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Industry 4.0 is continually and progressively changing the landscape of manufacturing
throughout the world and across different industrial sectors. This movement is catalyzed by
the concurrence of three key drivers that, synergistically combined, create the conditions to
push forward the performance and effectiveness of plant operations, positively impacting
process efficiency, safety, the environmental fingerprint, and the economic outcome through
faster and better decision-making processes. These drivers are: the facilitated access to
unprecedented amounts of data (both structured and unstructured), new technological
developments (smart sensors, IoT, cloud storage, and high-performance computing), and a
new wave of advanced analytical solutions (machine learning, artificial intelligence, free
programming platforms, and commercial software). As happens in other activities, the key
drivers are also impacting Process Monitoring, creating the capability to handle complex
processes that generate “extreme data”, i.e., data collected at high sampling rates, possibly
asynchronously, in large amounts with a variety of structures and variable quality, arising
from different places across the value chain.

This Special Issue aims to bring together recent advances in the broad field of Ad-
vanced Process Monitoring for Industry 4.0, including all the activities related to fault
detection, diagnosis, and prognosis.

All process monitoring activities are critically dependent upon the capability to collect
informative data about the state of plant operations and equipment condition. Therefore,
new sensors are developed and deployed, transforming quality monitoring from an offline
activity conducted in the plants laboratories to a real-time activity made online, in the
process, enabling fast product release and decision making, with all the consequent benefits
on productivity, quality, inner logistics, and plant economy. Reyes et al., used spectral data
in the visible–near infrared (VIS–NIR) range to monitor a combustion process [1], while
Hotait et al., reported the use of piezoelectric sensors together with an advanced feature ex-
traction methodology, called AOC-OPTICS [2], for fast and automatic condition monitoring.

Batch processes are always challenging scenarios for process monitoring given their
intrinsic non-stationarity and natural tensorial arrangement of data (batch × variables
× time). These processes become even more difficult to handle when batch operations
take place in multiple phases, as covered by Palací-Lopez et al. [3], and show multiple
normal operation modes, as addressed by Zhao et al. [4]. Both studies make use of Latent
Variable Models as the analytical backbone to address batch modeling. The extreme case of
a multistep process (semiconductors) is also covered by Espadinha-Cruz et al. [5], where
quality control, monitoring, and diagnosis and other critical tasks are revised under the
general umbrella of data mining.

On the other hand, machine learning (ML) and artificial intelligence (AI) method-
ologies have also been increasingly brought to the process monitoring arena. The papers
by Xing Wu et al. [6], Xin Wu et al. [7], and Yumin Liu et al. [8] report applications of
convolutional neural networks (CNN) and recurrent neural networks (RNN) for process
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monitoring and diagnosis, exploring their ability to learn new data representations that
efficiently represent the normal operation conditions of the process.

The integration of existing knowledge about the processes for process monitoring and
diagnosis through digital twins, is also a current trend in Process Monitoring. Rato et al.,
present a framework where accurate models for the process common cause variation are
used to mitigate the scarcity of data for high-dimensional process monitoring, especially
during early monitoring periods, also enhancing the diagnosis activity once the fault is
detected [9]. On the other hand, de Menezes et al., use a steady-state model to perform
data reconciliation, an operation that is instrumental for the estimation of unmeasured
variables in the proposed online monitoring scheme, playing the role of a soft sensor, and
paving the way for the future adoption of an accurate digital twin [10].

The adaptation of Quality Engineering [11] and Six-Sigma [3] to the new types of
measurements, data structures, processes, and the growing analytical body of knowledge,
are opportunely covered in the contributions by Ramezani et al., and Palací-López et al.,
respectively. Similarly, Sader et al. [12] explored the use of modern methods of machine
learning to assist in the implementation of Failure Mode and Effect Analysis (FMEA), and
exemplify the proposed methodology in a dataset that includes a one-year historic of over
1500 failures with their respective description.

For all these valuable and insightful contributions, the Guest Editors are deeply
grateful to the authors and their teams. We hope this rich and diverse collection of
contributions fuel and inspire new developments on Statistical Process Monitoring and
related fields, keeping up with the accelerating pace of the technological progress, data
resources, and complexity of modern processes.

Finally, we would like to express our deepest gratitude and appreciation to the Section
Managing Editor, Ms. Shirley Wang, for all the continuous and diligent support throughout
all the phases of preparation of this Special Issue of Processes. We are also thankful to all the
reviewers for their unconditional generosity in the time and effort dedicated to improve all
the contributions with their knowledge, insights, and critical reasoning. The Special Issue
“Advanced Process Monitoring for Industry 4.0” is available at https://www.mdpi.com/
journal/processes/special_issues/Monitoring_Industry (accessed on 3 August 2021).
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