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Abstract: When a commercial vehicle is driving with the sunroof open, it is easy for the problem
of sunroof buffeting noise to occur. This paper establishes the basis for the design of a commercial
vehicle model that solves the problem of sunroof buffeting noise, which is based on computational
fluid dynamics (CFD) numerical simulation technology. The large eddy simulation (LES) method
was used to analyze the characteristics of the buffeting noise with different speed conditions while
the sunroof was open. The simulation results showed that the small vortex generated in the cab
forehead merges into a large vortex during the backward movement, and the turbulent vortex
causes a resonance response in the cab cavity as the turbulent vortex moves above the sunroof and
falls into the cab. Improving the flow field characteristics above the cab can reduce the sunroof
buffeting noise. Focusing on the buffeting noise of commercial vehicles, it is proposed that the
existing accessories, including sun visors and roof domes, are optimized to deal with the problem
of sunroof buffeting noise. The sound pressure level of the sunroof buffeting noise was reduced
by 6.7 dB after optimization. At the same time, the local pressure drag of the commercial vehicle
was reduced, and the wind resistance coefficient was reduced by 1.55% compared to the original
commercial vehicle. These results can be considered as relevant, with high potential applicability,
within this field of research.

Keywords: sunroof buffeting noise; computational fluid dynamics; large eddy simulation; sun visor;
roof dome; commercial vehicle

1. Introduction

Buffeting noise is the aerodynamic acoustic response when a vehicle is moving with
the sunroof or side window opened, and it occurs due to the differences in the air inside
the vehicle and the external transient airflow. The buffeting noise has a low frequency (less
than 20 Hz) and a high sound pressure level (greater than 110 dB) [1]. The low-frequency
pressure pulsation of the buffeting noise causes a strong sense of pressure on the ears,
which can result in fatigue and unpleasant feelings for drivers and passengers in a short
period. Staying in such an environment for a long-time could even cause damage to
hearing [2,3]. Therefore, further research on the optimization of buffeting noise is needed
to improve the acoustic comfort of vehicles.

In terms of buffeting noise research on the side windows of the vehicle, He [4] used the
method of the vehicle aero-acoustic wind tunnel test to analyze the influence of different
factors, including the spatial position of the car, wind speed, side window opening area,
yaw angle, the different ways of opening side windows on the sound pressure level, and
the frequency of the side window buffeting noise. Yang [5] also studied the side window
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buffeting noise of a car, pointing out that when a single window is opened, the rear window
buffeting noise is higher than that of the front window, and that different ways of opening
the side windows can reduce the buffeting noise.

In the research on the sunroof buffeting noise, reducing the buffeting noise has always
been the research focus of scholars. Oettle [6] used the Lattice Boltzmann method to evalu-
ate the sunroof buffeting characteristics of a specific model of a vehicle, and the suppressing
effect of the spoiler with or without the grid on the sunroof buffeting characteristics was
analyzed. Wang [7] studied the mechanism of the sunroof buffeting noise at the speed
of low Mach numbers based on a three-dimensional cavity model. The results showed
that airflow separation, vortex shedding, vortex impact, periodic pressure wave feedback,
and Helmholtz resonance are responsible for sunroof buffeting. Wang [8] studied the
suppression effect of a serrated sunroof trailing edge on the sunroof buffeting noise, and
pointed out that this strategy can break down the strong vortex into smaller eddies and
effectively reduce the sound pressure level in the car.

With the development of CFD technology and convenient computing resources, nu-
merical simulation methods have been widely used in the research on sunroof buffeting.
Gu [9] used the LES method to calculate the side window buffeting noise near the driver
while the side window was partially opened, and verified the correctness of the analy-
sis results by a road test. Gong [10] analyzed the LES transient simulation model of an
SUV-type vehicle to obtain the buffeting frequency and the sound pressure level on the
passenger’s left ear while the sunroof was opened. At the same time, the sound pressure
level of the passenger’s left ears was reduced by optimizing the skylight spoiler. He [11,12]
studied the sunroof buffeting noise with different vehicle speeds based on the LES method,
and designed a new type of baffle plate to reduce the sound pressure level of the sunroof
buffeting noise. The existing wind buffeting noise control strategies include: adding aero-
dynamic accessories such as spoilers, grooves, and setting columns in the skylight or side
window; adjusting the structure of the cab to stagger the resonance frequency; reducing
the size of the turbulence vortex; and using sound wave superposition technology and jet
flow technology to suppress the wind buffeting noise [13–15]. The cab of a commercial
vehicle is a closed space, and it is easy for turbid air and uncomfortable odors in the cab
to be produced. Installing skylights allows the air to circulate inside and outside the cab
which can improve the air quality. As with passenger cars, there is still a need to install
sunroofs in commercial vehicles. The current sunroof buffeting noise research has mainly
focused on passenger vehicles, and little work has been conducted on heavy commercial
vehicles. In addition, adding aerodynamic accessories will increase the cost and even affect
the appearance of the vehicles. Due to the complexity of the wind buffeting noise, it is
difficult to apply sound wave superposition technology and jet flow technology based on
an active control strategy.

With the above information in mind, the proposed study uses the LES method to
investigate the phenomenon and the formation mechanism of the sunroof buffeting noise
while the sunroof is opened in a heavy commercial vehicle. A scheme of optimizing the
existing accessories including a sun visor and a roof dome is proposed to improve the
flow field above the roof and to reduce the sunroof buffeting noise. The results of this
study could contribute to the optimization of the sunroof buffeting noise in commercial
vehicles, which can be considered of relevance in this field of research. The remaining
chapters are arranged as follows. In Section 2, some basic mathematical theories used
in this paper are introduced. In Section 3, a simulation model for the sunroof buffeting
noise of a commercial vehicle is established. Then, in Section 4, the sunroof buffeting noise
characteristics at different driving conditions are analyzed. In Section 5, the optimization of
the sunroof buffeting noise is discussed, and the wind resistance of the vehicle is analyzed.
The last section is a summary of this paper.
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2. Mathematical Methods
2.1. Large Eddy Simulation

The commercial vehicle cab is equal to a Helmholtz cavity (a cavity where air resonance
takes place) while the sunroof is opened. The buffeting noise generated in this type of cavity
is mainly a low-frequency discrete noise [16]. While the skylight is opened, the air flow is
complex and irregular, making it highly nonlinear. Usually, large eddy simulations are used
to analyze the transient flow field of such problems, as they are based on mathematical
modelling for turbulence used in computational fluid dynamics. The basic governing
equations for turbulence calculation are as follows [17]:

continuity equation
∂ρ

∂t
+

∂ρvi
∂xi

= 0 (1)

kinematic equation

∂(ρvi)

∂t
+

∂
(
ρvivj

)
∂xj

= − ∂p
∂xi

+
∂

∂xj

(
µ

∂vi
∂xj

)
−

∂τij

∂xj
(2)

where t is the time, xi and xj are the coordinate axis components, ρ is the fluid density, vi and
vj are the time-averaged velocity, P is the air pressure, µ is the turbulent viscosity coefficient,
and τij is the sub-grid scale stress, all of which are expressed in the appropriate units.

Taking into account the fact that vortex identifiers can be used to build eddy-viscosity
sub-grid scale models for large eddy simulation, in the current study the vortex viscous
sub-grid model is introduced as follows:

τij −
1
3

τkkδij = −2µtSij (3)

Sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
(4)

where δij is the Kronecker delta, µt is the sub-grid scale stress turbulent viscosity, τkk is the
iso-tropic sub-grid scale stress, and Sij is strain rate tensor. Once again, all of these values
are expressed in the appropriate units.

2.2. Ffowcs Williams and Hawkings (FW-H) Equation

Based on the acoustic analogy theory proposed by Lighthill, Williams and Hawkins
developed the FW-H equation, which is suitable for the moving solid’s boundary and its
differential form as follows [18]:(

1
c2

∂2

∂t2 −
∂2

∂x2
i

)
p′ =

∂2

∂xi∂xj

[
TijH( f )

]
− ∂

∂xi
[niPδ( f )∇ f ] +

∂

∂t
[ρvnδ( f )∇ f ] (5)

where p′ is the sound pressure, ni is the surface normal vector, vn is the normal velocity, c
is the sound velocity, and Tij is the Lighthill stress tensor. As always, all of the variables
are expressed in the appropriate units. The three terms on the right side of the equation
represent quadrupole, dipole, and monopole generating waves, respectively. This equation
allows the calculation of sound pressure in space.

2.3. Acoustic Post Processing

The obtained sound pressure of the monitoring point is a pressure fluctuation signal
that changes with time. The time-domain sound pressure is converted into a frequency-
domain sound pressure by Fast Fourier Transform (FFT):

P( f ) =
∫ +∞

−∞
p(t)e−i2π f tdt (6)



Processes 2021, 9, 1052 4 of 15

Through the logarithmic operation to the sound pressure after the FFT operation, the
sound pressure level result of the monitoring point can be obtained:

SPL(dB) = 10 log10

[
P( f )
Pre f

]2

(7)

where Pref is the reference sound pressure related to the minimum sound pressure ampli-
tude that can be heard by a human, and the value is 2 × 10−5 Pa.

3. Simulation Model
3.1. Geometric Modeling

In this work, a heavy commercial vehicle was taken as the research object to study
the sunroof buffeting noise. The size of the sunroof was 470 mm × 670 mm. To better
simulate the actual characteristics of the cab, a geometric model with a proportion of 1:1 to
the actual vehicle was established, as shown in Figure 1. On the premise of not affecting
the simulation accuracy, the door handles and the lamp of the commercial vehicle were
simplified. Important interior decorating pieces such as berths, seats, and other relevant
parts were retained.
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Figure 1. Geometric model of the commercial vehicle cab.

Assuming that the length, width, and height of the cab are L, W, and H, respectively,
the virtual wind tunnel is a box that surrounds the cab model, and the size parameters
were 20L, 5W, and 6H, respectively. The distance from the inlet of the virtual wind tunnel
to the front end of the cab, the side of the virtual wind tunnel to the side, and to the top of
the cab, were 3L, 2W, and 4H, respectively, as shown in Figure 2.
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Figure 2. The wind tunnel calculation domain.

The pre-processing module of STAR-CCM+ software (Version 12.06, Siemens Digital
Industries, Berlin, Germany) was used to mesh the cab and virtual wind tunnel. The cab
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and the wall were divided into different size surface elements, which ranged from 10 to
250 mm. Solid elements were generated according to the surface elements. At the same
time, six boundary layer elements were stretched on the surface of the cab to simulate
the flow characteristics of the surface of the cab, and the size of the innermost elements
was 0.25 mm. A monitoring point was set at the driver’s right ear to record the pressure
pulsation of the sunroof buffeting. Figure 3 is a partial mesh of the middle section of the
cab and the virtual wind tunnel.
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3.2. Boundary Condition Setting

Due to the fact that the established wind tunnel model was a limited simulation area,
it was necessary to set the model boundary conditions to make the simulation conform
to the actual physical conditions. The model boundary conditions in this paper were set
as follows.

(1) The virtual wind tunnel inlet speed was set according to different working conditions.
(2) The outlet pressure of the virtual wind tunnel was 0 Pa. At this time, the outlet

pressure was equal to the atmospheric pressure.
(3) The cab and computing domain ground was a non-slip wall.
(4) The upper and the sidewall in the virtual wind tunnel were the free slip walls.

In the transient simulation process of the wind buffeting noise of skylights, the station-
ary solution of the finite element model was first calculated according to the turbulence
model, and then the stationary solution was used as the initial value of the transient simu-
lation. In this paper, the SST- κω turbulence model (a two-equation eddy-viscosity model)
was used in the steady-state calculation process, the coupling numeration of velocity field
and stress was based on the SIMPLE algorithm (a numerical procedure frequently used to
solve the Navier–Stokes equations), and the discretization was second-order upwind. In the
transient calculation, the numerical solution was based on the Detached-Eddy Simulation
(DES). The simulation time was 1 second, and the step length was 0.0005 s. Each step was
iterated five times before the next iteration calculation.

4. Simulation Results and Analysis of Sunroof Buffeting Noise

The commercial vehicle cab with the sunroof open can be regarded as a Helmholtz
resonance cavity. The resonance frequency can be obtained according to the formula of the
Helmholtz resonant cavity [19]:

fv =
c

2π

√√√√ A

V
(

h + π
2 •

Dh
2

) (8)

where c is the speed of sound, A is the area of the skylight, V is the cavity volume, h is
the thickness of the skylight, and Dh is hydraulic diameter of the skylight, all of which
are expressed in appropriate units. According to the geometry dimensions of the cab, it
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was found that the resonance frequency of the cab cavity was 18.4 Hz. The actual driving
feedback of the commercial vehicle showed that there was a strong sunroof buffeting noise
at a speed of 70 km/h when the sunroof was opened. According to the established model,
the sunroof buffeting noise of a commercial vehicle with a different inlet wind speed
was analyzed, and the formation of the sunroof buffeting noise was studied to provide a
guideline for the optimization of the sunroof buffeting noise of commercial vehicles.

4.1. Working Condition One

The buffeting noise of the sunroof with an inlet wind speed of 70 km/h was studied.
Figure 4 shows the pressure pulsation results of the monitoring point. It can be seen that
the amplitude of the pressure pulsation was increasing until 0.6 seconds. Although the
sound pressure of the monitoring point was periodic, the flow field inside and outside the
cab was not in a steady-state at this time. The pressure pulsation began to stabilize after
0.6 s. According to the pressure pulsation results in Figure 4, the lowest pressure value in
the cab was around −240 Pa. Performing the FFT transformation on the pressure pulsation
of the monitoring point makes it possible to obtain the spectrum as a result. Figure 5 shows
the sound pressure level spectrum of the monitoring point after the FFT transformation. It
can be seen that the maximum sound pressure level at the monitoring point was 111.5 dB
and the corresponding frequency was 17.8 Hz while the sunroof was opened, and the
inlet speed was 70 km/h. The simulation results are consistent with the buffeting noise
characteristics including the low frequency and high sound pressure levels. The buffeting
noise frequency was close to the resonance frequency, and it can be inferred that the cab
had a resonance response at the inlet speed of 70 km/h.
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The formation process of the buffeting noise of a sunroof with a speed of 70 km/h
was studied. Figure 6 shows the color diagram of the transient pressure in the cab. In a
commercial vehicle, the airflow separates on the forehead of the cab to produce turbulent
vortices, which is different from that in the sedan. These vortices gradually become larger
during the backward movement and fall off into the cab at the sunroof. The pressure wave
generated by the turbulent vortex breaks causing the pressure in the cab to drop sharply.
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The process of the influence of the turbulent vortex on the sound pressure of the cab
was analyzed in detail as follows. At t = 0, the low-pressure turbulence vortex was at the
edge of the skylight and began to fall off into the cab. At this time, the pressure at the
skylight area was lower than that in other areas. At t = 1/6T, the scale of the low-pressure
turbulent vortex became larger. The turbulent vortex entered and broke in the cab, and
the pressure wave generated by the breaking of the turbulent vortex in the cab made the
pressure level in the cab drop significantly. The pressure wave spread through the entire
cab, so the pressure gradient was very small. At t = 1/3T, the scale of the turbulent vortex
continued to increase, and the turbulent vortex sustained shedding and breaking, reducing
the pressure in the cab. At t = 1/2T, the impact of the shedding turbulent vortex on the
indoor pressure reached the maximum, and the overall pressure level in the cab was less
than −180 Pa. At t = 2/3T, it can be seen that the turbulent vortex moved to the rear edge
of the skylight, the shedding effect of the turbulent vortex was weakened and the pressure
in the cab rose. At the same time, a new small turbulent vortex was formed in front of the
skylight. At t = 5/6T, the turbulent vortex moved away from the skylight with the airflow,
and the pressure in the cab rose to a higher level. The scale of the new turbulent vortex
expanded. Then the pressure state of the cab returned to the initial level, and at the same
time the new turbulent vortex started a new process that affected the pressure in the cab.

4.2. Working Condition Two

To study the influence of different inlet wind speeds on the buffeting noise of the
skylight, the inlet speed of the virtual wind tunnel was set to 60 km/h and the pressure
fluctuation at the monitoring point was analyzed. Figure 7 shows the results of pressure
pulsation at the monitoring point. It can be seen that, similar to the pressure pulsation at a
speed of 70 km/h, the pressure pulsation was periodic. At the beginning of the simulation,
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the amplitude of the pressure fluctuation of the monitoring point increased with time,
and the pressure fluctuation tended to be stable after 0.75 s. The pressure pulsation of
the monitoring point in condition two was transformed by FFT and compared with the
frequency spectrum results of condition one. Figure 8 is the comparison result of the
buffeting noise spectra. It can be seen that the maximum sound pressure level of condition
two was 108.8 dB, which is lower than that of condition one by 2.7 dB. The corresponding
frequency was 17.0 Hz, which is lower than that of condition one by 0.8 Hz. This means that
reducing the inlet wind speed can improve the characteristics of the sunroof buffeting noise.
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To study the impact of different inlet wind speeds on the sunroof buffeting noise in
more detail, the cab forehead pressure contour curves of conditions one and two were
analyzed. Figure 9 shows the comparison results of the forehead pressure contour curve
when the inlet speeds were 70 km/h and 60 km/h, respectively. It can be seen that while
the inlet wind speed was 70 km/h, the negative pressure area above the roof was larger
than with a speed of 60 km/h. At the same time, reducing the inlet speed can help to
reduce the low-pressure area at the forehead corner, which helps to weaken the turbulent
vortex generated in the forehead. It can also be seen that while the inlet speed was 70 km/h,
there were some small low-pressure turbulent vortices in the negative pressure area. These
small low-pressure turbulent vortices can merge with the large turbulent vortex while
moving with the airflow. The influence of the large turbulent vortex on the cab pressure
will be enhanced.
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Figure 9. The pressure contour curve of the cab forehead with different speed.

Figure 10 is a contour curve of the cab pressure when the inlet speed was 60 km/h.
It can be seen that the turbulent vortex did not fall into the cab while it moved through
the sunroof but continued to move backward with the airflow, which is the reason why
the pressure fluctuation decreased while the inlet speed was 60 km/h. The simulation
results show that improving the flow field characteristics above the cab has a good effect
on reducing the sunroof buffeting noise.
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5. Sunroof Buffeting Noise Control

There are two ways to reduce sunroof buffeting noise, including active control [20] and
passive control [21]. The active control method requires the development of an active sound
control device, which is more expensive to implement in practice. The passive control
method is used to reduce the buffeting noise by designing the control structure. The passive
control method is easy to implement and widely used in practice. After comprehensive
consideration, the passive control alternatives were adopted in the current study to reduce
the buffeting noise.

5.1. Optimization Scheme

From the comparative results of the sunroof buffeting noise with different inlet speeds,
it can be seen that the flow field characteristics in the cab forehead area are complex at the
inlet speed of 70 km/h, and there will be a smaller turbulent vortex. Since the commercial
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vehicles studied are already mass-produced, optimizing the forehead of the cab will vastly
increase the economic costs, particularly in relation to the installation of a small spoiler
in front of the sunroof. The principle is to use the spoiler to change the flow field so as
to prevent the turbulent vortex falling into the cab. However, installing a small spoiler
increases parts and costs. It is proposed that the existing accessories including the sunshade
and roof dome on the cab should be optimized to suppress the sunroof buffeting noise. The
optimization content includes the installation angle of the sun visor and the shape of the
roof dome. Adjusting the flow field at the forehead position by optimizing the sun visor
reduces the turbulent vortex that is generated. By optimizing the roof dome, the lifting
effect of the roof dome on the airflow is improved, so as to better guide the turbulent vortex
away from the cab and to avoid the turbulent vortex falling off at the skylight. The specific
design scheme is shown in Figure 11.
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Figure 11. Optimal design of cab accessories.

Figure 11a is the schematic diagram of the installation angle of the sun visor. The
installation angle is optimized based on the original sun visor, and the new installation
angle is increased by 8. Figure 11b is the optimized schematic diagram of the roof dome.
The roof dome is symmetrical about the center plane, and the shape optimization is
explained with half of the roof dome. The optimization content includes the following
steps: removing the upward edge of the original sun visor, adjusting the front end of the
roof dome to a circular arc, and reducing the distance between the roof dome and the
sunroof. The upper surface of the roof dome is changed to a convex arc surface. The height
of the roof dome at the symmetrical plane is the same as that of the original roof dome. For
this commercial vehicle, the corresponding height at the A-A section of the original car’s
roof dome is reduced by a 1/3, and the height after optimization is 110 mm. The roof dome
between the symmetrical section and the A-A section is connected by a circular arc surface.

5.2. Buffeting Noise Simulation of the Optimized Scheme

The sunroof buffeting noise of the cab after the optimization of the sun visor and roof
dome was analyzed. The inlet speed was 70 km/h. Figure 12 shows the pressure color map
of the forehead before and after optimization. It can be seen that the scale of the negative
pressure area above the roof and at the forehead corner decreased, which suppresses the
phenomenon of the small vortex generated at the forehead. The position of the turbulent
vortex above the roof is also improved. Figure 13 shows the sound pressure level spectra
of the monitoring point before and after optimization. It can be seen that the optimization
scheme can effectively improve the flow field characteristics above the roof. The sound
pressure level at the monitoring point decreased by 6%, from 111.5 dB to 104.8 dB, meaning
that the sunroof buffeting noise has been reduced.
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5.3. Wind Resistance Analysis

The wind resistance of the commercial vehicle after the optimization of the sun visor
and roof dome accessories was analyzed. The analysis model added the main structural
components of commercial vehicles including a trailer, wheels, and other parts. Table 1
shows the wind resistance coefficients of the commercial vehicle. Figure 14 is the color
diagram of the surface pressure of the commercial vehicle before and after optimization
when the inlet wind speed was 70 km/h.

Table 1. Wind resistance coefficients of the commercial vehicles.

Wind Resistance Coefficient (Cd) Change Rate

Original car 0.581 -
After optimization 0.572 −1.55%
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It can be seen from Table 1 that after the optimization of the installation angle of the
sun visor and the shape of the roof dome, the wind resistance coefficient of the commercial
vehicle was reduced by 1.55% compared with the original vehicle. In the original car, there
was a negative pressure area in the middle of the roof dome, which was caused by the
airflow above the roof. Affected by the tail vortex behind the cab, there was also a large
negative pressure area at the front end of the trailer. After the optimization of the sun visor
and roof dome, the surface pressure of the roof dome and the trailer increased due to the
improvement of the airflow characteristics above the roof and the trailing vortex behind the
cab, which achieves the target of reducing the pressure resistance of the commercial vehicle.

5.4. Sunroof Buffeting Noise Test

A road test was carried out on the sunroof buffeting noise of a commercial vehicle with
the sunroof fully opened. The test was carried out on a highway with asphalt pavement,
using the Test.Lab noise test equipment, and the vehicle speed was 70 km/h. The weather
was fine, the wind speed was less than 3 m/s, and the environmental noise was less than
40 dB. Figure 15 shows the test equipment and the opening skylight. The sound pressure
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level near the driver’s right ear was measured, and the results are shown in Table 2. It
can be seen that after the optimization of the sun visor and roof dome accessories, the
sunroof buffeting noise of the commercial vehicle was reduced from 116.3 dB to 109.2 dB, a
decrease of 7.1 dB. The results of the simulation and the experiment are relatively close,
indicating the effectiveness of the optimization scheme.
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Table 2. Comparison of sunroof buffeting noise results.

Before Optimization Optimized

Frequency
(Hz)

Sound Pressure
Level (dB)

Frequency
(Hz)

Sound Pressure
Level (dB)

Simulation 17.8 111.5 17.0 104.8
Test 16.5 116.3 16.1 109.2

6. Conclusions

This work focused on heavy commercial vehicles to study the sunroof buffeting
noise. The existing accessories including the sun visor and the roof dome were optimized
to improve the flow field characteristics of commercial vehicles to reduce the sunroof
buffeting noise and wind resistance coefficient. The main conclusions were:

(1) Based on numerical simulations, the airflow separates on the forehead of the cab
to produce turbulent vortices. These vortices gradually become larger during the
backward movement and fall off into the cab at the sunroof. The pressure wave
generated by the turbulent vortex breaks causing the pressure in the cab to drop
sharply. Turbulent vortices have periodic characteristics.

(2) After analyzing the sunroof buffeting noise for two-speed conditions, it was evidenced
that reducing the speed can improve the flow field characteristics above the roof and
reduce the number of the small turbulent vortices.

(3) Optimizing the sun visor and roof dome accessories of the cab can reduce the sunroof buf-
feting noise. The validity of the simulation results was verified through experiments.

(4) The optimization scheme of the sun visor and roof dome improves the flow field
characteristics of the commercial vehicles. This scheme reduces the impact of airflow
on the roof dome and the local pressure drag and reduces the aerodynamic drag
coefficient of the commercial vehicle, improving fuel economy, and the design cost is
also reduced.
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All of the above can be considered of relevance in this field of research and should be
further explored.
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