCRNNIDS outperforms the state-of-the-art techniques in terms of accuracy and FAR.
This is due to the deep learning approach’s execution. It is important to note that the
similarities are only meant to act as a reference because various researchers have used
distinct quantities of data distributions, pre-processing procedures, and sampling methods.
As a result, a simple measurement of metrics such as the testing and training time is rarely
appropriate. Though the proposed HCRNNIDS outperformed the evaluated metrics, it is
difficult to believe that the proposed approach fully outperformed other approaches. With
the proposed solution, we claim that one can achieve an exceptional amount of network
protection and easily identify malicious threats.

Table 6. Comparison of existing approaches with the CSE-CIC-IDS2018 data.

Reference Methods Accuracy False Alarm Rate

Peng et al. [64] DBN 95% 0.98
Farhan et al. [65] DNN 90.25% -

Lin et al. [66] Deep learning 95.0% 05.99
Rawaa et al. [67] LSTM 96.2% 8.6
Zhou et al. [68] IDS using DL 96.0%
Kim et al. [69] CNN IDS 96.0%
Our approach HCRNN 97.75% 1.4

5. Conclusions and Future Work

In this article, the NIDS was formed using a HCRNN, which is effective in cyber-
security. We trained the ID system framework utilizing a CSE-CIC-DS2018 dataset. We
executed the IDS using a few traditional classification techniques (LR, DT, XGB, etc.) and
the HCRNN technique for the proposed ID system. To capture both spatial as well as
temporal features more robustly, we introduced recurrent layers after the CNN layers. This
way, we attempted to address the vanishing and exploding gradient problems effectively,
which improves the capability to capture spatial and temporal dependencies and learn
efficiently from variable extent sequences. The key reason for the proposed ID system
based on DL classification is to combine the benefits of both anomaly-based (AB) and
signature-based (SB) methods. The proposed ID system helps to reduce the computational
complexity and results in an enhancement in accuracy and DR for intrusion detection.

Both traditional ML and deep learning methods were assessed using renowned clas-
sification metrics (DR, Accuracy, Precision, Recall, and F1 score). The simulation results
show that the proposed HCRNNIDS can successfully realize the calcification of malicious
attack events. The overall accuracy of the normal and other types of attacks reaches around
97.75% in the CSE-CIC-IDS2018 data. Based on the simulation results, we can conclude that
one can achieve an effective security solution against malicious attacks using the HCNRNN
deep learning model.

However, one possible limitation of the proposed approach is that we have tested
the HCRNNIDS only on a single ID dataset. It will also be important to test it on a more
recent dataset since the signature of the attached traffic often changes. We think that the



Processes 2021, 9, 834 11 of 14

proposed scheme can be extended, in the future, into many domains, such as anomalies,
and misuses could be identified in various real image datasets in the IoT. We will focus
on exploring various other deep learning methods with a feature extraction technique
to learn knowledgeable data illustrations in the case of other ID issues in contemporary,
realistic datasets.

Supplementary Materials: The source codes of the implementation are available on GitHub at https://
github.com/Ashfaqjiskani/Hybrid-Convolutional-Recurrent-Neural-Network-Based-Network-IDS.
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Abbreviations

ML Machine Learning
DL Deep learning
HCRNNIDS Hybrid Convolutional Recurrent Neural Network Based Network Intrusion

Detection System
CNN Convolutional neural network
RNN Recurrent neural network
CSE-CIC A collaborative project between the Communications Security Establishment

(CSE) & the Canadian Institute for Cybersecurity (CIC)
ICT Information and communication technology
ID Intrusion Detection
IDS Intrusion Detection System
DR Detection Rate
FAR False Alarm Rate
CV Computer vision
NLP Natural Language Processing
FPR False-positive rate
NID Network Intrusion Detection
K-NN K nearest neighbors
SVM Support vector machine
ANN Artificial neural network
RF Random Forest
DN Deep network’s
LSTM Long Short-Term-Memory
AE Auto-encoder
FL Feature learning
RBMs Restricted Boltzmann Machines
LR Logistic Regression
XGB Extreme Gradient Boosting
DT Decision Tree
AIDS Anomaly intrusion detection system
SMOTE Synthetic Minority Oversampling Technique
AWS
platform

Amazon Web Services

DoS Denial of Service
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DDoS Distributed Denial of Service
FN False Negative
FP False Positive
TP True Positive
TN True negative
AB Anomaly-based
SB Signature-based
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