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Abstract: Ilex cornuta Leaves (ICLs) are a representative and traditional prescription for controlling
obesity. Nevertheless, the corresponding therapeutic compounds and related pharmacological mech-
anisms of such medication remain undocumented. The compounds from ICLs were identified by
gas chromatography-mass spectrum (GC-MS), and SwissADME confirmed their physicochemical
properties. Next, the target proteins related to compounds or obesity-associated proteins were re-
trieved from public databases. RPackage constructed the protein–protein interaction (PPI) network, a
bubble chart, and signaling pathways–target proteins–compounds (STC) network. Lastly, a molecular
docking test (MDT) was performed to evaluate the affinity between target proteins and ligands from
ICLs. GC-MS detected a total of 51 compounds from ICLs. The public databases identified 219 target
proteins associated with selective compounds, 3028 obesity-related target proteins, and 118 overlap-
ping target proteins. Moreover, the STC network revealed 42 target proteins, 22 signaling pathways,
and 39 compounds, which were viewed to be remedially significant. The NOD-like receptor (NLR)
signaling pathway was considered a key signaling pathway from the bubble chart. In parallel, the
MDT identified three target proteins (IL6, MAPK1, and CASP1) on the NLR signaling pathway
and four compounds against obesity. Overall, four compounds from ICLs might show anti-obesity
synergistic efficacy by inactivating the NLR signaling pathway.

Keywords: Ilex cornuta Leaves; obesity; network pharmacology; NOD-like receptor signaling pathway

1. Introduction

Obesity has now sharply hit epidemic levels and has become a significant cause of
global death [1]. A recent report indicates that obesity is closely linked to metabolic dis-
orders that distinctly develop psychological stress and often exacerbate obesity-related
complications [2]. Obesity can present in all ages; in 2016, almost 13% of the world popu-
lation were overweight [3]. Moreover, obesity is deeply associated with other metabolic
diseases such as diabetes, hypertension, atherosclerosis, and heart failure [4]. The main
driving factors of metabolic disorders are cytokines, which are mainly implicated with a
high-fat diet [5]. Currently, available anti-obesity medications include sibutramine, rimona-
bant, and orlistat, which may lead to side effects like diarrhea, fecal incontinence, flatulence,
and dyspepsia [6,7]. In contrast, herbal solutions based on natural organic compounds
have been used for thousands of years with high efficacy and safety [8]. To date, many
natural herbal plants are used in a diet regime or as an alleviator for anti-obesity [9], for
example, Ilex cornuta Leaves (ICLs) are potentially used to treat obesity. A topical patent
on ICLs summarized that the extract could be effective for various metabolic diseases [10].
Moreover, some reports demonstrated that ICLs extract has potent anti-inflammatory
effects associated with obesity in adipocytes [11,12]. Another study stated that the Ilex
species, including ICLs, are known for regulating lipid metabolism and weight-loss ac-
tivity [13]. Until now, research of ICLs has been focused on a broad range of metabolic
disorders without defining the exact action mechanism for particular diseases. Therefore,
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the studies on active compounds and mechanisms of ICLs against obesity should be proven
to understand the pharmacological value in alleviating obesity.

Network pharmacology is an efficient method to comprehend relationships between
multiple unspecific compounds and multiple target proteins [14]. It is a relatively effective
technique to analyze herbal medicines regarding novel active compounds and new mecha-
nisms of action against different diseases [15]. Mainly, for metabolic syndrome research, the
network pharmacology approach contributes to unravelling complex biological systems
and interactions between active compounds and target proteins [16,17].

The concept and principle of network pharmacology proposed by Andrew Hopkins
are based on bioinformatics and system biology [18]. In addition, the development of
bioinformatics with system biology supports the progression of network pharmacology;
for instance, Dr. Shoichet’s group expanded the ‘similarity ensemble approach’ to search
the connectivity between ligand and target protein [19]. SwissTargetPrediction (STP) is a
web-based bioinformatics database developed by the SIB (Swiss Institute of Bioinformatics),
which loaded 376,342 reliable experimental compounds and 3,068 target proteins since
2014 [20]. Likewise, Dr. Furlong developed ‘DisGeNET’, a comprehensive platform for
the efficient exploration of 380,000 associations between 13,000 diseases and more than
16,000 genes [21]. Furthermore, Online Mendelian Inheritance in Man (OMIM) is integrated
with other genetic databases such as PubMed references, DNA and protein sequence, and
the specific mutation database [22]. Thus, this study utilized these four databases to
understand the relationships between compounds from ICLs and obesity-related target
proteins from a human. To sum things up, network pharmacology utilized via four
bioinformatics explored the mechanisms of ICLs against obesity and found promising
active compounds from ICLs and associated target proteins. The functional diagram is
exhibited in Figure 1.

Figure 1. Workflow diagram of network pharmacology analysis of ICLs against obesity.

2. Results
2.1. Chemical Compounds from ICLs

A total of 52 chemical compounds in ICLs were identified by the GC-MS analysis
(Figure 2), and the name of compounds, PubChem ID, retention time (min), peak area
(%), and pharmacological activities were enlisted in Table 1. Lipinski’s rules accepted the
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number of 51 out of 52 chemical compounds (molecular weight ≤ 500g/mol; Moriguchi
octanol-water partition coefficient ≤4.15; number of nitrogen or oxygen ≤10; number of NH
or OH ≤5), and the selected 51 chemical compounds (excluding lactose) corresponded with
the standard of ‘Abbott Bioavailability Score (>0.1)’ through SwissADME. Additionally,
lactose was excluded due to the number of nitrogen or oxygen and the number of NH or
OH. The TPSA (topological polar surface area) value of the selected 51 chemical compounds
(excluding lactose) was also accepted (Table 2).

Figure 2. A typical GC-MS peak of ICLs.

Table 1. A list of 52 chemical compounds identified from ICLs via GC-MS and profiling of biological activities.

No. Compounds Pubchem ID RT (mins) Area (%) Pharmacological
Activities (Reference)

1 N-Acetylmannosamine 11,096,158 3.520 0.49 No reports
2 1-Aminopropan-2-ol 4 3.683 0.41 Anti-malaria [23]

3 2-Propenethioamide,
3-(acetyloxy)-N,N-dimethyl-, (E)- 5,363,184 4.135 0.46 No reports

4 2-Hydroxy-3-methyl-4H-pyran-4-one 54,681,620 4.318 2.34 No reports

5 4H-Pyran-4-one,
2,3-dihydro-3,5-dihydroxy-6-methyl- 119,838 4.799 1.98 No reports

6 Tetrahydrofuran-3,4-diol 90,803 5.039 0.84 No reports
7 5-Hydroxymethylfurfural 237,332 5.424 9.54 No reports

8 Ascaridole 10,545 5.943 0.34 Anti-neoplasms
(PCIDB)

9 1-Nonene 31,285 6.000 0.30 No reports
10 Fumaramic acid 5,364,140 6.539 0.22 No reports
11 2,1,3-Benzothiadiazole 67,502 6.808 0.43 No reports
12 Hypoxanthine 135,398,638 6.856 0.32 Anti-gout (PCIDB)
13 Guanidine, 1-ethyl-3-nitro- 135,515,028 7.049 1.79 No reports
14 Levoglucosan 2,724,705 7.202 1.18 No reports
15 Ethyl-α-d-glucopyranoside 91,694,274 7.250 0.82 No reports
16 2-(4-Methylcyclohexyl)prop-2-en-1-ol 543,946 7.606 0.45 No reports
17 Octanoic acid 379 8.020 12.91 Antimicrobial [24]



Processes 2021, 9, 1106 4 of 24

Table 1. Cont.

No. Compounds Pubchem ID RT (mins) Area (%) Pharmacological
Activities (Reference)

18 3,5-Dihydroxy-6-
(hydroxymethyl)oxan-2-one 541,561 8.145 5.95 No reports

19 2-Isopropenylthiophene 121,729 8.385 2.82 No reports
20 Sulfallate 7216 8.481 0.55 No reports
21 Crocetane 136,331 8.568 0.94 No reports
22 Diphenylmethane 7580 8.731 0.67 No reports
23 Palmitic acid 985 8.914 0.87 Anti-cancer

24 1-(3-Butyn-2-yloxy)-1-methyl-1-
silacyclohexane 597,458 9.154 0.47 No reports

25 Lactose 6134 9.318 0.20
Thyroid

cancer(marker)
(PCIDB)

26 Methyl linoleate 5,284,421 9.424 0.45 No reports
27 Phytol 5,366,244 9.462 1.28 Anti-necrosis (PCIDB)
28 cis,cis,cis-7,10,13-Hexadecatrienal 5,367,366 9.616 0.82 No reports

29 Linolenic acid 5,280,934 9.654 0.32 Anti-inflammation
[23]

30 Phytone 10,408 10.058 0.06 No reports
31 11-Dodecynyl acetate 538,082 10.222 0.43 No reports

32 1-
(Pyrrolidinocarbonylmethyl)piperazine 100,614 10.327 0.26 No reports

33 Amonafide 50,515 10.693 0.14 No reports
34 2-Palmitoylglycerol 123,409 10.904 1.02 No reports
35 7-Pentadecyne 549,063 11.683 0.49 No reports
36 cis,cis,cis-7,10,13-Hexadecatrienal 5,367,366 11.722 1.41 No reports
37 Squalene 638,072 12.202 1.24 Anti-leukemia

38 2-Methyl-3-(3-methyl-but-2-enyl)-2-(4-
methyl-pent-3-enyl)-oxetane 550,119 12.827 0.23 No reports

39 Stigmastan-3-ol 6743 13.895 0.24 No reports
40 Vitamin E 14,985 14.577 1.28 Anti-oxidant [23]

41 4-Cyclohexene-1,2-dicarboximide,
N-butyl-, cis- 91,733,922 15.520 0.10 No reports

42 4-Dehydroxy-N-(4,5-methylenedioxy-
2-nitrobenzylidene)tyramine 610,062 16.000 0.08 No reports

43 Clionasterol 457,801 16.962 1.14 Anti-ischemic (PCIDB)

44

17-(1,5-Dimethylhexyl)-10,13-
dimethyl-4-

vinylhexadecahydrocyclopenta[a]phenanthren-
3-ol

537,099 17.318 0.24 No reports

45 Pentanoic acid, 3-[(adamantan-1-
ylmethyl)carbamoyl]-4-phenyl- 4,920,612 17.500 0.67 No reports

46 β-amyrenol 225,689 17.712 2.47 No reports

47 Ethyl 2-(2-chloroacetamido)-3,3,3-
trifluoro-2-(3-fluoroanilino)propionate 610,054 17.933 1.71 No reports

48 Lupeol 259,846 18.625 31.17 Anti-carcinoma [25]

49 Ethyl 2-[(2-chloroacetyl)amino]-3,3,3-
trifluoro-2-(4-fluoroanilino)propanoate 610,053 21.020 0.24 No reports

50 Lanosterol 246,983 21.289 0.53 Anti-osteosarcoma
[26]

51 Cycloisolongifolene, 7-bromo- 608,988 21.712 0.37 No reports
52 Cycloeucalenyl acetate 537,081 23.202 0.64 No reports

PCIDB: Phyto Chemical Interactions DB (https://www.genome.jp/db/pcidb) (accessed on 28 April 2021).

https://www.genome.jp/db/pcidb
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Table 2. Physicochemical properties of chemical compounds for good oral bioavailability and cell membrane permeability.

No. Compounds

Lipinski Rules Lipinski’s
Violations

Bioavailability
Score TPSA (Å2)

MW HBA HBD MLog P

<500 <10 ≤5 ≤4.15 ≤1 >0.1 <140

1 N-Acetylmannosamine 221.21 6 5 −2.61 0 0.55 119.25
2 1-Aminopropan-2-ol 75.11 2 2 −0.63 0 0.55 46.25

3 2-Propenethioamide,
3-(acetyloxy)-N,N-dimethyl-, (E)- 173.23 2 0 0.54 0 0.55 61.63

4 2-Hydroxy-3-methyl-4H-pyran-4-one 126.11 3 1 −0.03 0 0.55 50.44

5 4H-Pyran-4-one,
2,3-dihydro-3,5-dihydroxy-6-methyl- 144.13 4 2 −1.77 0 0.85 66.76

6 Tetrahydrofuran-3,4-diol 104.10 3 2 −1.45 0 0.55 49.69
7 5-Hydroxymethylfurfural 126.11 3 1 −1.06 0 0.55 50.44
8 Ascaridole 168.23 2 0 2.19 0 0.55 18.46
9 1-Nonene 126.24 0 0 4.38 1 0.55 0.00
10 Fumaramic acid 115.09 3 2 −1.04 0 0.56 80.39
11 2,1,3-Benzothiadiazole 136.17 2 0 0.63 0 0.55 54.02
12 Hypoxanthine 136.11 3 2 −1.17 0 0.55 74.43
13 Guanidine, 1-ethyl-3-nitro- 132.12 3 2 −0.94 0 0.55 96.23
14 Levoglucosan 162.14 5 3 −1.94 0 0.55 79.15
15 Ethyl-α-d-glucopyranoside 208.21 6 4 −2.07 0 0.55 99.38
16 2-(4-Methylcyclohexyl)prop-2-en-1-ol 154.25 1 1 2.30 0 0.55 20.23
17 Octanoic acid 144.21 2 1 1.96 0 0.85 37.30
18 3,5-Dihydroxy-6-(hydroxymethyl)oxan-2-one 162.14 5 3 −1.68 0 0.55 86.99
19 2-Isopropenylthiophene 124.20 0 0 2.17 0 0.55 28.24
20 Sulfallate 223.79 0 0 2.28 0 0.55 60.63
21 Crocetane 282.55 0 0 7.38 1 0.55 0.00
22 Diphenylmethane 168.23 0 0 5.06 1 0.55 0.00
23 Palmitic acid 256.42 2 1 4.19 1 0.85 37.30
24 1-(3-Butyn-2-yloxy)-1-methyl-1-silacyclohexane 182.33 1 0 2.30 0 0.55 9.23
25 Lactose 342.30 11 8 −4.37 2 0.17 189.53
26 Methyl linoleate 294.47 2 0 4.70 1 0.55 26.30
27 Phytol 296.53 1 1 5.25 1 0.55 20.23
28 cis,cis,cis-7,10,13-Hexadecatrienal 234.38 1 0 4.01 0 0.55 17.07
29 Linolenic acid 278.43 2 1 4.38 1 0.85 37.30
30 PHYTONE 268.48 1 0 4.79 1 0.55 17.07
31 11-Dodecynyl acetate 224.34 2 0 3.58 0 0.55 26.30
32 1-(Pyrrolidinocarbonylmethyl)piperazine 197.28 3 1 0.05 0 0.55 35.58
33 Amonafide 283.33 3 1 1.71 0 0.55 68.33
34 2-Palmitoylglycerol 330.50 4 2 3.18 0 0.55 66.76
35 7-Pentadecyne 208.38 0 0 6.04 1 0.55 0.00
36 cis,cis,cis-7,10,13-Hexadecatrienal 234.38 1 0 4.01 0 0.55 17.07
37 Squalene 410.72 0 0 7.93 1 0.55 0.00

38 2-Methyl-3-(3-methyl-but-2-enyl)-2-(4-methyl-
pent-3-enyl)-oxetane 222.37 1 0 3.56 0 0.55 9.23

39 Stigmastan-3-ol 416.72 1 1 6.88 1 0.55 20.23
40 Vitamin E 430.71 2 1 6.14 1 0.55 29.46

41 4-Cyclohexene-1,2-dicarboximide, N-butyl-,
cis- 207.27 2 0 1.68 0 0.55 37.38

42 4-Dehydroxy-N-(4,5-methylenedioxy-2-
nitrobenzylidene)tyramine 298.29 5 0 1.49 0 0.55 76.64

43 Clionasterol 414.71 1 1 6.73 1 0.55 20.23

44
17-(1,5-Dimethylhexyl)-10,13-dimethyl-4-

vinylhexadecahydrocyclopenta[a]phenanthren-
3-ol

414.71 1 1 6.73 1 0.55 20.23

45 Pentanoic acid, 3-[(adamantan-1-
ylmethyl)carbamoyl]-4-phenyl- 369.50 3 2 3.69 0 0.85 66.40

46 beta-Amyrenol 426.72 1 1 6.92 1 0.55 20.23

47 Ethyl 2-(2-chloroacetamido)-3,3,3-trifluoro-2-(3-
fluoroanilino)propionate 356.70 7 2 2.60 0 0.55 67.43

48 Lupeol 426.72 1 1 6.92 1 0.55 20.23

49 Ethyl 2-[(2-chloroacetyl)amino]-3,3,3-trifluoro-
2-(4-fluoroanilino)propanoate 356.70 7 2 2.60 0 0.55 67.43

50 Lanosterol 426.72 1 1 6.82 1 0.55 20.23
51 Cycloisolongifolene, 7-bromo- 283.25 0 0 5.26 1 0.55 0.00
52 Cycloeucalenyl acetate 468.75 2 0 7.08 1 0.55 26.30

2.2. Overlapping Target Proteins between SEA and STP

A total of 525 target proteins from SEA and 576 target proteins from STP connected
to 51 chemical compounds were identified (Supplementary Table S1). The Venn diagram
showed that 219 target proteins were overlapped between the two compound databases
(Supplementary Table S1) (Figure 3A).
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Figure 3. (A) The overlapping targets (219) between SEA and STP databases. (B) The final targets (118) between the
overlapping target proteins (OTPs) (219) and obesity-related target proteins (ORTPs) (3028).
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2.3. Overlapping Target Proteins between Obesity-Related Target Proteins and 219 Target Proteins

A total of 3028 target proteins associated with obesity were selected by retrieval from
DisGeNET and OMIM databases (Supplementary Table S2). The Venn diagram result
revealed 118 overlapping target proteins between obesity-associated 3028 target proteins
and the 219 overlapping target proteins (Figure 3B) (Supplementary Table S3).

2.4. PPI Networks

From STRING analysis, the final overlapping 118 target proteins were directly related
to obesity occurrence and progression, indicating 116 nodes and 674 edges (Figure 4). Two
(PAM and RGS4) out of 118 targets did not interact with any other targets. In PPI networks,
IL6 manifested the highest degree (52), followed by VEGFA (47), PTGS2 (42), MAPK1 (36),
and CASP3 (36) (Table 3). Hence, IL6 was considered the uppermost target protein in
PPI networks.

Figure 4. PPI networks (116 nodes and 674 edges). The size of circles stands for the degree of values.
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Table 3. The degree value of 116 targets.

No. Gene Symbol Degree No. Gene Symbol Degree

1 IL6 52 59 CES1 9

2 VEGFA 47 60 FABP2 9

3 PTGS2 42 61 HK2 9

4 CASP3 36 62 HSD11B1 9

5 MAPK1 36 63 NR1I3 9

6 PPARG 30 64 ADA 8

7 CYP3A4 29 65 ALDH1A1 8

8 ESR1 29 66 HTR2B 8

9 NR3C1 25 67 MAOB 8

10 MPO 23 68 PTPN6 8

11 CNR1 21 69 SLC6A2 8

12 FGF2 21 70 TBXA2R 8

13 IL2 21 71 BCHE 7

14 AR 20 72 FFAR4 7

15 PPARA 20 73 GPBAR1 7

16 PTPRC 20 74 KISS1R 7

17 CYP2C9 19 75 MGEA5 7

18 HIF1A 19 76 SI 7

19 HNF4A 19 77 SLC5A1 7

20 NR0B2 19 78 CES2 6

21 ABCB1 18 79 FABP3 6

22 CYP19A1 18 80 FFAR1 6

23 ALOX5 16 81 GRIN1 6

24 HK1 16 82 MME 6

25 MGLL 16 83 NAAA 6

26 NOS2 16 84 NR1H2 6

27 PLA2G4A 16 85 OGT 6

28 PTGS1 16 86 SRD5A1 6

29 ACHE 15 87 CHRM2 5

30 TRPV1 15 88 FGF1 5

31 G6PD 15 89 KAT2B 5

32 CASP1 14 90 NPC1L1 5

33 MMP3 14 91 PTPN2 5
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Table 3. Cont.

No. Gene Symbol Degree No. Gene Symbol Degree

34 PRKCA 14 92 SLC22A1 5

35 SREBF2 14 93 ACP1 4

36 AKR1B1 13 94 CD81 4

37 CYP2D6 13 95 CYP26B1 4

38 NR1H4 13 96 ENPP2 4

39 SCD 13 97 GABRA2 4

40 SLC6A4 13 98 P2RX7 4

41 CYP17A1 12 99 SLC16A1 4

42 ESR2 12 100 OXER1 4

43 MGAM 12 101 TAAR1 4

44 PLG 12 102 CA4 3

45 SELP 12 103 FDFT1 3

46 ALOX15 11 104 HSD11B2 3

47 CNR2 11 105 PPARD 3

48 FAAH 11 106 SERPINA6 3

49 FABP4 11 107 SLC5A2 3

50 LGALS3 11 108 PIN1 3

51 MAOA 11 109 TRPM8 3

52 NOS1 10 110 RORC 3

53 NR1H3 10 111 HPSE 2

54 PTGES 10 112 SLC22A6 2

55 PTPN1 10 113 PHLPP1 2

56 SHBG 10 114 PTPRF 2

57 VDR 10 115 GSTK1 1

58 ALOX12 9 116 HEXA 1

2.5. Analysis of Signaling Pathways against Obesity

The results of the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway
enrichment analysis revealed that 22 signaling pathways were related to 42 target proteins
(false discovery rate < 0.05). The 22 signaling pathways were directly connected to obesity,
suggesting that these 22 signaling pathways might be the significant pathways of ICLs
against obesity. The description of 22 signaling pathways is provided in Table 4. A
bubble chart showed that both NOD-like receptor signaling pathway and MAPK signaling
pathway have the same rich factor of 0.024 (Figure 5). Additionally, NOD-like receptor
signaling pathway was directly related to IL6 (the highest degree of value) but MAPK
signaling pathway was unconnected to IL6 (listed in Table 4).
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Table 4. The number of 42 target proteins in 22 signaling pathways enrichment associated with obesity.

KEGG ID & Description Target Proteins False Discovery Rate

has03320:PPAR signaling pathway PPARA,PPARG,FABP2,FABP3,FABP4,SCD,NR1H3 0.00000152
hsa04370:VEGF signaling pathway PLA2G4A,PRKCA,PTGS2,VEGFA,MAPK1 0.00058
hsa04066:HIF-1 signaling pathway PRKCA,VEGFA,MAPK1,IL6,NOS2,HIF1A,HK1,HK2 0.00000794

hsa04664:Fc epsilon RI signaling pathway ALOX5,PLA2G4A,PRKCA,MAPK1 0.0047
hsa04917:Prolactin signaling pathway MAPK1,ESR1,ESR2,CYP17A1 0.0051

hsa04657:IL-17 signaling pathway MMP3,MAPK1,IL6,PTGS2,CASP3 0.0025
hsa04933:AGE-RAGE signaling pathway in

diabetic complications PRKCA,VEGFA,MAPK1,IL6,CASP3 0.0027

hsa04668:TNF signaling pathway MMP3,MAPK1,IL6,PTGS2,CASP3 0.0037

hsa04020:Calcium signaling pathway P2RX7,NOS1,NOS2,PRKCA,GRIN1,CHRM2,TBXA2R,HTR2B,
PRKCA,MAPK1,HIF1A,ESR1,KAT2B 0.00028

hsa04919:Thyroid hormone signaling pathway PRKCA,MAPK1,HIF1A,ESR1,KAT2B 0.0044
hsa04662:B cell receptor signaling pathway MAPK1,PTPN6,CD81 0.0266
hsa04660:T cell receptor signaling pathway PTPN6,PTPRC,IL2,MAPK1 0.0124

hsa04926:Relaxin signaling pathway NOS1,PRKCA,VEGFA,MAPK1,NOS2 0.0062
hsa04910:Insulin signaling pathway MAPK1,PTPRF,PTPN1,HK1,HK2 0.0066
hsa04015:Rap1 signaling pathway FGF1,FGF2,VEGFA,MAPK1,PRKCA,GRIN1,CNR1 0.0024

hsa04912:GnRH signaling pathway PLA2G4A,PRKCA,MAPK1 0.0411
hsa04014:RAS signaling pathway FGF1,FGF2,PLA2G4A,VEGFA,MAPK1,PRKCA,GRIN1 0.0034

hsa04921:Oxytocin signaling pathway PLA2G4A,PRKCA,PTGS2,MAPK1 0.0342
hsa04151:PI3K-Akt signaling pathway FGF1,PHLPP1,FGF2,VEGFA,MAPK1,IL2,IL6,CHRM2,PRKCA 0.0025
hsa04630: Jak-STAT signaling pathway PTPN2,PTPN6,IL2,IL6 0.0408

hsa04010:MAPK signaling pathway FGF1,FGF2,PLA2G4A,VEGFA,PRKCA,MAPK1,CASP3 0.0093
hsa04621:NOD-like receptor signaling pathway CASP1,P2RX7,MAPK1,IL6 0.0446

Figure 5. Bubble chart of ICLs against obesity.
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2.6. STC Networks Analysis of ICLs against Obesity

STC networks of ICLs against obesity are exhibited in Figure 6. There were 22 pathways,
42 target proteins, and 39 compounds (103 nodes, 333 edges). The nodes stand for a total
number of three components: signaling pathways—target proteins—compounds (STC).
The edges stand for the association of a total number of three components. The STC
networks suggested that the network was associated with the therapeutic efficacy against
obesity. Particularly, MAPK1 target protein (the highest degree value) was related to 20
out of 22 signaling pathways in STC networks, connected to NOD-like receptor signaling
pathway. The main three target proteins of ICLs against obesity are indicated in the KEGG
pathway diagram (Figure 7).

Figure 6. STC networks. Green circle: signaling pathway; pink square: target protein; orange triangle: compound.

KEGG pathway revealed location of the three target proteins (IL6, MAPK1, and
CASP1) in intracellular components (Figure 7).
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Figure 7. NOD-like receptor signaling pathway. Red dotted line indicated IL6; MAPK1 (known as ERK); and CASP1
location. Pink colors represent target proteins of ICLs on obesity.

2.7. KEGG Pathway Analysis of NLR Signaling Pathway
2.8. MDT of Four Target Proteins and 11 Compounds Connected to NLR Signaling Pathway

The IL6 protein (PDB ID: 4NI9) connected to three compounds on the NLR signaling
pathway was used to perform MDT. It was observed that 3,5-dihydroxy-6-(hydroxymethyl)oxan-
2-one) docked on the IL6 protein (PDB ID: 4NI9) exhibited the highest binding energy
(−6.3 kcal/mol), followed by ethyl- α-d-glucopyranoside (−6.1 kcal/mol) and linolenic
acid (−4.1 kcal/mol). The 3,5-dihydroxy-6-(hydroxymethyl)oxan-2-one also had the higher
affinity than a positive control (veratric acid) [27] which showed −6.1 kcal/mol. The docking
details of three compounds and a positive control are shown in Figure 8A, Table 5. The MDT
of three compounds on MAPK1 (PDB ID: 4IZ5) was analyzed to identify the affinity. It was
uncovered that 4-dehydroxy-N-(4,5-methylenedioxy-2-nitrobenzylidene)tyramine docked
on an MAPK1 protein (PDB ID: 4IZ5) exposed the highest binding energy (−7.0 kcal/mol),
followed by linolenic acid (-4.6 kcal/mol) and palmitic acid (−4.4 kcal/mol). Noticeably,
4-dehydroxy-N-(4,5-methylenedioxy-2-nitrobenzylidene) tyramine demonstrated higher
affinity than a positive control (CU-Cpt 22) [28] showed −6.0 kcal/mol. The docking details
of three compounds and a positive control are shown in Figure 8B, Table 6. The MDT
score of four compounds on a P2RX7 protein (PDB ID: 5U2H) was analyzed to identify
the affinity. It was exposed that pentanoic acid; 3-[(adamantan-1-ylmethyl)carbamoyl]-4-
phenyl- docked on a P2RX7 protein (PDB ID: 5U2H) demonstrated the highest binding energy
(−5.9 kcal/mol), followed by 4-cyclohexene-1,2-dicarboximide, N-butyl-, cis- (−4.1 kcal/mol),
phytone (−3.3 kcal/mol), and cis,cis,cis-7,10,13-hexadecatrienal (−3.1 kcal/mol). The docking
details of four compounds are shown in Table 7. Collectively, IL6 (PDB ID: 4NI9), MAPK1
(PDB ID:4IZ5), and P2RX7 (PDB ID: 5U2H) indicated that the affinity of each compound
did not give a valid binding score (>−6.0 kcal/mol) [29]. Moreover, the affinity of four
compounds on P2RX7 (PDB ID: 5U2H) was lower than the positive control (KN-62) [30]
showed −9.8 kcal/mol.
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Figure 8. (A) MDT of three, 3,5-Dihydroxy-6-(hydroxymethyl) oxan-2-one on IL6 (PDB ID: 4NI9). (B) MDT of 4-
dehydroxy-N-(4, 5-methylenedioxy- 2- nitrobenzylidene) tyramine on MAPK1 (PDB ID: 4IZ5). (C) MDT of pentanoic acid,
3-[(adamantan-1-ylmethyl) carbamoyl]-4-phenyl- on CASP1 (PDB ID: 3D6F).
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Table 5. The binding energy of potential compounds and a positive control on IL6 (PDB ID: 4NI9).

Hydrogen Bond
Interactions

Hydrophobic
Interactions

Protein Ligand PubChem ID Binding Energy
(kcal/mol)

Amino Acid
Residue

Amino Acid
Residue

IL6 (PDB ID: 4NI9) Linolenic acid 5,280,934 −4.1 N/A Tyr31, Asp34,
Gln111

Ethyl-α-d-
glucopyranoside 9,169,4274 −6.1 Arg16 Arg15

3,5-Dihydroxy-6-
(hydroxymethyl)oxan-

2-one
541,561 −6.3 N/A N/A

Hydrogen Bond
Interactions

Hydrophobic
Interactions

Protein Positive control PubChem ID Binding
energy(kcal/mol)

Amino acid
Residue

Amino acid
Residue

IL6 (PDB ID: 4NI9) Veratric acid [27] 7121 −6.1 Arg16 N/A

Table 6. Binding energy of potential compounds and a positive control on MAPK1 (PDB ID: 4IZ5).

Hydrogen Bond
Interactions

Hydrophobic
Interactions

Protein Ligand PubChem ID Binding Energy
(kcal/mol)

Amino Acid
Residue

Amino Acid
Residue

MAPK1(PDB
ID:4IZ5) Palmitic acid 985 −4.4 Lys28, Ala26,

Cys27 Glu29, Asp30, Tyr62

Met13, Glu186,
Val14

Leu28, Arg15,
Lys54
Glu12

4-Dehydroxy-N-(4,5-
methylenedioxy-2-
nitrobenzylidene)

tyramine

610,062 −7.0 Leu60, Arg83,
Leu107 Ser61,Ser41,Arg50

Glu109, Met108,
Ile31 Ser29

Linolenic acid 5,280,934 −4.6 Asn144 Lys330, Glu303,
Thr206

Lys207, Ser43, Ser47
Ser142, Leu8

Hydrogen Bond
Interactions

Hydrophobic
Interactions

Protein Positive control PubChem ID Binding energy
(kcal/mol)

Amino acid
Residue

Amino acid
Residue

MAPK1(PDB
ID:4IZ5) CU Cpt 22 [28] 71,503,400 −6.0 Thr12, Ile15 Thr41, Pro319,

Lys138
Ile324, Asn13, Ser320
Gly42, Leu17, Leu20

Thr16
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Table 7. Binding energy of potential compounds and a positive control on P2RX7 (PDB ID: 5U2H).

Hydrogen Bond
Interactions

Hydrophobic
Interactions

Protein Ligand PubChem ID Binding Energy
(kcal/mol)

Amino Acid
Residue

Amino Acid
Residue

P2RX7(PDB ID:
5U2H)

Pentanoic acid,
3-[(adamantan-1-

ylmethyl)carbamoyl]-
4-phenyl-

4,920,612 −5.9 N/A Val37, Phe344,
Tyr343

Val340, Tyr336,
Leu45

Ile41, Tyr40

Phytone 10,408 −3.3 N/A Leu45, Tyr336,
Ser339

Ile41, Val340, Tyr343
Val37, Ala44

4-Cyclohexene-1,2-
dicarboximide,
N-butyl-, cis-

91,733,922 −4.1 N/A Val37, Ile41, Tyr36

Leu45, Ala44, Val340
Ser339, Tyr343

cis,cis,cis-7,10,13-
Hexadecatrienal 5,367,366 −3.1 N/A Val340, Ile341,

Gly345
Thr348, His34, Phe38

Phe344, Ile337

Hydrogen Bond
Interactions

Hydrophobic
Interactions

Protein Positive control PubChem ID Binding
energy(kcal/mol)

Amino acid
Residue

Amino acid
Residue

P2RX7(PDB ID:
5U2H) KN-62 [30] 5,312,126 −9.8 N/A Tyr40, Ile41, Ala44

Leu45, Tyr336,
Val340

Tyr343, Ala347,
Leu346

In addition, pentanoic acid; 3-[(adamantan-1-ylmethyl)carbamoyl]-4-phenyl-) docked
on a CASP1 protein (PDB ID: 3D6F) showed a valid affinity (−7.3 kcal/mol), which was
a comparatively higher affinity than three positive standard ligands (belnacasan [31],
mulberroside A [32], and Q-VD-Oph [33]). The docking details of three compounds and
the positive control are shown in Figure 8C, Table 8.

2.9. Toxicological Properties of Four Key Compounds

Additionally, toxicological properties of ethyl- α-d-glucopyranoside; 3,5-dihydroxy-6-
(hydroxymethyl)oxan-2-one; 4-dehydroxy-N-(4,5-methylenedioxy-2-nitrobenzylidene)tyramine;
and pentanoic acid, 3-[(adamantan-1-ylmethyl)carbamoyl]-4-phenyl- were predicted by ad-
metSAR online tool. Our result suggested that the bioactives did not relate to Ames toxicity,
carcinogenic properties, acute oral toxicity, and rat acute toxicity properties (Table 9).
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Table 8. The binding energy of potential compounds and three positive controls on CASP1 (PDB ID: 3D6F).

Hydrogen Bond
Interactions

Hydrophobic
Interactions

Protein Ligand PubChem ID Binding Energy
(kcal/mol)

Amino Acid
Residue

Amino Acid
Residue

CASP1 (PDB ID:
3D6F)

Pentanoic acid,
3-[(adamantan-1-

ylmethyl)carbamoyl]-
4-phenyl-

4,920,612 −7.3 Asn259, Leu258,
Arg286

Arg391, Glu390,
Ile282

Gln257 Cys331, Ile243,
Gly242

Ile239, Glu241,
Gln240

Hydrogen Bond
Interactions

Hydrophobic
Interactions

Protein Positive Control PubChem ID Binding Energy
(kcal/mol)

Amino acid
Residue

Amino acid
Residue

CASP1 (PDB ID:
3D6F) Belnacasan [31] 11,398,092 −7.0 Arg286, Arg391 Cys285, Gly242,

Ile239
Glu241, Gln240,

Asn259
Leu258, Pro335,

Ile282
Ala284, Ile243

Mulberroside A
[32] 6,443,484 −7.2 Val184, Asn132,

Gln358
Gly188, Ile354,

Met345

Asp381, Arg383 Arg352, Val348,
Ile350

Gly351, Asp185

Q-VD-Oph [33] 24,794,416 −7.2 Gln240, Leu258,
Asn259

Cys285, Ile239,
Arg286

Ile243, Gln257,
Arg391

Glu390, Gly242,
Ile282

Table 9. Toxicological properties of the highest affinity ligands on NOD-like receptor signaling pathway.

Parameters.

Compound Name

Ethyl-
α-d-glucopyranoside

3,5-Dihydroxy-6-
(hydroxymethyl)oxan-2-one

4-Dehydroxy-N-(4,5-
methylenedioxy-2-

nitrobenzylidene)tyramine

Pentanoic acid,
3-[(adamantan-1-

ylmethyl)carbamoyl]-4-
phenyl-

Ames toxicity NAT NAT AT NAT
Carcinogens NC NC NC NC

Acute oral toxicity IV III III III
Rat acute toxicity 0.9919 1.4924 2.6672 2.0497

AT: Ames toxic; NAT: Non Ames toxic; NC: Non-carcinogenic; Category-II means (50 mg/kg > LD50 < 500 mg/kg); Category-III means
(500 mg/kg > LD50 < 5000 mg/kg); Category- IV means (LD50 > 5000 mg/kg).

3. Discussion

PPI networks indicated that IL6 was the uppermost target protein (based on the
highest degree of value: 52 degrees) to treat obesity. Another STC network suggested
that the therapeutic efficacy of ICLs on obesity was directly associated with 22 signaling
pathways, 42 target proteins, and 39 compounds. The network exposed that mitogen-
activated protein kinase 1 (MAPK1) (known as ERK) with the highest degree ranking
(20 degrees), was the most significant target protein of ICLs against obesity. In this analysis,
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the NLR signaling pathway was directly related to both IL6 and MAPK1, whereas the
MAPK signaling pathway was not connected to IL6.

Thereby, the NLR signaling pathway was considered as a hub-signaling pathway of
ICLs to ameliorate obesity; by constructing and analyzing the STC network, nine key
compounds and four target proteins were obtained. The nine key compounds were
linolenic acid (1); ethyl-α-d-glucopyranoside (2); 3,5-dihydroxy-6-(hydroxymethyl)oxan-2-
one (3); palmitic acid (4); 4-dehydroxy-N-(4,5-methylenedioxy-2-nitrobenzylidene)tyramine
(5); pentanoic acid, 3-[(adamantan-1-ylmethyl)carbamoyl]-4-phenyl- (6); phytone (7); 4-
Cyclohexene-1,2-dicarboximide, N-butyl-cis- (8); cis,cis,cis-7,10,13-Hexadecatrienal (9). The
four target proteins were IL6, MAPK1, P2RX7, and CASP1. MDT was performed between
the 11 key compounds and four target proteins to verify network pharmacology results;
where the value of MDT was compared with positive controls on each target protein.
On MDT, the most potent compounds on IL6 were ethyl-α-d-glucopyranoside and 3,5-
dihydroxy-6-(hydroxymethyl)oxan-2-one having an aliphatic heteromonocyclic structure.
It was reported that a hetero-aliphatic ring is associated with a better appeal to develop
a drug due to its high solubility, low lipophilicity (logP < 5), low albumin-binding and
cytochrome P450 inhibition [34,35]. Similarly, Orlistat is a representative anti-obesity drug
with an aliphatic heteromonocyclic structure [36] which implies that compounds with
an aliphatic heteromonocyclic structure might be potential candidates for anti-obesity
drug development.

On the MAPK1 target protein, the most potent compound was 4-dehydroxy-N-(4,5-
methylenedioxy-2-nitrobenzylidene)tyramine with an aromatic heteropolycyclic structure.
Likewise, Cetilistat is a typical drug for anti-obesity with an aromatic heteropolycyclic
structure [36]. On the CASP1 target protein, the most potent compound was pentanoic
acid, 3-[(adamantan-1-ylmethyl) carbamoyl] -4-phenyl-) with an aromatic homopolycyclic
structure. Moreover, Oleoyl-estrone is a standard drug to reduce the body fat, having
an aromatic homopolycyclic structure [36]. Based on these similarities, our study sug-
gests that the four compounds in ICLs have a high chance of offering synergistic effects
against obesity.

A bubble chart displayed that ICLs compounds on obesity were involved in 42 target
proteins. Furthermore, the outputs of the KEGG pathway enrichment analysis of 42 target
proteins indicated that 22 signaling pathways were connected to the progression of obesity,
suggesting that these signaling pathways might be the molecular mechanisms of ICLs
against obesity. The associations of the 22 signaling pathways with obesity were discussed
as follows.

PPAR (peroxisome proliferator-activated receptor) signaling pathway: PPARs are
ligand-regulated receptors, and many standard anti-obesity drugs are related to this signal-
ing pathway [37]. VEGF (vascular endothelial growth factor) signaling pathway: VEGF-A
(vascular endothelial growth factor A) has anti-inflammatory effects against diet-induced
obesity [38]. HIF-1 (hypoxia-inducible factor 1) signaling pathway: inactivation of HIF-1
in adipose tissue alleviates obesity, suggesting that HIF-1 is a new target to develop anti-
obesity agents [39]. Fc epsilon RI signaling pathway: an animal experiment demonstrated
that mice with obesity increased the expression level of Fc epsilon RI more than eight
times as compared to lean mice [40]. It implies that the inactivation of Fc epsilon RI can
inhibit obesity. Prolactin signaling pathway: a report shows that prolactin accelerates
fat accumulation in diverse animal models; particularly, an increased level of PRL was
recorded for obese women in accordance with the visceral fat amount [41]. Interleukin
17 (IL17) signaling pathway: IL17 expression level is enhanced in obese individuals, a
mediator to induce pro-inflammatory reactions [42,43]. AGE-RAGE signaling pathway
in diabetic complications: AGE-RAGE is deeply interconnected to obesity-involved renal
damage; both AGE and RAGE induce a pro-inflammatory reaction and are associated with
obesity [44,45]. Tumor necrosis factor (TNF) signaling pathway: TNF inhibits lipoprotein
lipase to break triglyceride, known as a primary factor of obesity [46]. Calcium signaling
pathway: the activation of calcium signaling promotes energy consumption, which facili-
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tates metabolism and differentiation of adipocytes, thus preventing obesity [47]. Thyroid
signaling pathway: obesity is evidently related to Hashimoto’s thyroiditis, suggesting that
prevention of obesity is significant for recovering thyroid function [48]. B cell receptor sig-
naling pathway: B cells aggravate obesity-related metabolic disorders and secrete cytokines
to stimulate inflammation [49]. T cell receptor signaling pathway: T cell damage is accel-
erated by obesity; accordingly, T cell dysfunction is detrimental to maintain the immune
system [50,51]. Relaxin signaling pathway: the activation of Relaxin-2 attenuates obesity in
high-fat-diet mice; furthermore, Relaxin-3 associated with hypercholesterolemia is a po-
tential target protein against obesity [52,53]. Insulin signaling pathway: insulin resistance
is a crucial factor in aggravating obesity; especially, adipose tissues in obese individuals
produce pro-inflammatory agents that stimulate progressive insulin resistance [54]. Rap-1
signaling pathway: an animal experiment demonstrated that the lack of Rap-1 induces
weight gain due to abdominal fat accumulation [55]. Gonadotropin-releasing hormone
(GnRH) signaling pathway: GnRH agonist treatment induces fat accumulation; mainly,
inhibition of GnRH is a preventive method to treat obesity [56]. Renin-angiotensin system
(RAS) signaling pathway: obesity is linked to RAS activation; in contrast, blockers of RAS
diminished the type 2 diabetes by 22% in severe populations [57]. Oxytocin signaling
pathway: the insufficiency of oxytocin and/or its receptor expression leads to obesity,
which is implicated in metabolic disorders [58]. Phosphoinositide 3-Kinase—Protein kinase
B (PI3K-AKT) signaling pathway: the dysfunction of the PI3K-AKT signaling pathway
causes obesity, in other words, inhibition of the PI3K-AKT signaling pathway exacerbates
metabolic processes [59]. Janus kinase/signal transducer and activator of transcription
proteins (JAK-STAT) signaling pathway: the JAK-STAT signaling pathway is involved in
preventing metabolic diseases including obesity, suggesting that the JAK-STAT pathway
is a potential therapeutic mechanism for the treatment of obesity [60]. MAPK signaling
pathway: a study indicated that obese mice have shown activated MAPK (known as ERK)
expression, while the blocking of MAPK diminishes lipolysis in both mice and human
adipose tissue [61]. NOD-like receptor (NLR) signaling pathway: the NLR pathway is over-
expressed in the adipocytes from the obesity which increases inflammasome activity [62].
On NOD-like signaling pathway in KEGG pathway enrichment, each CASP1, MAPK1,
and IL6 target protein is associated with proinflammatory reactions. In detail, CASP1,
MAPK1, and IL6 are deeply involved in metabolic diseases, and their activation leads to
obesity-related diseases [63].

According to the degree value of each target protein in the PPI network, IL6 was
regarded as a key target of ICLs against obesity, which was directly connected to 52 out
of 118 target proteins. In addition, based on the degree value of each target protein in
the STC network, MAPK1 was considered as an uppermost target of ICLs against obesity,
which was enriched in 20 out of 22 signaling pathways. Specifically, both the MAPK
signaling pathway and the NLR signaling pathway had the same rich factor of 0.024.
Between the two signaling pathways, a signaling pathway associated with IL6 and MAPK1
was the NLR signaling pathway. Thus, the NLR signaling pathway might be the key
signaling pathway of ICLs against obesity. The four target proteins associated with the
NLR signaling pathway were IL6, MAPK1, P2RX7, and MAPK1. The four target proteins
were used to perform MDT with ligands connected to each target protein; also, MDT
was conducted for positive controls to compare each affinity with ligands from ICLs.
From the MDT, P2RX7 was excluded due to invalid binding energy (< −6.0 kcal/mol).
Each ligand from ICLs bound to three other target proteins (IL6, MAPK1, and CASP1)
and exposed higher affinity than the positive controls. Thus, these results suggest that
inhibition of the three targets on the NLR signaling pathway might develop a synergistic
effect to alleviate the obesity. Our research shows that four compounds, including ethyl-
α-d-glucopyranoside (1); 3,5-dihydroxy-6-(hydroxymethyl)oxan-2-one (2); 4-dehydroxy-N-
(4,5-methylenedioxy-2-nitrobenzylidenetyramine (3); and pentanoic acid, 3-[(adamantan-
1-ylmethyl) carbamoyl] -4-phenyl- (4) from ICLs were noted as promising ligands on the
three targets (IL6, MAPK1,and CASP1) (Figure 9).
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Figure 9. Summary figure of key findings in the study.

4. Materials and Methods
4.1. Plant Material Collection and Classification

The Ilex cornuta leaves (ICLs) were collected from Mihogil of Bomunmyeon (Latitude:
35.4023, Longitude: 126.3215), Jeollabuk-do, Republic of Korea, in October 2020, and the
plant was identified by Dr. Dong Ha Cho, Plant Biologist and Professor at the Department
of Bio-Health Convergence, College of Biomedical Science, Kangwon National University.
A voucher number (KNL 011) was deposited at the Kenaf Corporation in the Department
of Bio-Health Convergence, and the material can only be used for research purposes.

4.2. Plant Preparation and Extraction

The ICLs were dried in a shady area at room temperature (20–22 ◦C) for 7 days, and
dried leaves were powdered using an electric blender. Approximately 30 g of C. maackii
flower powder was soaked in 500 mL of 100% methanol (Daejung, Korea) for 7 days and
repeated 3 times for the highest extraction. The solvent extract was collected, filtered, and
evaporated using a vacuum evaporator (IKA- RV8, Japan). The evaporated sample was
dried under a boiling water bath (IKA-HB10, Japan) at 40 ◦C to obtain the yield.

4.3. GC-MS Analysis Condition

Agilent 7890A was used to carry out the GC-MS analysis. The GC was equipped
with a DB-5 (30 m × 0.25 mm × 0.25 µm) capillary column. Initially, the instrument was
maintained at a temperature of 100 ◦C for 2.1 min. The temperature was increased to 300 ◦C
at the rate of 25 ◦C/min and maintained for 20 min. The injection port temperature and
helium flow rate were confirmed as 250 ◦C and 1.5 mL/min, respectively. The ionization
voltage was 70 eV. The samples were injected in split mode at 10:1. The MS scan range
was set at 35–900 (m/z). The fragmentation patterns of mass spectra were compared with
those stored in the W8N05ST Library MS database. The percentage of each compound
was calculated from the relative peak area of each compound in the chromatogram. The
concept of integration used was the ChemStation integrated algorithms.

4.4. Chemical Compounds Database Construction and Drug-Likeness Identification

The chemical compounds from the ICLs leaves were identified through the GC-MS
analysis. Then, the GC-MS detected chemical compounds that were filtered by Lipinski’s
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rule and TPSA value in SwissADME (http://www.swissadme.ch/) (accessed on 23 April
2021) [64] to confirm the ‘drug-likeness’ physicochemical properties. The PubChem repos-
itory (https://pubchem.ncbi.nlm.nih.gov/) (accessed on 23 April 2021) was utilized to
select the SMILES (simplified molecular input line entry system) format.

4.5. Acquisition of Target Proteins Related to Selected Chemical Compounds or Obesity

Target proteins connected to the bioactives (using SMILES) were selected through both
similarity ensemble approach (SEA) (http://sea.bkslab.org/)(accessed on 2 May 2021) [65]
and SwissTargetPrediction (STP) (http://www.swisstargetprediction.ch/) (accessed on
2 May 2021) [20] with the ‘Homo Sapiens’ setting. The obesity-related target proteins on
humans were obtained from TTD (http://db.idrblab.net/ttd/) (accessed on 6 May 2021)
and OMIM (https://www.omim.org/) (accessed on 6 May 2021). The overlapping target
proteins between chemical compounds of ICLs and obesity-related target proteins were
illustrated by InteractiVenn (http://www.interactivenn.net/) (accessed on 8 May 2021) [66].

4.6. PPI Networks and Signaling Pathways on a Bubble Chart

On the final overlapping target proteins, STRING (https://string-db.org/) (accessed
on 11 May 2021) [67] was utilized to analyze the PPI networks. Thereby, RPackage was
used to identify the degree of value, which is defined as the numbers of connectivity to a
target protein (node). Then, signaling pathways directly related to obesity were visualized
on a bubble chart via RPackage. Thus, the signaling pathways provide important clues for
the therapeutic effect of ICLs against obesity.

4.7. A Signaling Pathways-Target Proteins-Chemical Compounds Network

The signaling pathways-target proteins-chemical compounds (STC) network was
utilized to construct a size map, based on the degree of values. In the network, green
circles (nodes) represented signaling pathways; pink rectangles (nodes) represented target
proteins, and orange triangles (nodes) represented chemical compounds. The size of the
pink rectangles stood for the number of connectivity with signaling pathways; the size of
the orange triangles stood for the number of connectivity with target proteins. The merged
networks were constructed using RPackage.

4.8. Preparation of Target Proteins for MDT

The target proteins of two key signaling pathways (MAPK signaling pathway, NOD-
like receptor signaling pathway), i.e., FGF1 (PDB ID: 3OJ2), FGF2 (PDB ID: 1IIL), PLA2G4A
(PDB ID: 1BCI), VEGFA (PDB ID: 3V2A), PRKCA (PDB ID: 3IW4), CASP3 (PDB ID: 5I9B),
IL6 (PDB ID: 4NI9), MAPK1 (PDB ID: 4IZ5), P2RX7 (PDB ID: 5U2H), and CASP1 (PDB ID:
3D6F) were selected on STRING via RCSB PDB (https://www.rcsb.org/) (accessed on 12
May 2021). Thus, the target proteins selected as .pdb format were converted into .pdbqt
format via Autodock (http://autodock.scripps.edu/) (accessed on 12 May 2021).

4.9. Preparation of Ligands for MDT

The ligand molecules were converted to .sdf from PubChem into .pdb format using
Pymol, and the ligand molecules were converted into .pdbqt format through Autodock.

4.10. Preparation of Positive Standard Ligands on the NLR Signaling Pathway for MDT

The number of two positive standard ligands on IL6 (PDB ID: 4NI9) antagonists, i.e.,
veratric acid (PubChem ID: 7121); the number of one positive ligand on MAPK1 antagonist
(PDB ID: 4IZ5), i.e., CU-Cpt 22 (PubChem ID: 71503400); the number of one positive
ligand on P2RX7 (PDB ID: 5U2H), i.e., KN-62 (PubChem ID: 5312126); the number of
three positive ligands on CASP1 (PDB ID: 3D6F), i.e., belnacasan (PubChem ID: 11398092),
mulberroside A (PubChem ID: 6443484), and Q-VD-Oph (PubChem ID: 24794416) were
selected to perform MDT.

http://www.swissadme.ch/
https://pubchem.ncbi.nlm.nih.gov/
http://sea.bkslab.org/
http://www.swisstargetprediction.ch/
http://db.idrblab.net/ttd/
https://www.omim.org/
http://www.interactivenn.net/
https://string-db.org/
https://www.rcsb.org/
http://autodock.scripps.edu/
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4.11. Preparation of Ligand Molecules for MDT

The ligand molecules were converted to .sdf from PubChem into .pdb format using
Pymol, and the ligand molecules were converted into .pdbqt format through Autodock.

4.12. Ligand-Protein Docking

The ligand molecules were docked with target proteins utilizing autodock4 by setting-
up 4 energy range and 8 exhaustiveness as default to obtain 10 different poses of ligand
molecules [68]. The active site’s grid box size was x = 40 Å, y = 40Å, and z = 40Å. The 2D
binding interactions were used with LigPlot+ v.2.2 (https://www.ebi.ac.uk/thornton-srv/
software/LigPlus/) (accessed on 14 May 2021) [69]. After docking, ligands of the lowest
binding energy (highest affinity) were selected to visualize the ligand-protein interaction
in Pymol.

4.13. Toxicological Properties Prediction by admetSAR

Toxicological properties of key ligands from ICLs were demonstrated utilizing the
admetSAR web-service tool (http://lmmd.ecust.edu.cn/admetsar1/predict/) (accessed on
14 May 2021) [70] because toxicity is a critical factor in developing new drugs. Hence, Ames
toxicity, carcinogenic properties, acute oral toxicity, and rat acute toxicity were predicted
by admetSAR.

5. Conclusions

In conclusion, we firstly analyzed the ‘multi-signaling pathways—multi-target proteins—
multi-compounds’ network of ICLs against obesity via MDT. As a result, we found a key sig-
naling pathway (NLR signaling pathway), three target proteins (IL6, MAPK1, and CASP1),
and four compounds (ethyl-α-d-glucopyranoside; 3, 5-dihydroxy-6-(hydroxymethyl)oxan-
2-one; 4-dehydroxy-N-(4,5-methylenedioxy-2 nitrobenzylidene) tyramine; and pentanoic
acid, 3-[(adamantan-1-ylmethyl)carbamoyl]-4-phenyl-). Furthermore, the potential four
compounds from ICLs have better affinity on each target protein than positive controls, sug-
gesting that the compounds might be a new agent against obesity. Therefore, our research
approach would be valuable for facilitating studies of herbal plants against obesity through
network pharmacology.
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Abbreviation

GnRH Gonadotropin- Releasing Hormone
ICLs Ilex cornuta leaves
IL17 Interleukin 17
Janus Kinase Signal Transducer and Activator of Transcription proteins: JAK-STAT
MAPK1 Mitogen-activated protein kinase 1
MDT Molecular Docking Test
NLR NOD-like receptor
OTPs Overlapping Target Proteins
ORTPs Obesity-Related Target Proteins
PhosphoInositide 3-Kinase—Protein kinase B: PI3K-AKT
PPI Protein–Protein Interaction
RAP1 Ras-proximate-1
SEA Similarity Ensemble Approach
SMILES Simplified Molecular Input Line Entry System
STC Signaling pathways -Target proteins-Compounds
STP SwissTargetPrediction
TNF Tumor Necrosis Factor
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