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Abstract: Troubleshooting batch processes at a plant-wide level requires first finding the unit causing
the fault, and then understanding why the fault occurs in that unit. Whereas in the literature
case studies discussing the latter issue abound, little attention has been given so far to the former,
which is complex for several reasons: the processing units are often operated in a non-sequential
way, with unusual series-parallel arrangements; holding vessels may be required to compensate for
lack of production capacity, and reacting phenomena can occur in these vessels; and the evidence
of batch abnormality may be available only from the end unit and at the end of the production
cycle. We propose a structured methodology to assist the troubleshooting of plant-wide batch
processes in data-rich environments where multivariate statistical techniques can be exploited.
Namely, we first analyze the last unit wherein the fault manifests itself, and we then step back
across the units through the process flow diagram (according to the manufacturing recipe) until
the fault cannot be detected by the available field sensors any more. That enables us to isolate the
unit wherefrom the fault originates. Interrogation of multivariate statistical models for that unit
coupled to engineering judgement allow identifying the most likely root cause of the fault. We apply
the proposed methodology to troubleshoot a complex industrial batch process that manufactures a
specialty chemical, where productivity was originally limited by unexplained variability of the final
product quality. Correction of the fault allowed for a significant increase in productivity.

Keywords: troubleshooting; batch processes; process monitoring; fault identification; fault diagnosis;
Industry 4.0; principal component analysis; statistical process control

1. Introduction

Batch processes are widespread in the industrial manufacturing of high value-added
products, such as specialty chemicals, pharmaceuticals, agricultural goods and biochemi-
cals. Compared to their continuous counterparts, batch processes are relatively easier to
set up, more flexible through their ability to handle variations in feedstock and product
specifications, and can be used for the manufacturing of multiple products in a single
multipurpose plant. However, the plant layout can be more complex, often requiring
unusual series-parallel arrangement of the processing units as well as holding vessels to
compensate for lack of capacity [1].

Most batch processes are run according to fixed recipes consisting of a predefined
sequence of operations (e.g., feed, mix, heat up, react, cool down, hold, separate, transfer)
of assigned length. Even when the manufacturing recipe is fully automated (which is not al-
ways the case in an industrial setting), variability in the raw materials, operating conditions
of each unit, and initial status of the equipment can make it difficult to consistently meet
the strict quality specifications the final product is subject to [2,3]. The chance of incurring
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underspecifications calls for more frequent product sampling, as well as extended process-
ing time; and when an underspecification is actually encountered, additions/corrections to
the recipe, and possibly even a reworking of the entire batch, are required. The net result is
that the productivity decreases and the manufacturing costs increase.

The potential sources of quality variability in a batch process are many and intersect
with each other spreading around several pieces of equipment at different times, as de-
termined by the manufacturing recipe. Additionally, the process chemistry may not even
be known in full, which further complicates process understanding. If the root cause of
inconsistency in quality is not identified and actions are taken to remove it, the problem can
impact several production campaigns, with a related strong economic penalty. Identifying
the root cause of product quality inconsistency is a task of process monitoring known as
troubleshooting [4]. Loosely stated, monitoring a batch process amounts to comparing
the time evolution of the process variables across different batches, in such a way as to
highlight whether the faulty batches display different patterns of change of the process
variables with respect to the regular batches. If that is found to be the case, control charts
and engineering judgment can then assist the troubleshooting task. Effective data analytics
techniques are needed to handle the massive amount of data that plant historians make
available within Industry 4.0 manufacturing environments [5–8]. Multivariate statistical
methods, such as principal component analysis (PCA) [9], projection to latent structures
(PLS) [10] and their multiway companions [11,12], are extensively used to this purpose.
These methods allow reducing the dimensionality of the available data by capturing the
correlation structure between the process variables over their time evolution, and projecting
the data onto a subspace of reduced dimension that consists of new variables (called latent
variables) that summarize the original data and allow for an effective visual comparison of
the data evolution patterns across different batches.

The use of PCA and PLS for process monitoring is well established, especially for
continuous processes [13–16]. When it comes to the monitoring and troubleshooting of
batch processes, methodologies and applications typically refer to individual units rather
than to plant-wide systems [17–25]. That is not surprising, as the task of isolating the
root cause of an observed product quality inconsistency may be relatively easy if the unit
causing the inconsistency is known in advance, so that the task boils down to identifying
what is going wrong with that particular unit. However, the troubleshooting becomes
much more challenging if the unit from which the fault originates is not known. This
is quite frequent in plant-wide batch processes, because after originating from a unit,
the fault propagates downstream the process according to the manufacturing recipe and
the topology of the process flow diagram (i.e., in a non-sequential way), and becomes
visible from the plant end unit only at the end of the production cycle, when the final
product is sampled. Reconstructing the travel of the fault across the units and the recipe is
therefore complex.

In this study, we propose a structured methodology to assist the troubleshooting of
plant-wide batch processes in data-rich environments that can exploit multivariate statis-
tical techniques. Namely, we first analyze the last unit wherein the fault manifests itself,
and we step then back across the units through the process flow diagram (according to
the manufacturing recipe) until the fault cannot be detected by the available field sensors
anymore. That enables us to isolate the unit in which the fault originates. Finally, interroga-
tion of multivariate statistical models for that unit coupled to engineering judgement allow
identifying the most likely root cause of the fault. We apply the proposed methodology to
troubleshoot a complex industrial batch process that manufactures a specialty chemical,
where productivity was originally limited by unexplained variability of the final product
quality, an issue that called for repeated corrections of the manufacturing recipe.

The paper is organized as follows. Section 2 describes the process and the manufactur-
ing recipe. The available data and their arrangement are discussed in Section 3. Section 4 is
a short recap on the modeling techniques used in the study. The proposed backstepping
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methodology and its application to the reference process are discussed in Section 5. Finally,
a Conclusions section summarizes the study.

2. Process Description

We consider an industrial batch process for the manufacturing of a polymer stability
enhancer. The plant layout involves a series-parallel configuration of the processing units,
as shown in Figure 1. Table 1 summarizes the main characteristics of the units.
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Figure 1. Simplified process flow diagram of the units involved in the reference industrial process.
The grey-shaded blocks indicate the units involved in the multivariate modeling activities discussed
in this study.

Table 1. Main characteristics of the processing units.

Tag Type

R101 Suspension tank for reactant C
R201 Main synthesis reactor
R202 Decanter and holding tank
R203 Secondary synthesis reactor
T101 Storage tank for reactant D

T201-A Buffer tank for reactant D
T203-A Tank for reactant D correction

The reaction stoichiometry involves two main liquid-phase exothermic reactions:

C + D→ E + N (1)

E + D→ F + N (2)

where C and D are the reactants, E is an intermediate, F is the desired product, and N is a
by-product. Some secondary reactions also occur; however, they can be disregarded for the
purpose of this study. The product can further react with one of the reactants, according to:

F + D→ G + H (3)

where G and H are subproducts. Some other species are involved in the process: O (which
is an additive), S (a solvent), and W (water).
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Due to limitations in the size of reactor R201, each batch is carried out through two
sequential manufacturing steps. In the first step (step A), a suspension of raw material C
in solvent S is obtained in R101; then, the suspension is sent to R201, where reactant D,
together with O, S and W, are added, and the synthesis of the desired product F takes place.
After an assigned time, the mixture is transferred to R202, whose main task is separating
the aqueous solution from the organic phase. However, a minor fraction of the synthesis
may also occur in the tank.

In the second manufacturing step (step B), a second charge of reactants with the same
amount and composition as in step A is fed to R201 (after suspending it in S using R101),
and the reaction is left to occur for the same time as in Step A. Afterwards, the reacted
material coming from both steps is transferred to R203, where the synthesis is completed
for a given period. At the end of the assigned reaction time, a product sample is collected
from R203 and sent to the laboratory for quality assessment.

If the product is found to be out of specification, the batch is denoted as abnormal (or
faulty): an additional amount of reactant D (called a “correction”) is fed to R203 according
to a semi-empirical rule, and the reaction is left to proceed for an additional assigned time
in the attempt to achieve the desired quality. If the amount of required correction is smaller
than a given threshold, the batch terminates when the additional time is expired, and
no further quality assessment is required. However, if the correction amount is greater
than the threshold, at the end of the additional reaction time one more product sample
is collected and analyzed: if the product is still found to be out of specification, a further
correction is applied and additional reaction time is allowed.

Table 2 reports the fraction of batches that underwent corrections over the three years
of operation preceding this study. Over 60% of the batches required at least one correction,
meaning that the frequency of corrections was very high. We stress that each correction
implies a laboratory analysis, an additional load of reactant, and additional reaction
time: all of these actions negatively impact the manufacturing costs and productivity.
Additionally, when two corrections are required, R203 becomes the bottleneck for the
downstream production line, thus further limiting the plant productivity. Considering
that more than 400 batches were typically processed per year, corrections represent a
significant issue for the process economics, and therefore there is a very strong incentive to
reduce them.

Table 2. Fraction of batches undergoing corrections over the three years of plant operation preceding
this study.

Extent of Correction Frequency [%]

0 corrections 38.8
1 correction 44.6
2 corrections 16.6

Troubleshooting this process means finding which unit the product quality inconsis-
tency originates from, and the root cause of the abnormality in that unit. The task is not
simple because each batch is carried out through two sequential manufacturing steps; each
step uses the same reactants and equipment, but the equipment is operated at different
times; an additional piece of equipment (R202, conceptually working as a holding tank to
decouple the two steps) is used only in one step; finally, no product quality assessment is
available until the time at which the batch is expected to terminate.

3. Available Data

A total of I = 116 batches spanning a period of 6 consecutive months of operation
were extracted from the plant historian. The data were divided into two categories: process
data (corresponding to real-time sensor measurements) and quality data (i.e., lab analyses).
For each unit, the process data were organized as a three-dimensional array X

_
[I × J × K],

where J is the number of measurement sensors available for the unit, and K is the total
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number of observations per batch. Note that the number of observations changes from
batch to batch, not only because a given batch may (or may not) require a correction, but
also because the processed material may need to be held in the unit for an extended period
because a downstream unit is temporarily not available. Nevertheless, we use a notation
where K is the same for all batches; this is a consequence of batch cropping and alignment,
a set of pre-processing techniques that will be discussed in Section 4.

The final product quality is a multivariate property characterized by the concentrations
of 5 species (namely D, E, F, G, and other impurities), as obtained from lab measurements.
The quality measurements were organized as a matrix Y [I × 5] including only the concen-
trations related to the first product sample, because a second sample is not available for all
batches.

Overall, the available dataset originally included over 3.5 million data entries. A list
of the process variables eventually considered for each unit is reported in the Appendix A.

4. Mathematical Background

We provide a very short overview of the multivariate statistical techniques used
in this study, namely principal component analysis (PCA) and projection on to latent
structures (PLS). Details on the techniques and their use for process monitoring can be
found elsewhere [9–12,25].

PCA summarizes the information embedded in a dataset X [I × N] of I samples and
N variables by projecting the data onto a new coordinate system of orthogonal principal
components, which capture the correlation between the variables and identify the direction
of maximum variability of the original data.

When correlated variables are present in X, a small number A of principal components
is sufficient to describe X, because correlated variables are represented in common variabil-
ity directions. Hence, by retaining the first A principal components only, the representation
of X is:

X = TPT + E (4)

where T [I × A] is the scores matrix, P [N × A] is the loadings matrix, E [I × N] is the
matrix of the residuals.

PLS is a regression technique that relates a set of input variables X to a set of response
variables Y [I ×M]. It aims at finding a linear transformation of the X data that maximizes
the covariance of X and Y. Assuming that A latent variables are used, the X and Y dataset
are decomposed as:

X = SLT + H (5)

Y = UQT + F (6)

with:
T = XW∗ (7)

where S [I × A] and U [I × A] are the scores matrices, and L [N × A] and Q [M× A] are
the loadings matrices for X and Y, respectively; H [I × N] and F [I ×M] are the residuals
matrices for X and Y, respectively, which are minimized in a least-squares sense; and W∗ is
the [N × A] weights matrix that identifies the direction of maximum covariance/correlation
among inputs and responses.

For both PCA and PLS, the relevant scores, loadings and weights can be interpreted
to analyze the similarity between samples and the correlation among variables within and
between datasets. To avoid the scaling effect of different measurement units in the data,
both X and Y are pretreated before any transformation is applied. In this study, the columns
of X and Y are autoscaled, i.e., the data are mean-centered and scaled to unit variance.

Data coming from systems (e.g., batch processes), whose variables evolve both contin-
uously in time and discontinuously across different runs, can be arranged in a three-way
array. The first dimension of the array represents the runs, the second dimension the
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variables, and the third dimension the time. Multiway multivariate techniques can be
exploited to handle this type of data [12,26].

5. Proposed Methodology and Results

The proposed systematic procedure to assist the troubleshooting of plant-wide batch
processes is sketched in Figure 2 and comprises the following main tasks:

• Data pre-processing;
• Analysis of end-point quality data;
• Backstepping individual-unit analysis of process data;
• Root-cause analysis.
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Figure 2. Schematic of the proposed backstepping methodology to support the troubleshooting of
plant-wide batch processes.

The relations between processing units can be investigated in a separate (optional)
multiblock analysis. These tasks are discussed in detail in the following.

5.1. Data Pre-Processing

Pre-processing the available data is required both to arrange them in a form that is
appropriate for treatment by PCA and PLS (e.g., mean centering, scaling, imputation of
missing data, alignment), and to extract process features whose calculation can help the
subsequent analysis.
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For the process under investigation, the Y dataset did not display any missing data.
The fraction of missing data in each of the X matrices was very small. Given that the
sampling interval for the plant sensors was much smaller than the characteristic time of
the process, the missing data at a given time sample were replaced by simply averaging
the data at the previous and subsequent time instants. More sophisticated techniques are
available and can work better in other scenarios [27,28].

Alignment of the process variable time profiles is required because the batches have
different lengths [29,30]. Dynamic time warping [31] proved very effective to this pur-
pose, and allowed batch-wise unfolding [25] three-way arrays X

_
[I × J × K] into two-way

matrices X [I × (J·K)]. The trajectory portions corresponding to holding/idle times were
removed. Additionally, the trajectories in R203 were cropped to remove the portions
extending beyond the first product sample. The effect of a typical alignment task is shown
in Figure 3 for R201 temperature trajectories across several batches.
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Feature extraction [12,32] uses engineering knowledge to combine the available data
in a non-linear fashion, in such a way as to derive new variables that can complement those
coming from the plant sensors in order to disclose operation-relevant information that can
aid the troubleshooting task. In a way, adding the extracted features to the available dataset
represents a way to hybridize the data-driven model with first-principles information,
an operation that is known to help fault detection and diagnosis [33,34]. One example
that proved useful for the process under investigation was including information about
the reaction stoichiometry. This was obtained by scaling the reactant loads according to
the reaction stoichiometry, and adding the scaled loads to X. Moreover, each reactor was
characterized using two additional features: time and heat exchanged. The warped time
was added to include information deriving from the trajectory alignment task. In fact,
whereas in the original batch trajectories time has a linear evolution across a batch, after
alignment it is stretched or compressed. Therefore, the warped time can potentially disclose
information about how a batch is evolving with respect to the others [23]. Information on
the rate of heat exchanged in a unit was obtained by either multiplying the utility flow in
that unit by the relevant change in temperature, or (in the absence of appropriate sensors)
as the cumulative change of the unit temperature.

5.2. Analysis of End-Point Quality Data

Analysis of the end-point quality data is aimed at revealing graphically the multivari-
ate nature of the product quality profile, and the clustering of regular and faulty batches.
PCA can be used to this purpose.



Processes 2021, 9, 1074 8 of 19

Figure 4 shows the results from a PCA model capturing 80% of the variability of
the product quality data through the first two principal components. The scores plot
of Figure 4a reveals that the regular batches can be discriminated from the abnormal
ones quite sharply using the product quality data; the quality profile that fingerprints an
abnormal batch is visible through the loadings plot of Figure 4b. The scores plot reveals
that the quality data are not sufficient to provide a discrimination between faulty batches
undergoing one single correction from those undergoing two corrections. That is an
indication that the number of corrections required for a faulty batch is related also to factors
that are different from the product quality. One additional piece of information provided
by the scores plot of Figure 4a is that no significant outlier exists in the available dataset (at
least from the product quality point of view).
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5.3. Backstepping Individual-Unit Analysis of Process Data

The proposed methodology to assist the troubleshooting task is founded on two pillars:
(i) an abnormality in a batch leaves a fingerprint not only on the quality data, but also on
the process data; (ii) the fingerprint is conserved as the processed material moves across the
processing units. If both conditions are met, the propagation of the abnormality through
the units can be tracked by carrying out a multivariate analysis of the process data starting
from the last unit wherein the abnormality manifests itself, and then moving backwards
(according to the process flow diagram and manufacturing recipe) through the preceding
units. Stepping back through the units will end-up in a unit U from which no fingerprints
of the abnormality can be detected: the unit originating the abnormality will therefore be
the one following U. Engineering judgment will finally guide the root-cause analysis.

In the following subsections, this methodology is applied to the reference industrial
process. The fingerprint of abnormality in a unit is disclosed by building a PLS discriminant
analysis (PLS-DA) model [35,36] between the X matrix of that unit and the binary vector
y [I × 1] denoting the final batch designation (0 = normal batch; 1 = abnormal batch).
No attempt is made to discriminate between batches undergoing one or two corrections.

5.3.1. Analysis of R203

A two-component PLS-DA model results in the scores and weights plots of Figure 5.
The scores plots (Figure 5a) reveals that the separation between regular batches and
abnormal ones is not sharp, suggesting that the variability of the final batch designation
(normal vs. abnormal) cannot be entirely captured by the process variable trajectories in
R203. Stated differently, there are factors that concur in determining the batch designation,
but do not leave a fingerprint in the measured process variables. The first quadrant of the
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scores plane includes a large number of abnormal batches and almost no regular batches,
suggesting that (i) there is a relatively large fraction of the abnormal batches that are
characterized by a similar pattern of change of the process variable time profiles in R203,
and (ii) this pattern is different from that characterizing the regular batches. The subsequent
analysis for R203 will focus on these abnormal batches.
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Figure 5. Two-component projection to latent structures discriminant analysis (PLS-DA) model for R203. (a) Scores plot
(each marker represents a charge to R203, and the different shapes of the markers denote a different number of required
corrections); (b) time trajectories of the weights for the first latent variable for each process variable (the variable numbering
is reported in the Appendix A). For each variable in (b), the grey-shaded area represents the charging stage, whereas the
white-shaded area is the reaction stage.

The separation of the abnormal batches occurs mainly in the direction of the bisector
of the first and third quadrant, which is, therefore, characterized by the weights of the first
latent variable. By combined analysis of the scores plot (Figure 5a) and weights plot for the
first latent variable (Figure 5b), one concludes that the first-quadrant cluster of abnormal
batches is characterized by:

• greater temperature (variables no. 2 and 3) in the first part of the operation (charge of
Step A material;), and smaller temperature in the second part (charge of step B material
and reaction). This behavior is highlighted also by the output of the temperature
controller (no. 10), and by the integral of the reactor temperature (no. 11);

• shorter cycle time (variable no. 1);
• greater pressure (variables no. 8 and 9).

The temperature profile patterns deserve attention because the main reactions are
exothermic. A higher temperature in the first part of the operation indicates that, for most
of the faulty batches, R203 is charged with material (from step A of the process) that is at a
temperature greater than the average; for the same batches, the lower temperature during
the reaction phase is possibly an indication of lower heat generation from the reaction.

5.3.2. Analysis of R202

According to the proposed methodology, the analysis is carried out for the unit located
immediately upstream of R203, namely R202. Recall that this unit is a decanter, which is
used also to decouple the two manufacturing steps through which the process is carried out
(the material from Step A remains on hold in R202 until the processing of step B material
in R201 is completed). The objective of the analysis is understanding whether abnormality
fingerprints are embedded also in the trajectories of the process variables of this unit: if
that occurs, we conclude that abnormality in a batch arises upstream the end unit.

The results of a PLS-DA model with two principal components are illustrated in
Figure 6; note that the y vector is the same as in the analysis of R203, i.e., it represents the
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batches that are designated as regular or faulty according to the first product sample that
will be collected at a later time from the end unit. The scores plot (Figure 6a) shows that the
separation between regular and abnormal batches is far less sharp than for R203: several
regular and faulty batches are clustered around the origin of the scores plane, indicating
that (on average) their time evolution is not very different, at least in terms of the measured
process variables. Nonetheless, there still exists a fraction of abnormal batches that are
separated into the first quadrant with almost no regular batches therein, suggesting that
also for this unit the abnormality fingerprints result in patterns of change of the process
variables that are distinctive of the abnormal batches only.
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Figure 6. Two-component PLS-DA model for R202. (a) Scores plot (each marker represents a charge to R202, and the
different shapes of the markers denote a different number of corrections eventually required); (b) time trajectories of the
weights for the first latent variable for each process variable (the variable numbering is reported in the Appendix A). For
each variable in (b), the first grey-shaded area represents the charging stage, the central white-shaded area is the decantation
stage, and the last (very thin and barely visible) grey-shaded area is the transfer stage.

From the analysis of the weights reported in Figure 6b, we can state that the first-
quadrant cluster of abnormal batches is characterized by:

• longer duration (variable no. 1);
• smaller temperature (variables no. 2 and 3), as also confirmed by a greater temperature

controller output (variable no. 10);
• greater charge, as results from the fact that the weights for the level measurements

(variables no. 5 and 6) are greater during the charging stage;
• smaller pressure (variable no. 8).

5.3.3. Analysis of R201

As discussed in Section 2, R201 is a reactor characterized by a much smaller volume
than R203. This requires carrying out the same reaction twice in two distinct manufacturing
steps (Step A and Step B). In principle, the two steps should be identical. However, to keep
track of any possible changes between Step A and Step B (e.g., a change of the equipment’s
initial status during Step B due to the reaction carried out in Step A), we analyze the data
records belonging to each step separately. The results from the relevant two-component
PLS-DA models are illustrated in Figure 7.
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state that, with respect to abnormality discrimination, R201 does not behave in a strongly 
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Figure 7. Two-component PLS-DA model for R201. (a,c) are the scores plots for Step A and Step B, respectively (each marker
represents a charge to R201, and the different shapes of the markers denote a different number of corrections eventually
required). (b,d) are the time trajectories of the weights for the first latent variable for each process variable for Step A and
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area represents reactant C charging stage, the subsequent white-shaded area is the reactants D and W charging stage, the
subsequent grey-shaded area is the additive O charging stage, and the final white-shaded area is the final transfer stage.

Analysis of the scores plot for Step A (Figure 7a) and Step B (Figure 7c) allows us to
state that, with respect to abnormality discrimination, R201 does not behave in a strongly
different way from R203. In fact, not all the batches, which will be designated as abnormal
later in R203, can be early identified as such from the process variables profiles in R201.
However, a significant fraction of the abnormal batches (namely, those projecting onto
the first quadrant) are characterized by a peculiar pattern of change over time of the
process variables while they are being processed in R201, and this pattern is different
from that characterizing the regular batches. This means that, for these abnormal batches,
the abnormality detected from R203 at the end of the manufacturing process leaves its
fingerprint as early as in R201, which in turn makes us conclude the root cause of the
abnormality does not lie in either R203 or R202. That is useful information for process
troubleshooting, because it restricts the domain of units that need to be investigated to find
the root cause of the fault. Interestingly, Figure 7c shows that the model built on the data
related to Step B has a slightly greater discrimination ability than the model built on Step
A data.

The weights plots of Figure 7b (Step A) and Figure 7d (Step B) suggest the following
considerations with respect to the abnormal batches clustered in the first quadrant for
each step:
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• they are shorter (variable no. 1);
• they are run at slightly smaller temperature: even if the weights of the reactor tem-

perature profiles (variables no. 2 and 3) are particularly noisy and, therefore, hard to
analyze, the integral of temperature (no. 13) provides a clear view of the overall effect
of temperature;

• they are characterized by smaller loads of reactant D, as highlighted by the totalized
profiles of three flowrate sensors (variables no. 6, 11, 12), and by the level sensor
(no. 7).

With reference to the latter point, note that the weights on variables no. 6, 7 and 11 are
much stronger that the other weights, suggesting that the effect of the charge of reactant D
in the cluster formation is dominant.

5.3.4. Analysis of R101

The analysis proceeds by stepping one more unit back. Since no reaction takes places
in R101, the charges related to Step A and Step B are analyzed jointly in a single PLS-DA
model, whose scores plot for the first two components are shown in Figure 8.
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Figure 8. Two-component PLS-DA model for R101. Scores plot (each marker represents a charge to
R101 for either Step A or Step B; open markers denote charges eventually requiring no corrections;
closed markers denote charges eventually requiring one or two corrections).

We notice that the charges later requiring one or two corrections in R203 cannot be
distinguished from those that will be labeled as regular. We conclude that the fingerprints of
abnormality are not visible in R101, i.e., that unit U is R101. Therefore, the unit originating
the observed product quality inconsistency is the next one in the process flow diagram
(namely, R201).

5.4. Multiblock Analysis

Having identified the unit wherefrom the fault originates, an overall global multiblock
analysis [37,38] may be carried out across all units where the fault leaves its fingerprint.
This can disclose relations between the units that are not visible when the units are analyzed
one at a time, and highlight the relative importance across the units of the process variables
that most contribute to differentiate regular batches from faulty ones. The X matrix for
the PLS-DA multiblock model is built by placing the X matrices of the individual units
side by side, as illustrated in Figure 9; the classification vector y is the same as in the
individual-unit analysis.
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The scores plot for the first two components (Figure 10a) is similar to those obtained for
the individual units; the separation between regular and abnormal batches is actually even
sharper, with most of the abnormal batches located in the first quadrant. The weights plots
of Figure 10b–e provide insights about the variables that most contribute to the separation.
The dominant effect is provided by variables no. 6, 7 and 11 of Figure 10c, namely by the
insufficient load of reactant D to R201-Step B. This result confirms the previous findings,
and suggests a need to complete the troubleshooting task by using engineering judgment
to find the root cause that determines an abnormal load of reactant D in R201.

5.5. Root-Cause Analysis

Figure 11 is a sketch of the process of reactant D feeding into reactor R201. First, an
amount Ddes of D (equal to the one required by the reaction stoichiometry) is loaded into
a buffer tank (T201-A). Then, when R201 is ready to receive the reactant, T201-A is fully
discharged into R201. A level sensor is available in T201-A, and three mass flow meters are
available in the feed lines; each flow meter also works as a mass totalizer. A distributed
control system handles the feeding sequence: FT-01 is responsible for charging reactant
D into T-201-A; LT-01 takes care of the discharge of D into R201; FT-02 and FT-03 are
(respectively) a safety sensor and a sensor ensuring that a minimum amount of reactant is
always fed to R201. Insufficient load of reactant D into R201 may result from malfunctioning
of FT-01 and/or LT-04 (the other equipment involved in the reactant transfer, e.g., pumps
and valves, are known to work appropriately). We challenge the assumption that FT-01
does not work properly.

For each manufacturing step, we build a parity plot where the deficiencies of reactant
D as measured by the two flow sensors downstream T201-A are contrasted (Figure 12).
Namely, the variables in each parity plot are the difference between Ddes and the totalized
mass transferred to R201 as read by FT-02 (x-axis) and by FT-03 (y-axis).

Since the measured deficiencies in reactant D align well along the diagonal both for
Step A (Figure 12a) and for Step B (Figure 12b), we conclude that either FT-02 and FT-03 are
both faulty and affected by the same fault (a very unlikely situation), or the faulty sensor is
FT-01. Furthermore, analysis of Figure 12b suggests that a very large fraction of the batches
later requiring corrections in R203 are characterized by a deficiency in the amount of D
loaded into R201 during Step B.

A further investigation revealed that the totalized mass signals from FT-02 and FT-03
are strongly correlated not only to each other, but also to the level signal from LT-01. On
the other hand, the totalized mass read from FT-01 is neither correlated to the T-201A level
signal, nor to any of the other two totalized mass signals.
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Figure 10. Two-component multiblock PLS-DA model for R201, R202 and R203. (a) Scores plot (each marker represents
a charge to a unit, and the different shapes of the markers denote a different number of corrections eventually required);
(b–e) time trajectories of the weights for the first latent variable for each process variable in R201 (Step A), R201 (Step B),
R202, and R203, respectively (the variable numbering is reported in the Appendix A).
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A further investigation revealed that the totalized mass signals from FT-02 and FT-
03 are strongly correlated not only to each other, but also to the level signal from LT-01. 
On the other hand, the totalized mass read from FT-01 is neither correlated to the T-201A 
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Figure 11. Schematic representation of the main equipment and instrumentation involved in the
feeding of reactant D to R201.
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causes, which determine abnormality in a batch, that cannot be captured by the available 
field sensors. This occurs for the abnormal batches (less than one third of the total number 
of abnormal batches) with a deficiency of reactant D smaller than 0.4 in Figure 12b. 
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Figure 12. Parity plots reporting the deficiency of reactant D loaded to R201 as measured by sensors FT-02 and FT-03 during
(a) Step A, and (b) Step B. The different shapes of the markers denote a different number of corrections eventually required.
The axis scales have been normalized to protect data confidentiality.

This evidence makes the troubleshooting task come to an end: sensor FT-01 is faulty,
and the fault manifests itself mainly during Step B of the manufacturing process. When it
does, less reactant D than needed is loaded into R201, and this ends up in a batch needing
at least one correction after the processing in R203. Nonetheless, there still remain other
causes, which determine abnormality in a batch, that cannot be captured by the available
field sensors. This occurs for the abnormal batches (less than one third of the total number
of abnormal batches) with a deficiency of reactant D smaller than 0.4 in Figure 12b.

5.6. Field Testing

Following the indications obtained by application of the proposed methodology, the
faulty sensor was substituted. The impact of the troubleshooting was assessed after one
year of plant operation with the new sensor. The results are summarized in Table 3.

Table 3. Fraction of batches undergoing corrections over one year of plant operation after the
troubleshooting.

Number of Corrections Frequency [%]

0 corrections 70.1
1 correction 28.8
2 corrections 1.1

A comparison with Table 1 reveals that the fraction of batches requiring corrections
was halved, with almost no batches requiring two corrections. This ended up in a significant
reduction of the overall cycle time, and a related 6% increase of productivity.
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6. Conclusions

We have presented a systematic methodology to troubleshoot plant-wide batch pro-
cesses characterized by abnormal variability in the end-product quality. It couples the use
of multivariate statistical methods with engineering judgment to extract operation-relevant
information from a topologically ordered set of processing units that operate along different
time windows and with different charges of material. Its main value is that it is based on a
structured approach enabling the user to first identify the unit originating the fault, and
then look for the root causes of the fault within that unit.

The methodology is characterized by a backstepping multivariate analysis of the
processing units. The end unit (i.e., the one where the product is eventually collected from)
is the first to be analyzed, using the signals from the field sensors in order to discriminate
the abnormal batches from the regular ones. Then, the analysis is repeated by stepping
one unit back according to the process flow diagram and the manufacturing recipe. The
backstepping ends when a unit is found where the field sensors cannot capture clear
fingerprints of batch abnormality any more. Once the unit from which the fault likely
originates has been found, engineering judgment can guide the fault isolation step.

We have proved the effectiveness of the proposed methodology by troubleshooting a
plant-wide batch process that manufactures a polymer stability enhancer. The complexity
of the process lies in the fact that some of the units are used at different times with different
charges of material within the same production cycle, and no product quality measurements
are available until the end of the cycle. The product quality inconsistency was shown to
originate from a faulty sensor located at the very beginning of the process flow diagram.
Correction of the fault allowed for a significant increase of the productivity.
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Appendix A

List of the process variables eventually analyzed for each unit.

Table A1. List of the process variables analyzed for unit R101.

ID Description

1 Warped time
2 Measured weight [kg]
3 Internal temperature (sensor 1) [◦C]
4 Internal temperature (sensor 2) [◦C]
5 Totalized flowrate of C [kg]
6 Totalized flowrate of S (inlet) [kg]
7 Totalized flowrate of S (tank) [kg]
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Table A1. Cont.

ID Description

8 Measured level [L]
9 Calculated level [L]

10 Inlet density of C [kg/L]
11 Inlet pressure of C [bar]
12 Exchanged heat [W]
13 Integral of the internal temperature [◦C·s]

Table A2. List of the process variables analyzed for unit R201.

ID Description

1 Warped time
2 Internal temperature (sensor 1) [◦C]
3 Internal temperature (sensor 2) [◦C]
4 Mass flowrate of W [kg/h]
5 Totalized flowrate of O [kg]
6 Totalized flowrate of D (sensor 1) [kg]
7 Measured level (R201) [L]
8 Measured level (additive O tank) [L]
9 Internal pressure (R201) [mbar]

10 Internal pressure (T201-A) [mbar]
11 Totalized mass of D (sensor 2) [kg]
12 Totalized mass of D (sensor 3) [kg]
13 Integral of the internal temperature [◦C·s]

Table A3. List of the process variables analyzed for unit R202.

ID Description

1 Warped time
2 Internal temperature (sensor 1) [◦C]
3 Internal temperature (sensor 2) [◦C]
4 Condensate temperature [◦C]
5 Measured level [L]
6 Calculated level [L]
7 Outlet density [kg/L]
8 Internal pressure [bar]
9 Cooling fluid pressure [bar]

10 Controller output (internal temperature) [%]
11 Integral of the internal temperature [◦C·s]

Table A4. List of the process variables analyzed for unit R203.

ID Description

1 Warped time
2 Internal temperature (sensor 1) [◦C]
3 Internal temperature (sensor 2) [◦C]
4 Condensate temperature [◦C]
5 Mass flowrate of W (heat exchanger) [kg/h]
6 Measured level [L]
7 Calculated level [L]
8 Internal pressure (sensor 1) [mbarg]
9 Internal pressure (sensor 2) [mbar]

10 Controller output (internal temperature) [%]
11 Integral of the internal temperature [◦C·s]
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