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Abstract: An in situ emulsion polymerization method was used for the synthesis of polyacryloni-
trile nanoparticles amino-functionalized partially reduced graphene oxide (PAN-PRGO). After that,
hydrolyzed polyacrylonitrile nanoparticles amino-functionalized partially reduced graphene oxide
(HPAN-PRGO) nanocomposite was achieved by the modification of nitrile groups of the composite
polymer chains to carboxylic groups, aminoethylene diamine, and amidoxime functional groups
through partial hydrolysis using a basic solution of sodium hydroxide for 20 min. Different synthe-
sized materials were characterized and compared using well-known techniques including transmis-
sion electron microscope (TEM), scanning electron microscope (SEM), Fourier-transform infrared
spectroscopy (FT-IR), Raman spectra, and X-ray diffraction (XRD). The nanocomposite was struc-
tured through the interaction between acrylonitrile’s (AN) nitrile groups and amino-functionalized
graphene oxide nanosheets’ amino groups to successfully graft polyacrylonitrile over the surface
of functionalized nanosheets as approved by characterization techniques. The synthesized com-
posite was examined for the removal of samarium ions (Sm3+) from water. Different experimental
conditions including pH, contact time, initial concentration, and adsorbent dose were investigated
to determine the optimum conditions for the metal capture from water. The optimum conditions
were found to be a contact time of 15 min, pH 6, and 0.01 g of adsorbent dosage. The experimental
results found, in a good agreement with the Langmuir isotherm model, the maximum adsorption
capacity of Sm3+ uptake was equal to 357 mg/g. A regeneration and reusability study of synthesized
composite up to six cycles indicated the ability to use HPAN-PRGO nanocomposite several times for
Sm3+ uptake. The obtained results prove that this polymer-based composite is a promising adsorbent
for water treatment that must be studied for additional pollutants removal in the future.

Keywords: adsorption; polymers; samarium ions; nanomaterials; water treatment

1. Introduction

Recently, one of the most worldwide problems is water pollution with different con-
taminants [1–4]. Lanthanide elements are considered one of these harmful contaminants
that have increased in water due to their universal demand as significant innovation basic
elements in various applications [5]. For instance, optical glasses, catalysts, steel, and
ceramics industrial applications utilize lanthanides 17 elements due to their exceptional
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chemical and physical properties [6]. Unfortunately, due to their bioaccumulation, propen-
sity, and toxicity, unsustainable quantities of these elements are getting into water sources
and food chains, causing harmful effects on human health, especially in the vicinity of
mines and refineries [7]. For example, the exposition, swallowing, or inhalation of toxic
samarium soluble salts can irritate the respiratory tract as well as the eyes and skin [8]. As
a result, the removal of Sm3+ from water has been a top priority. Several published studies
on the removal of Sm (III) by various adsorbents and biosorbents were identified based on
the literature [9–12]. In terms of economy, high-quality products, reliability, performance,
versatility, and fabrication, the adsorption-based technique has been widely regarded as the
most durable and promising of all existing water treatment techniques [13–16]. Until today,
polystyrene, clays, zeolites, and carbon nanomaterials have also been used as adsorbents in
water treatment. However, due to some drawbacks, such as nonbiodegradability and poor
adsorption capability, some of these adsorbents are not widely used [17]. It is necessary to
go through a chemical modification process to increase the ability to recover from treated
water, dissolve in acidic media, avoid swelling, and improve adsorption efficiency [18].
The coordination of metal ions with these adsorbents efficiently depends on their sur-
faces functional groups, such as amidoxime, amino, hydrazine, and imidazole groups that
have chelation properties toward target toxic metals [19–21]. Water purification has been
achieved using aliphatic polymers with nitrogen functional groups, but their surface area
is limited. Though, the polymeric composites of carbon and carbon-based materials have
shown very effective adsorption of toxic ions from water/wastewater. Amongst all carbon-
based materials, graphene oxide (GO) is a 2-dimensional single thick graphitic carbon atom
that can covalently bond to other groups due to the existence of functional groups (reactive
oxygen) on its top [22]. Graphene has excellent tailorable functionalities, a large active
area, and electrical, mechanical, and thermal properties [23]. Graphene functionalization
with polymers containing chelating groups has received a lot of interest in recent years
as a way to improve graphene’s adsorption capacity. Polypyrrole functional groups have
been utilized for the modification of reduced graphene oxide to capture Hg+2 ions from
water with high selectivity and capacity [24]. Exceptional physiochemical stability can
be achieved via covalently linked hybrid structure. In the current study, polymer-grafted
reduced GO (rGO) hybrids were synthesized. Polyacrylonitrile (PAN)-grafted ethylene
diamine partially reduced GO (GO-NH2) was synthesized as a novel promising hybrid
nanomaterial. The excellent physical properties of polyacrylonitrile, such as high chemical
resistance and harness, beside its low cost, simple synthesis, good environment stability,
and non-toxicity, encouraged us to use this polymer in the fabrication of this nanocom-
posite. Additionally, the polyacrylonitrile affinity toward toxic species can be improved
via the simple chemical modification of its suspended nitrile (CN) functional groups to
amidoxime (AO) groups [25]. Polyacrylonitrile’s non-toxicity and high stability, besides
the partially reduced graphene oxide’s large surface area, had driven the synthesis of
PAN-partially reduced graphene oxide (PAN-PRGO) nanocomposite for the uptake of
samarium ions (Sm3+) from water. Herein, the surface of functionalized GO nanosheets
were grafted covalently with PAN nanoparticles. PAN-PRGO highly covalently attached
nanocomposite was synthesized by the emulsion polymerization of acrylonitrile (AN) with
ethylene diamine functionalized graphene oxide (GO), in which surface free amino groups
of functionalized GO reacted with the nitrile group of AN for the covalent attachment. This
step was followed by formation of carboxylate, amidoxime, and amide groups over the
nanocomposite surface by partial hydrolysis of free nitrile groups using NaOH to enhance
the chelation and adsorption properties of the nanocomposite toward Sm3+ ions.

2. Materials and Methods
2.1. Chemicals

Samarium (III) nitrate hexahydrate (Sm(NO3).6H2O, 99.9%), ethylene diamine tetraacetic
acid (EDTA, 98%), azo-bis-isobutyronitrile (98%), sodium dodecyl sulfate (SDS) (99%), ethy-
lene diamine (99%), acrylonitrile (99%), and graphite flakes (99.9%) were supplied from
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Sigma-Aldrich and used as received without any purification. In all experiments, the used
water was deionized water.

2.2. PAN-PRGO Nanocomposite Synthesis

Improved Hummer’s method [26] was used for the synthesis of functionalized
graphene oxide (NH2-GO). A three-necked round-bottomed flask was used to mix 121 mL
distilled H2O with 0.42 g SDS and 0.52 g of NH2-GO. The micelles were produced after a
half-hour of stirring and sonication. After that, 70 ◦C was adjusted to heat the suspension
solution and kept at the same temperature. Then, 2, 2′-azobisisobutyronitrile (0.151 g
dissolved in 1.5 mL N,N-Dimethylformamide) was added to the suspension. Acrylonitrile
as a monomer (11 mL) was injected after 16 min. The reaction was then permitted to
proceed with continuous stirring and nitrogen atmosphere for 5 h. Lastly, the synthesized
PAN-PRGO nanocomposite was collected by centrifugation and washed several times
with water and ethyl alcohol to eliminate excess unreacted acrylonitrile, then heated at
70 ◦C overnight for dryness. For the synthesis of hydrolyzed polyacrylonitrile/partially
reduced graphene oxide nanocomposite (HPAN-PRGO) and hydrolyzed polyacrylonitrile
nanoparticles (HPAN), synthesized according to the literature [27], NaOH (4%, 4 mL) was
added to 0.22 g of PAN-PRGO or PAN nanoparticles then refluxed for 25 min at 70 ◦C.
Lastly, the HCl and H2O were used to wash the filtered mixture to achieve pH 7.5, after
which it was dried at 70 ◦C under vacuum.

2.3. Materials Characterization

The synthesized materials, including HPAN-PRGO, HPAN, GO-NH2, and GO, were
characterized using different techniques. Fourier-transform infrared spectroscopy (FT-IR-
6100 Jasco, Tokyo, Japan) was used to perform FT-IR spectra in the range of 400–4000 cm−1

at room temperature and collected at a resolution of 4 cm−1. X-ray diffractometer (XRD,
X’Pert Pro, PANanalytical, Almelo, The Netherlands) was used to measure XRD using Cu
Ka radiation (λ = 1.5406 Å) operated at 45 kV. The diffraction intensities were recorded
over the 2θ ranging from 5◦ to 90◦ with the constant scanning rate of 1◦ min−1. The
morphology and size of different materials were determined using a scanning electron
microscope (SEM, Quanta FEG 250, Eindhoven, The Netherlands) and a transmission
electron microscope (TEM, JEOL JEM-2100 Plus, Hillsboro, USA), respectively, operated at
200 KV. The Raman spectra were investigated with a 532 nm laser beam using a Raman
spectrometer (Horiba Inc., Michigan, USA).

2.4. Sm3+ Adsorption Experiments

Batch adsorption experiments were used for the study of the adsorption capacities of
synthesized materials toward Sm3+ removal from water, with the investigation of the effect
of different factors on the adsorption process including contact time, initial concentration of
Sm3+, adsorbent dose, and pH value. During the study of initial concentration effect, 30 mL
of Sm3+ ions in acetate buffer with a concentration range from 10 to 300 mg/L was mixed
with 0.01 g of adsorbent and shaken for 30 min, then filtered and analyzed for the presence
of Sm3+ ions using atomic absorption spectrometry. The pH effect on Sm3+ adsorption was
also investigated in the range of 2 to 8 adjusted using HCl and NaOH by mixing 0.01 g of
adsorbent with 30 mL of 100 mg/L Sm3+ solution. The solution was shaken for one hour,
then filtered and analyzed. To determine the dosage effect on Sm3+ adsorption, 30 mL of
100 mg/L of Sm3+ solution was mixed with different masses of adsorbent in the range of
0.001 to 0.05 g with continuous shaking for 30 min, followed by filtration and analyzing. To
study the adsorption kinetics, 30 mL of 100 mg/L of Sm3+ solution was mixed with 0.01 g
of adsorbent at different times of adsorption in the range of 0.5 to 60 min. Additionally, the
adsorption isotherm of Sm3+ ions was studied by mixing 0.01 g of adsorbent with 30 mL of
Sm3+ ions in the concentration range of 100 to 1500 mg/L with shaking for 30 min, followed
by filtration and analyzing. Furthermore, the reusability of HPAN-PRGO for the removal
of Sm3+ ions was studied up to six cycles. After each adsorption cycle the adsorbent was
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filtered and the adsorbed ions were desorbed by washing with 2 M HCl, buffer solution,
and distilled water, followed by drying at 45 ◦C to be used in the next cycle. All previous
experiments were performed in triplicate.

3. Results and Discussions
3.1. Materials Characterization

The synthesized materials were characterized using different techniques, as discussed
in this section. For the morphology characterization of HPAN-PRGO, PAN-PRGO, HPAN,
PAN, GO, and GO-NH2, SEM and TEM images are shown in Figures 1 and 2. A smooth
surface with several folds of GO was confirmed with TEM images, besides its layered
structure with lateral dimensions of some micrometers. GO-NH2 reserved this multilayered
composition of GO due to the scrolling of nano-sheets as shown in its TEM image that
retained its nanostructure and high surface area. This large surface area of GO was also
confirmed from the SEM image that showed the agglomeration of GO in a 2-D multilayered
composition with lateral sizes of some nanometers and a smooth surface. Shaded and
bright areas can be formed on the surface of GO via the overlap of dissimilar layers. There
was a similarity between the GO and GO-NH2 SEM images with much folded and roughed
GO-NH2 that retained the high surface area with a functionalization feature. The PAN
nanoparticle growing over graphene sheets homogenously was confirmed from SEM and
TEM images of HPAN-PRGO and PAN-PRGO. Hence, the amine-functionalized graphene
oxide nanosheets grafted with PAN through polymerization. Figure 1g shows the particle
size distribution of HPAN-PRGO nanocomposite. From the TEM image and the histogram,
the average particle size of HPAN-PRGO nanocomposite was 4.7 nm. The average particle
size was calculated by 174 measuring the diametersnanoparticles in TEM image by ImageJ
software (ver 2, LOCI, Wisconsin, USA, 2014).

According to SEM, the HPAN and PAN nanoparticles had a narrow size distribution,
mostly below 60 nm. In addition, the SEM image’s high magnification revealed spherical
particles with sharp edges of PAN latex. The HPAN particles showed an increase in
diameter when compared to PAN particles, due to the formation of amide (CONH2) and
carboxyl (COOH) groups on the polymer chains by hydrolysis of cyano (CN) groups, but
no major change in overall morphology [28]. Although the bulk of the latexes are still made
up of spherical crystals, evidence of neighboring latex conglutinating to one another at
lateral points due to hydrolysis or crosslinking was discovered.
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Figure 1. TEM image of (a) HPAN-PRGO; (b) PAN-PRGO; (c) HPAN; (d) PAN; (e) GO; (f) GO-
NH2; and (g) the particle size distribution of HPAN-PRGO nanocomposite. 
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Figure 1. TEM image of (a) HPAN-PRGO; (b) PAN-PRGO; (c) HPAN; (d) PAN; (e) GO; (f) GO-NH2;
and (g) the particle size distribution of HPAN-PRGO nanocomposite.

The Raman spectra with two characteristic D and G bands of HPAN-PRGO, GO-NH2,
and GO are shown in Figure 3a. D and G bands are at 1357 and 1571 cm−1, respectively.
The quality of graphitic constructions was determined using the D band to G band intensity
ratio (ID/IG), where this ratio for strongly ordered pyrolytic graphite reaches zero as an
indicator of the defects and degree of disorder in the graphitic system. This ratio was
calculated from three peaks and the value was the average of three values. This ratio in
GO was found to be 0.94 which was a little more than the ratio in aminated GO that was
equal to 1.13, which was attributed to the increased defects in GO structure due to the
covalent bonding between GO sheets and ethylene diamine. The GO-NH2 ID/IG ratio
confirms the better quality of the prepared reduced GO, since this value should be between
1.12 and 1.42, as reported in the literature [29]. This ratio was also found to equal to
0.86 in HPAN-PRGO, which was lower than the ratio in GO, indicating the disordered
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structure due to the combination between free amino groups of GO sheets and nitrile
groups of HPAN [24]. Synthesized materials including HPAN-PRGO, HPAN, GO-NH2,
and GO were characterized using XRD as shown in Figure 3b. Due to the intermolecular
repulsion of the nitrile dipoles, the HPAN spectrum shows a diffraction peak at 2θ = 17.40,
which corresponds to the (100) crystallographic planes of PAN (due to PAN intermolecular
spacing) [30]. The spectrum for HPAN-PRGO also indicates a poor reflection peak at
2θ = 17.0, which can be attributed to polyacrylonitrile’s (100) crystal planes, implying that
GO aids in the forming of PAN nanoparticles. The occurrence of a peak at 2θ = 10.97
in GO sheets produced by chemical oxidation of graphite is attributed to the functional
oxygen-containing groups on the sheets [31]. The sharp peak of GO diminished after
chemical functionalization with ethylene diamine, and a wide peak at 2θ = 25.0 existed,
suggesting that the GO was partly reduced, possibly due to the restacking of the aminated
GO nanosheets [32]. Based on Bragg’s Law, the interlayer spacing for GO and GO-NH2 was
8.753 and 8.185 Å, respectively [33]. The decreased intensity of PAN peaks after implanting
HPAN over aminated GO sheets indicated the reaction between the nitrile group of PAN
and free amino groups of GO that caused the damage of bonds in the inner crystal area,
and a reduction in the polar interaction between the molecular chains.
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FT-IR spectra of synthesized materials including HPAN-PRGO, HPAN, PAN-PRGO,
PAN, GO-NH2, and GO are shown in Figure 4a,b to approve their formation. The FT-IR of
GO showed several peaks that corresponded to various functional oxygen groups, such
as epoxy and alkoxy stretching, that appeared at 1158 and 1082 cm−1, respectively [34,35];
hydroxyl groups stretching vibrations appeared as a wide band at 3337 cm−1, and the
carbonyl of the carboxylic group appeared at 1732 cm−1 [35]. The FT-IR spectra of amino-
functionalized GO showed two new peaks, for N–H bending that appeared at 1652 cm−1,
and N–H stretching that was represented at 3273 cm−1 [36]. These bands show that the
amine group and the amide linkage effectively functionalized graphene oxide with ethylene
diamine. The characteristic peaks of PAN that appeared at 1460 and 2921 cm−1 represented
CH2 bending and stretching vibrations, while the nitrile stretching vibration was repre-
sented by the peak at 2238 cm−1 [37]. Additionally, the nitrile group was confirmed by
the peak at 1644 cm−1. The FT-IR spectra of PAN-PRGO showed a peak at 2921 cm−1,
as in PAN, that corresponded to CH2 stretching vibration, and a peak corresponding to
a nitrile group at 2239 cm−1. Additionally, the formation of N–C=N or NH–CO due to
the interaction between AN nitrile groups and amino-functionalized GO was confirmed
by the appearance of a new peak corresponding to an amide group at 1574 cm−1, and
the disappearance of or reduction in the amino-functionalized GO peaks at 1652 and
3273 cm−1. Additionally, NH–C=N–CH2 formation was represented by the peaks at 1219
and 1460 cm−1. The FT-IR of PAN partially hydrolyzed using sodium hydroxide showed
peaks at 1667 and 1574 cm−1, corresponding to amino and carbonyl stretching bands, and
a reduced band at 2239 cm−1 after hydrolysis. The HPAN-PRGO FTIR spectra showed two
new peaks at 1667 and 1574 cm−1 confirming the occurrence of hydrolysis. Additionally,
the nitrile group band at 2239 cm−1 completely disappeared, while two overlapped peaks
corresponding to COONa and N–H were observed at 1574 and 1667 cm−1. The GO was
confirmed to be partially reduced by the reduction in the epoxy group peak at 1082 cm−1.
Thus, these results demonstrate that aminated GO was successfully produced, and that AN
was simultaneously implanted and polymerized at the amino group of functionalized GO
during the polymerization process, yielding covalently hybrid-prepared (HPAN-PRGO)
nanocomposite. To determine the enhanced surface area of synthesized nanocomposite,
the N2 adsorption–desorption isotherm of synthesized materials was performed and is
shown in Figure 4c. The surface areas of HPAN, GO-NH2, and HPAN-PRGO were 27.0,
36.3, and 58.0 m2/g, respectively. The effect of modification on the surface area is clear
from the isotherm curve that further affects the adsorption capacities toward the uptake of
Sm3+ ions.
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3.2. Initial Concentration Effect

The effect of initial concentration on the adsorption of Sm3+ over synthesized materials
was studied in the concentration range of 10–300 mg/L, as shown in Figure 5a. According
to Figure 5a, the adsorption capacity was increased as the initial concentration increased
from 10 to 100 mg/L. The maximum adsorption capacity for the removal of Sm3+ was
reached at initial concentrations of 100, 100, and 50 mg/L in the case of HPAN-PRGO, GO-
NH2, and HPAN, respectively. After the equilibrium was reached there was no increase
in the adsorption capacity with the increase in the initial concentration, meaning that
there were no available sites for adsorption after reaching the equilibrium. The maximum
adsorption capacities were 92.5, 74.0, and 22.7 mg/g for Sm3+ removal over HPAN-PRGO,
GO-NH2, and HPAN, respectively.
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3.3. PH Effect

The removal of Sm3+ ions over the synthesized HPAN-PRGO, GO-NH2, and HPAN
at different pH values was studied, as shown in Figure 5b. The studied pH range was 2.0
to 8.0, adjusted using 0.1 N of HCl and NaOH. For all studied adsorbents, the maximum
adsorption capacities were reached at pH equal to 6.0, and found to be 92.5, 74.0, and
22.7 mg/g for HPAN-PRGO, GO-NH2, and HPAN, respectively. According to Figure 5b,
the relationship between sorption and solution pH has an extreme principle. The adsorption
of Sm3+ ions increased with pH increasing, peaked around pH 6.0, and then started to
drop again. The low adsorption capacities of different adsorbents at pH < 6 was attributed
to the protonated state of adsorbent functional groups (O=C–NH+, NH3

+, and COOH+
2)

causing an increase in the electrostatic repulsion with the positive samarium ions, while
at pH > 6 the adsorption capacities decreased due to the precipitation of Sm3+ ions as
hydroxides, which made their capture by the adsorbent decrease and may have been due
to competitive adsorption from hydroxyl ions caused by hydrogen bonding formation,
resulting in a reduction in the amount of possible adsorption sites. Further experiments
were performed at pH equal to 6.0 as the results in this section indicated that the optimum
pH value was 6.0.

3.4. Contact Time Effect

The contact time effect on Sm3+ adsorption over HPAN, GO-NH2, and HPAN-PRGO
was studied over a time range of 10 to 60 min and the results are shown in Figure 6a.
According to Figure 6a, most Sm3+ ions interacted rapidly with the synthesized materials
HPAN, GO-NH2, and HPAN-PRGO during the first 10 min of the removal process. This
rapid stage occurred due to the existence of empty adsorption sites with a large number on
the surface of the adsorbent that caused the rapid capture of ions within a short period.
After that, the equilibrium was achieved within 15 min, which caused this time to be
chosen as the optimum contact time. The repulsive forces between the adsorbed ions
were augmented when the quantity of Sm3+ adsorbed onto the adsorbent increased, and
adsorption tolerance for free metal ions was exacerbated accordingly. Hence, after reaching
the equilibrium, there was no further increase in the adsorption capacities due to repulsion
forces, as well as the occupancy of adsorption sites with ions, and there were no free sites
to capture additional ions, so time became without effect on the adsorption process.
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3.5. Dose Effect

The dose effect on the adsorption of Sm3+ ions over HPAN, GO-NH2, and HPAN-
PRGO was studied over a range of 0.1 to 2.5 g/L and the results are shown in Figure 6b.
This study aimed to investigate the effect of adsorbent weight on Sm3+ removal using
synthesized nanocomposites. According to Figure 6b, the adsorption capacities reached
their maximum at 0.3 g/L, which was equal to 23, 74, and 93 mg/g for HPAN, GO-NH2, and
HPAN-PRGO, respectively. However, at higher doses, the adsorption capacities decreased.
The range from 0.1 to 0.3 g/L showed an increase in the adsorption capacities toward Sm3+

ions, with approximately 15% of that attributed to the fixed volume of solution in this
case that lead to an increase in the chance of adsorbent interaction with pollutant ions. At
definite dosage, a redistribution of the metal ions in a higher volume of adsorbent occurs
with any further increase in the adsorbent dosage, and the contact efficacy stops limiting
the adsorption. Accordingly, there was a drop in the adsorption activity per unit mass of
adsorbent at this dosage.

3.6. Adsorption Isotherm

The maximum adsorption capacity of captured ions can be possibly investigated by
plotting the adsorption isotherm. Different isotherms can describe the interaction between
pollutant ions and active sites of adsorbent and describe also the isotherm behavior, such as
the length of the linear section, the existence of a bending section, and degree of curvature,
etc. The studied isotherms hit plateaus in a given concentration range, as shown in Figure 7.
Langmuir and Freundlich isotherm models were used to fit the equilibrium data, as shown
in Figure 7a,b, respectively, and the obtained parameters for both isotherms are introduced
in Table 1.

Table 1. Freundlich and Langmuir adsorption isotherms’ different parameters for Sm3+ adsorption
over synthesized nanomaterials.

Adsorbent Freundlich Langmuir

KF N R2 qm RL R2

HPAN-
PRGO 84.523 4.486 0.846 357 0.015 0.998

GO-NH2 38.553 3.7 0.937 218 0.035 0.994

HPAN 21.76 3.954 0.947 82 0.032 0.996
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For HPAN-PRGO, GO-NH2, and HPAN materials as adsorbents for the capture of
Sm3+ ions, the experimental data fit lower to the Freundlich model isotherm than to the
Langmuir model isotherm, based on the RL (dimensionless constant) values that fell in
the favorable range (0–1) and based on R2 (correlation coefficient) values. These values
indicated that Sm3+ ion capture using HPAN-PRGO, GO-NH2, and HPAN nanomaterials
were a better fit to the Langmuir isotherm model than the Freundlich model. The monolayer
of adsorbed ions is designed on the adsorbent surface according to Langmuir’s theory
and the enthalpy of adsorption sites, and the energy is identical while a heterogeneous
adsorption is described according to Freundlich’s theory [38].

According to this, the Sm3+ ions are adsorbed over HPAN-PRGO, GO-NH2, and
HPAN nanomaterials in a monolayer by active adsorption sites that are energetically
identical. Subsequently, it is fair to say that the synthesized substances have homogeneous
composition, with the same adsorption core geometry, resulting in identical adsorption
forces for ion extraction from aqueous solutions. According to the Langmuir isotherm, the
maximum adsorption capacities are 357, 218, and 82 mg/g for the Sm3+ ions’ adsorption
over HPAN-PRGO, GO-NH2, and HPAN, respectively. These results of the isotherm
indicate the capture of a high quantity of Sm3+ ions that is attributed to the existence of
carboxylate and amine groups with a large number over the nanocomposite surface.

3.7. Reusability Study

The ability to reuse any adsorbent is a key factor determining the overall cost of
water treatment processes [39,40]. The reusability study of the adsorbent has been car-
ried out by repeating the pollutant ion adsorption–desorption cycle many times by the
same adsorbent [41–43]. The desorption here of Sm3+ ions was achieved using 2 M HCl
and buffer solution. Then, the desorbed HPAN-PRGO nanocomposite was washed with
sodium hydroxide to retain the –ve charge of the adsorbent carboxylic groups. After that,
the adsorbent was washed several times with deionized H2O and dried to be used in the
next cycle. The adsorption–desorption process for Sm3+ ion removal using HPAN-PRGO
nanocomposite was performed up to six successive cycles. The reversibility of the adsorp-
tion process and excellent regeneration properties of the HPAN-PRGO nanocomposite for
Sm3+ removal was indicated from the loss in the removal efficiency after six cycles, which
was found to be only 5% compared to the first cycle, as shown in Figure 8. After the last
cycle, the removal efficiency was maintained above 90%. Based on these findings, it can be
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suggested that the HPAN-PRGO adsorbent can be used continuously to remove Sm3+ ions
from water with low cost and high efficiency.
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3.8. Comparative Study of Samarium Ions Adsorption

To highlight the effectiveness of the synthesized material as an Sm3+ adsorbent, the
maximum adsorption capacity obtained here for Sm3+ ions was compared with previously
reported results. The previous studies for Sm3+ adsorption are summarized in Table 2.
According to previously reported results, HPAN-PRGO nanocomposite revealed excellent
adsorption capacity for Sm3+ ion removal compared to reported adsorbents. Therefore,
synthesized HPAN-PRGO nanocomposite may be effectively used for the capture of Sm3+

ions from aqueous solution. An important study that must be considered in the future
is to determine the thermodynamic parameters (∆G, ∆H, and ∆S) [44–48] of the adsorp-
tion process to get a complete picture regarding the applicability of the HPAN-PRGO
nanocomposite in large-scale water treatment.

Table 2. Comparison between the removal of Sm3+ ions over HPAN-PRGO nanocomposite and previous studies.

Adsorbent Adsorption Capacity (mg/g) Ref.

HPAN-PRGO 357.0 This study

Oxidized MWCNTs 89.3 [49]

Fe2O3/SiO2/R1R2PO3Na 180.0 [50]

Mesoporous Fe3O4 mSiO2–DODGA nanoparticles 28.60 [51]

ZIF-8 NPs 281.10 [52]

SiO2/PVI/H2PO4
− NPs 160.0 [53]

Sargassum Sp. 51.10 [54]

PAN SDS 97.70 [55]

samarium (III) ion-imprinted polymer (IIP) particles 12.25 [56]

Heulandite 8.53 [57]

However, is very important to point out that the material cost is an important factor
prohibiting the widespread use of composites at a large scale. In some cases, recent ad-
vances in composites are driving composites to be more competitive and cost effective.
Concerning the material tested in the present study, more investigations are needed to
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evaluate the process efficiency using real wastewater at a large scale. Additionally, the
competitive applicability of this innovative adsorbent should be evaluated, taking into
consideration various parameters related to the material proprieties (degradation life cycle,
regeneration, etc.) and to the waste generated by the process, including the loaded pollu-
tant’s disposal and chemicals used for the adsorption/desorption process. Moreover, cost
comparison between this innovative adsorbent and other materials should be conducted.

4. Conclusions

In this study, HPAN-PRGO nanocomposite as a novel adsorbent was synthesized
successfully and applied for the removal of samarium ions from water. The synthe-
sized HPAN-PRGO nanocomposite was characterized using various techniques (SEM,
TEM, FT-IR, and XRD). The experimental results for Sm3+ ion removal over HPAN-PRGO
nanocomposite were found to fit well with the Langmuir model, with a maximum ad-
sorption capacity equal to 357 mg/g. This indicated that the ions were adsorbed over the
surface of the nanocomposite as a monolayer via energetically identical adsorption sites.
Interestingly, the nanocomposite reuse was investigated up to six successive cycles with no
significant loss in the Sm3+ removal efficiency. Finally, we can conclude that HPAN-PRGO
nanocomposite can be considered as a promising material for water treatment that could
be studied for the removal of additional metals and dyes.
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