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Abstract: In batch processing, not only the characteristics of different phases are different, but also
there may be different characteristics between batches. These characteristics of different phases and
batches will have different effects on the final product quality. In order to enhance the safety of batch
processes, it is necessary to establish an appropriate monitoring system to monitor the production
process based on quality-related information. In this work, based on multi-phase and multi-mode
quality prediction, a new quality-analysis-based process-monitoring strategy is developed for batch
processes. Firstly, the time-slice models are established to determine the critical-to-quality phases.
Secondly, a multi-phase residual recursive model is established using each quality residual of the
phase mean models. Subsequently, a new process-monitoring strategy based on quality analysis
is proposed for a single mode. After that, multi-mode quality analysis is carried out to judge the
relevance between the historical modes and the new mode. Further, online quality prediction is
achieved applying the selected model based on multi-mode quality analysis, and an according
process-monitoring strategy is developed. The simulation results show the availability of this method
for multi-phase multi-mode batch processes.

Keywords: multi-phase residual recursive model; multi-mode model; quality prediction; pro-
cess monitoring

1. Introduction

Batch process products play an increasingly important role in modern human life. In
order to meet the ever-changing market demand of modern society, the safe and reliable
operation of batch processes and continuous and stable product quality have gradually
become the focus of attention in the processing industry [1,2]. The characteristics of batch
operation processes are more complex than that of continuous industrial processes and
have more abundant statistical characteristics. In order to enhance the safety of the batch
production process and its control system, it is urgent to establish a suitable process-
monitoring system to monitor the production process.

Currently, data-driven methods [3–5] of extracting information from process data
and modeling monitoring have become a hotspot in process-monitoring research. With
the advancement of sensor technology, almost all industrial objects are equipped with
different types of sensing devices. This results in a large amount of data being obtained
in an industrial process. The data-driven methods extract information hidden in data by
analyzing and mining collected industrial data, which may help reveal the operation mode
of the industrial process and trace the fault reasons. In recent years, data-driven methods
are continuously developed and perfected, batch process monitoring and fault diagnosis
technologies based on data-driven methods have increasingly become research hotspots of
people, and theories of the batch process monitoring and fault diagnosis technologies are
continuously and deeply developed.

Multivariate statistical analysis methods do not require the acquisition of process
mechanism knowledge; they only require the use of historical data to build models. These
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methods can effectively extract key information in data, eliminate redundancy and remark-
ably reduce data dimensionality so that the process running state can be directly displayed
in a two-dimensional statistical monitoring graph. Before the 1990s, researchers have gen-
erally simply treated batch processes as special continuous processes of limited duration,
with no theoretical system of research specifically directed to batch process monitoring.
Due to the essential difference of the characteristics of the batch process and the continuous
process, a satisfactory effect is difficult to obtain in the batch process.

Aiming at the three-dimensional data characteristics of the batch process, a trilinear
decomposition model can be established to directly investigate the three-dimensional
data structure [6]. The data are stored and analyzed by using a trilinear decomposition
model, and structural information of the data can be retained. In summary, there are six
different two-dimensional matrix unfolding modes [7], which mainly reflect the different
arrangement modes inside the data.

Nomikos [8–10] proposed multi-way principal components analysis (MPCA) and
multi-way partial least squares (MPLS) methods, innovatively extending the successful
application of multivariate statistical analysis methods to batch processes. Different in-
ternationally academic institutions and teams, including Wold professor [11] of Umea
University, English Martin professor [12] of Newcastle University, proposed their own
methodology, which facilitates the study of batch process monitoring. Corresponding
models for monitoring have been established based on the model under normal conditions.
When influenced by abnormal disturbances, the process variable correlations are changed,
thereby deviating from the laws and characteristics under normal conditions. Correspond-
ing multivariate statistics are calculated and compared with the monitoring control limits
defined in advance, and the occurrence of abnormal working conditions can be detected.

In the batch process, the multi-phase nature is another important nature. In recent
years, many scholars have conducted considerable research into process monitoring and
quality analysis of batch processes [13–15]. Most researches were carried out by establishing
different models to obtain different characteristics and dividing a cycle of a batch into
phases, due to the cognition that the correlation of variables in the same phase is similar,
and the correlation of variables in different phases is very different. Some scholars study the
characteristics of the phases, e.g., the problem of transitions between adjacent phases [16]
and the problem of non-uniform durations [17]. In addition, the scholars suggested that
phases contribute to the final quality together, and individual phase models should be
connected in some way during the modeling process. Therefore, a recursive quality
regression method aiming at the multi-phase characteristics of the batch process was
proposed [18], where the regression on the process variables in the current phase and the
residual quality obtained in the previous phase was carried out to extract important quality
information between the phase.

In addition, due to the influence of various factors, there are multi-mode characteristics
in the batch process. In the whole operation process, process changes in batch direction lead
to different process states and different process characteristics. In this way, monitoring and
quality prediction for only one process state may lead to inaccurate analysis and monitoring
results. In order to solve this problem, some scholars proposed to build an integrated
model that can include both the common model and the specific model [19]. However,
these methods barely evaluate the changes along the batch direction, in which models are
in general updated arbitrarily, decreasing the efficiency of the monitoring system, as well
as increasing the chance of introducing disturbances into the process model. Some scholars
have proposed a specific modeling method for a specific process state [20]. However, the
process variation along the batch direction may be too slow to be divided into several
states. In addition, in the batch production process, when a new mode is generated, the
corresponding model is built in the mode library and saved in the mode library. However,
the relationship between these modes is not analyzed and judged. As new modes are
generated one after another, all new modes must be saved, which makes the mode library
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larger and larger. Therefore, a quality prediction method based on the relationship between
modes is proposed to extract information from historical modes [21].

In recent years, monitoring of multiple characteristics of batch processes has also
been the direction of many scholars. A process-monitoring method based on multi-mode
Fisher discriminant analysis to solve the problem of multi-mode monitoring of batch
process was proposed [22], which overcomes the limitation of the single operation mode
assumption. Taking the whole batch trajectory as the research object, based on the dynamic
time warping method, the obtained data are automatically classified from the perspective
of data distribution to reflect the differences in batch direction. For the batch process with
multi-phase characteristics, a two-phase PLS regression model based on phase analysis
and different statistical analyses was proposed [23]. At the first level, multiple PLS models
are used to monitor a single point in time. At the second level, the final quality is predicted.
Through these two different levels of models, real-time monitoring and accurate quality
prediction are organically combined. Due to the calibration and modeling problems caused
by operation switching (or moving to different phases), a new evolutionary PLS method is
proposed, which can be used to predict intermediate quality measurement and to detect
process faults avoiding false positives [24].

In this work, both multi-phase quality analysis and multi-mode quality analysis are
conducted at the same time to develop a comprehensive process-monitoring strategy
based on the quality prediction of batch processes. The multi-phase and multi-mode batch
process concerned here involves variety in two directions. One is the multi-phase direction,
the other is the multi-mode direction, and the processing methods of the two directions
are different due to different process characteristics. In the multi-phase direction, the
phase residual recursive model is unitized to connect the contributions of the successive
phases on the final quality together, while in the multi-mode direction, the relationship
between the current mode and the historical mode is analyzed and extracted to obtain
more quality-related information for quality prediction. Firstly, the time-slice modeling
method and the goodness-of-fit index are used to analyze the influence of different phases
on the final quality and identify the critical-to-quality phases. Then, the phase mean model
is introduced to analyze the phase characteristics and monitor the phase based on quality
information. After that, single modes are analyzed, where the residual regression model of
each phase is established with the quality variables of the current phase and the quality
residual of the previous phase, and the current mode is predicted and monitored. In
addition, for the quality prediction and monitoring of multiple modes, it is emphasized
to extract the relationship between historical mode and new mode by between-mode
modeling. This model contains more modal quality-related information and can better
predict and monitor multiple modes. Finally, the strategy is applied to an injection molding
process to illustrate the effectiveness of the strategy.

The rest of this paper includes four parts: the proposed method is presented in
Section 2, including critical-to-quality phase identification, phase mean model, multi-phase
residual recursive modeling for a single mode, between-mode modeling for multiple modes
and model comparison and selection. In Section 3, the injection molding process is briefly
introduced, and the method used is illustrated through an example to obtain the results
and make a comparative analysis. At last, the conclusion is drawn.

2. Methodology
2.1. Critical-to-Quality Phase Identification Based on Time-Slice Model

In the batch process, there will be different process requirements in the whole opera-
tion process, causing obvious phase characteristics. The batch process can be divided into
several phases according to process variable relevance. Due to the phase characteristic,
there is no significant change in the correlation between process variables and quality
variables at different sampling times in the same phase; that is to say, the effect of process
operation behavior on quality is similar in the same phase. However, in different phases,
the influences of process variables on quality are different, and they show different statisti-
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cal relationships. Because of the above characteristics of batch processes, a phase that has a
significant contribution to the final quality is defined as the critical-to-quality phase. There
may be several critical-to-quality phases in the batch process. If production has multiple
quality variables, the critical-to-quality phases may be different or the same for different
quality variables, depending on the characteristics of the process. Therefore, it is important
to find out the critical-to-quality phases that contribute the most to the quality change.

Batch process data are generally represented by X(I × Jx × K), where I is the number
of batches, Jx is the number of process variables, and K is the sample times. The quality
data is generally represented by Y(I × Jy), where Jy is the number of measurement values.
The measurement values of all Jx variables at the sampling interval k (k = 1, . . . ,K) are
stored in Xk(I × Jx), which is called the kth time slice of Xk. The relationship between
process variables and quality variables at time interval k can be collected from matrices Xk
and Y. By applying PLS, the kth time-slice PLS model is realized.

Xk = TkPT
k + Ek

Y = UkQT
k + Fk

(1)

The previous model can be expressed by the regression model as:

^
Yk = XkBk (2)

Where Tk and Uk are the score matrices, Pk and Qk are the loading matrices, Ek and Fk

are the residual matrices, Bk is the regression parameter matrix, k = 1,2, . . . ,K, and
^
Yk is

the predicted quality. When considering a single quality variable y(I × 1), the regression
model can be simply expressed as:

^
yk = Xkβk (3)

βk is the regression parameter and
^
yk is the predicted quality at the current time.

In the regression model, the number of latent variables needs to be determined, and the
four-fold cross-validation method is used in this work [25,26].

In this paper, the index R2, which is used to describe the goodness of fit of the
regression model in the field of multivariable linear regression, is used to measure the
influence of each time slice on the final quality. Those time slices with high R2 are identified
to be critical to quality, and the phases with these time slices are identified as critical-to-
quality phases. The kth sampling time is defined. The prediction accuracy R2

k of the quality
prediction model for the quality index y is as follows:

R2
k =

I
∑

i=1
(ŷi,k − y)2

I
∑

i=1
(yi − y)2

(4)

where yi is the quality variable measurement value of the ith batch operation in the test
batch, ŷi,k is the model prediction value of the ith batch operation quality variable of the
predicted kth time slice, and y is the average value of the quality variable measurement
value of the test batch. The value range of R2

k is 0–1. When R2
k approaches 1, it indicates

that the accuracy of the quality prediction model is high, which indicates that the bigger
impact on the quality variables is in this phase. On the contrary, the smaller the R2

k is, the
smaller the impact on quality variables is. Therefore, by observing the R2

k size of different
phases, the critical-to-quality phases in the batch process can be determined.

2.2. Phase Mean Model

According to the characteristics of batch processes, the whole process can be divided
into several phases. There are obvious differences in the process variables in different
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phases, and the same phase can be almost considered to have similar process variables.
In this work, for the multi-phase and multi-mode quality analysis, it is supposed that
the characteristics along the time direction in each phase are constant. It is considered to
establish such a model that can represent the process variable relationships of the entire
phase. The phase mean model is achieved as follows.

First, the average variable matrix is calculated in phase c,

Xc =
Kc

∑
k=1

Xk,c/Kc (5)

where Kc is the data length of phase c. Xk,c is the data matrix of the process variables at the
k moment in phase c. Thus, Xc is the average variable matrix of phase c.

Within phase c, phase regression models can be built using the PLS method,

Xc = TcPT
c + Ec

Y = UcQT
c + Fc

(6)

The previous model can be expressed by the regression form as:

^
Yc = XcBc (7)

where the concepts of Tc, Uc, Pc, Ec, Fc, and Bc are the same as those of the time-slice model,

except that each matrix is with the meaning of the phase mean.
^
Yc is the predicted quality

of the cth phase mean model. When a single quality variable y(I × 1) is considered, the
regression model can be simply expressed as:

^
yc = Xcβc (8)

where βc is the regression parameter, and at present Tc is a matrix of the dimension I × H,
Uc is a matrix of the dimension I × 1.

For process monitoring, Hotelling-T2 and SPE statistics are calculated in systematic
and residual subspaces, respectively [8,27].

Tc
2 = xc

TRc(
Tc

TTc

I − 1
)
−1

Rc
Txc (9)

SPEc = ‖x̃c‖2 = ‖(IJx − PcRc
T)xc‖

2
(10)

where x̃c is the residual vector; Rc = Wc(Pc
TWc)

−1; Wc is the weight matrix; δTc2(α) is the
control limit with α confidence of Tc

2; and SPEc(α) is the α confidence limit of SPE. The
detailed properties and calculations can be found in reference [28].

The corresponding control limits are:

δTc2(α) =
H(I2 − 1)
I(I − H)

Fcα(H, I − H) (11)

SPEc(α) = gcχ2
h,α (12)

where Fcα(H, I − H) is the F distribution with α confidence and H and I − H degrees of
freedom, and H is the number of retained latent variables; gcχ2

h,α is the χ2 distribution with
the same confidence level of α and the proportional coefficient of gc = s/2µ; h = 2µ2/s;
and µ is the mean value of SPE; s is the variance of SPE.



Processes 2021, 9, 1321 6 of 21

2.3. Multi-Phase Residual Recursive Modeling for Single Mode

In the phase-based PLS method, a phase regression model is established between
the process variables and the final quality variables in each phase. It is assumed that in
each phase, the model can capture the relationship between process variables and final
quality variables. However, these individual models are not related to each other, and
each phase seems to contribute to the final quality individually. This is in contradiction
with the nature of the multi-phase batch process; that is, multi-phase acts on the final
quality together in sequence. In addition, it should be noted that in the multi-phase batch
process, the former phase may affect the later phase and the final process quality. In the
current phase of quality regression modeling, the influence of the previous phases should
be considered. Therefore, a recursive quality regression method for the multi-phase batch
process is proposed, which uses the quality residuals of the previous phase model to
establish the current phase regression model. All phases that are critical to quality are
correlated by phase-based recursive regression residuals so that they together contribute to
the final quality.

The establishment of a multi-phase residual recursive model is shown in Figure 1.
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For a single phase, each phase is modeled by the regression between the average
variable matrix Xc and the current quality residual fc, then the regression parameter βc and

the residual prediction quantity
^
fc are obtained,

fc = Xcβc + f∗
^
fc = Xcβc

(13)

The quality residual in the first phase f1 is the quality measurement itself. The residual
of the second phase is the deviation between the prediction quality of the first phase and
the residual of the first phase, and so on.

The current phase quality prediction results are the sum of the completed phase and
the current phase quality residual prediction,

^
yc =

c

∑
i=1

^
fi, c = 1, 2, . . . , C (14)
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The final online quality prediction results are as follows:

^
yk =



Xk,c1β1 k ∈ c1
^
f1 + Xk ,c2β2 k ∈ c2
^
f1 +

^
f2 + Xk ,c3β3 k ∈ c3

^
f1 +

^
f2 +

^
f3 + Xk ,c4β4 k ∈ c4

(15)

where c1, . . . , c4 are four phases, respectively, and Xk,c1 , . . . , Xk,c4 are the phase mean
variable matrices.

The Hotelling-T2 and SPE statistics for the current time k are:

Tk
2 = xk

TRk(
Tk

TTk
I − 1

)
−1

Rk
Txk (16)

SPEk = ‖x̃k‖2 = ‖(IJx − PkRk
T)xk‖

2
(17)

where x̃k is the residual vector at the current time.
The corresponding control limits are:

δTk
2(α) =

H(I2 − 1)
I(I − H)

Fkα(H, I − H) (18)

SPEk(α) = gkχ2
h,α (19)

where Fkα(H, I − H) is the F distribution with α confidence and H and I − H degrees of
freedom, and H is the number of retained latent variables; gkχ2

h,α is the χ2 distribution with
the same confidence level of α and the proportional coefficient of gk = s/2µ; h = 2µ2/s;
and µ is the mean value of SPE; s is the variance of SPE.

2.4. Between-Mode Modeling for Multiple Modes

The multi-phase problem has been addressed in the previous part; thus, in this part,
the multi-mode problem is the key interesting issue. While it does not mean the multi-phase
problem is not considered any longer and without a special statement, the methodology
below is proposed based on the above multi-phase analysis.

To solve the multi-mode problem, the main idea is to extract the relationship between
the historical modes and the new mode. This proposed model contains more modal
information and can better predict and monitor multiple modes. The framework of this
section is shown in Figure 2. The model is established not only based on the new mode but
also on the historical modes in the modal library. Firstly, the process variables and quality
variables in historical modes are regressed and analyzed using the single-mode model.
Secondly, the new mode process variables are applied to those single-mode models of
historical modes, and the assumed predicted qualities of the new mode are obtained. Then,
the regression analysis is carried out on the assumed predicted qualities and the final actual
quality, obtaining the between-mode model. Finally, by applying the between-mode model,
the final prediction quality is obtained. The details of between-mode quality regression
modeling are introduced as follows.
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Within phase c, for the new mode with the normalized time-slice process variables,
Xt,k(It × Jx), and the quality variable yt, process variables are first applied to the regression
models obtained from the historical modes to obtain the assumed quality predictions,

^
yt,m,k=Xt,kβm,c (20)

where m is the number of the historical modes, m = 1,2, . . . ,M, and t represents the new

mode.
^
yt,m,k are the assumed prediction quality. βm,c are the regression parameters of

mode m of phase c for the historical modes. By obtaining the assumed quality predictions,
the quality information of historical modes is shared by the new mode. Further, the quality
information of historical modes will be judged and extracted by the next regression.

Then, the assumed quality predictions will be regressed with the quality data of
the new mode. All these assumed predictions of the historical modes can comprise a

new matrix Zt,k(It ×M), Zt,k =

[
^
yt,1,k, . . . ,

^
yt,m,k, . . . ,

^
yt,M,k

]
. Then, the kth time-slice PLS

regression model is built between Zt,k and yt as follows [29]:

Zt,k = Tt,kPT
t,k + Et,k

yt = Ut,kQT
t,k + Ft,k

(21)

where Tt,k and Ut,k are the score matrices of the new mode, Pt,k and Qt,k are the loading
matrices of the new mode, and Et,k and Ft,k are the residual matrices of the new mode.
Novel predictions are obtained,

^
y
∗
t,k=Zt,kαt,k (22)

where
^
y
∗
t,k shows this new regression relationship of the between-mode relationship analy-

sis, k = 1,2, . . . ,Kc, and αt,k is the regression parameter of the kth time-slice model.
The regression parameters of phase c can be obtained from the regression parameters

of the time-slice model,

αt,c =
1

Kc

Kc

∑
k=1

αt,k (23)

where Kc is the number of the time intervals within phase c. Then the predictions,
^
y
∗
t,c,k,

based on the regression parameter of the whole phase, αt,c, are obtained,

^
y
∗
t,c,k=Zt,kαt,c (24)
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Then for phase c, corresponding coefficients can be obtained:

Zt,c =
1

Kc

Kc

∑
k=1

Zt,k (25)

Tt,c =
1

Kc

Kc

∑
k=1

Tt,k (26)

Pt,c =
1

Kc

Kc

∑
k=1

Pt,k (27)

Wt,c =
1

Kc

Kc

∑
k=1

Wt,k (28)

Rt,c = Wt,c(Pt,cWt,c)
−1 (29)

where Kc is the number of time intervals in phase c, k = 1,2, . . . ,Kc.
In online monitoring, the score matrix Tt,c, the load matrix Pt,c, and the weight matrix

Wt,c are obtained according to the offline model. The online T2 statistics and online SPE
statistics are calculated:

Online T2 statistics:

Tk
2 = zk

TRt,c(
Tt,c

TTt,c

I − 1
)
−1

Rt,c
Tzk (30)

Online SPE statistics:

SPEk = ‖z̃k‖2 = ‖(IM − Pt,cRt,c
T)zk‖

2
(31)

where Tk
2 and SPEk are the T2 and SPE statistics calculated at the kth time interval,

respectively, and z̃k is the residual vector of the kth time interval.
The corresponding control limits are:

δTk
2(α) =

H(I2 − 1)
I(I − H)

Fkα(H, I − H) (32)

SPEk(α) = gkχ2
h,α (33)

where Fkα(H, I − H) is the F distribution with α confidence and H and I − H degrees of
freedom, and H is the number of retained latent variables; gkχ2

h,α is the χ2 distribution with
the same confidence level of α and the proportional coefficient of gk = s/2µ; h = 2µ2/s;µ
is the mean value of SPE; and s is the variance of SPE.

2.5. Model Comparison and Selection

In this section, two models are compared, which are the single-mode model and the
between-mode model. To be clear, the single-mode model is introduced in Section 2.3. This
model only considers one mode, and the quality is forecasted and monitored in its own
mode on the basis of the critical-to-quality phase residual recursive analysis. The other
model is developed in Section 2.4, and the between-mode model, which is established
based on the historical modes and the new mode to obtain the assumed quality predictions
and involve the quality information of the historical modes in the regression model for the
new mode. It should be noticed that in both models, the multi-phase issue is addressed
in the same way, by the residual recursive modeling, for the fair comparison as well as
strategy consistency.



Processes 2021, 9, 1321 10 of 21

First, for the new batches Xnew(Inew × Jx), the single-mode quality predictions
^
ynew,t,m,k

are gained at kth time. The multi-mode quality predictions
^
y
∗
new,t,c,k are gained at kth time.

^
ynew,t,c,k=Xnewβt,c

^
ynew,t,m,k=Xnewβm,c

(34)

Znew,t,k = [
^
ynew,t,1,k, . . . ,

^
ynew,t,m,k, . . . ,

^
ynew,t,M,k]

^
y
∗
new,t,c,k = Znew,t,kαt,c

(35)

Then, the root-mean-square error (RMSE) values are obtained,

RMSE =

√√√√ 1
Inew

Inew

∑
i=1

(ynew,t,i −
^
ynew,t,i,k)

2
(36)

RMSE =

√√√√ 1
Inew

Inew

∑
i=1

(ynew,t,i −
^
y
∗
new,t,i,k)

2
(37)

The RMSE values can well reflect the precision of prediction. The smaller the RMSE
values, the higher the prediction accuracy.

3. Illustration and Discussions
3.1. Process Description

Injection molding technology is one of the important means of plastic processing, and
it is also a typical batch process. In order to accurately predict the quality of products, it
is necessary to know enough about the injection molding process. A complete injection
molding process is mainly composed of mold closing, injection, packing-holding, plasti-
cizing, cooling, mold opening, part ejection, and other processes. There are four phases
that are the most important operation phases to determine the quality of parts: the first
one is the injection phase, which injects the molten plastic into the mold; secondly, in the
packing-holding phase, the packaging materials are used under a certain pressure; then,
in the plasticizing phase, the material is transported forward, plasticized and melted, and
then transferred to viscous fluid for storage; the final phase is the cooling phase, where
the plastic is cooled in the mold until the part becomes sufficiently rigid for ejection. The
process variables that have an important influence on the final quality can be read online
by high-precision sensors.

In this work, high-density polyethylene (HDPE) was used as the injection material.
The quality index analyzed in this experiment is the weight of injection molded parts.
According to the different settings of packing pressure (PP) and barrel temperature (BT),
the experimental batches can be divided into five different modes. The experimental
conditions are shown in Table 1. The process data of each mode is stored in X (23 × 11 ×
525). The quality data of each mode is stored in y (23 × 1). The data used in the modeling
process are all real data obtained from experiments.

Table 1. Different operation modes.

Modes PP/Bar BT/◦C

Mode 1 25 180
Mode 2 35 180
Mode 3 25 200
Mode 4 30 200
Mode 5 35 200
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3.2. Critical-to-Quality Phase Identification

In the injection molding process, different phases have different effects on the quality
of products. For example, in the injection phase, the main variables affecting the final
product weight are the injection speed and the barrel temperature. In general, the higher
the barrel temperature is, the lower the product weight is. The faster the injection rate
increases, the more melt injection and the greater the product weight. In addition, the
pressure variables (such as the nozzle pressure, the cylinder pressure), the screw stroke, the
injection speed, and the barrel temperature are positively correlated with the sputtering
quality of injection products. That is to say, the faster the injection speed, the higher the
pressure and the temperature are, and the more likely the sputtering phenomenon will
appear in the intermittent operation. In the packing-holding phase, the weight of the
injection molded part is mainly determined by the nozzle pressure, the cylinder pressure,
and the cavity pressure. Two temperature variables, the cavity temperature and the barrel
temperature, also affect the weight of the product. The lower the temperature, the greater
the weight.

Taking mode 3 as an example, the critical-to-quality phase analysis is carried out.
There are 23 batches in mode 3. A total of 18 train batches are selected as the prediction
batches to analyze the phase characteristics. The R2

k and the phase mean of R2
k are shown

in Figure 3. It can be seen from the figure that the R2
k values of the injection phase and the

packing-holding phase are larger, which means these two phases have greater impacts on
the final prediction quality than other phases.
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Figure 3. R2
k contribution rate of the different batches in mode 3.

The phase mean value of R2
k of the four phases under three different modes is shown

in Table 2.

Table 2. Phase mean value R2
k of the different modes and different phases.

Phases Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mean

Injection phase 0.4567 0.7867 0.7161 0.8219 0.7643 0.7091
Packing-holding phase 0.4013 0.7500 0.6836 0.8234 0.7801 0.6877

Plasticizing phase 0.3893 0.7175 0.6214 0.8058 0.7839 0.6636
Cooling phase 0.3407 0.6415 0.5510 0.8002 0.8075 0.6282

According to the data in the above table, for mode 1, mode 2, mode 3, and mode 4, the
phase mean values of R2

k of the injection phase and the packing-holding phase are greater
than the phase mean values of R2

k of the plasticizing phase and the cooling phase. For
mode 5, the phase mean value of R2

k of the cooling phase is the largest. Based on the mean
R2

k , the injection phase and the packing-holding phase are selected as the critical-to-quality
phases for subsequent monitoring and analysis.
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3.3. Multi-Phase Monitoring for Single Mode

In this part, the single-mode model is adopted for quality prediction and process
monitoring. The first 18 batches of mode 3 are selected for modeling, and the last 5 batches
of mode 3 are tested. According to the four-fold cross-validation method, in the modeling
of the injection molding phase, the number of reserved latent variables of the traditional
method and the proposed method is four. In the packing-holding phase, the number of
latent variables of the traditional method is three, while the number of latent variables
of the proposed method is two. The confidence level of α is set to 0.99. The simulation
result of the predicted quality of one test batch is shown in Figure 4 and compared with
the traditional partial multi-phase least squares method [30], in which for each phase, one
single model is built for quality prediction. The mean RMSE predicted for the five test
batches under different prediction methods are shown in Table 3. It can be seen from
Table 3 that the mean RMSE predicted by the traditional method is 0.0702, while the mean
RMSE predicted by the proposed method is 0.0632, which indicates that the proposed
recursive method of phase residuals shows a more accurate prediction effect. The results
of monitoring of the first test batch are shown in Figures 5 and 6. Because the traditional
method also divides the batch process into four phases, in each phase, the quality is directly
predicted and monitored, and in the first phase the proposed method regards the actual
quality as the residual of the first phase, so the prediction and monitoring effects of the
first phase, namely the injection phase, of the traditional method and proposed method
is the same. The monitoring results of the injection phase are shown in Figure 5. It can
be seen that T2 and SPE are not beyond the control limits. In Figure 6, the monitoring
results of the packing-holding phase are shown. It can be seen that T2 and SPE of both the
traditional method and the proposed method are not beyond their respective control limits.
This shows that the proposed modeling method based on a single mode can monitor the
corresponding test batches.
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Table 3. RMSE of the different prediction modes in single-mode prediction.

Prediction Modes Mode 3 Mode 1

Traditional method 0.0702 0.1398
Proposed method 0.0632 0.1154
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Figure 6. Single-mode online monitoring of packing-holding phase of mode 3.

In addition, batches from mode 1 are tested using the monitoring model built based
on mode 3; that is, the first 18 batches of mode 3 are selected for modeling, and 5 batches of
mode 1 are tested. The results of each phase of one batch of five test batches in mode 1 are
displayed. The quality prediction result is shown in Figure 7 and compared with that of the
traditional partial least squares method. The mean RMSE predicted for the five test batches
under different prediction methods are shown in Table 3. The mean RMSE predicted by
the traditional method is 0.1398, while the mean RMSE predicted by the proposed method
is 0.1154, which indicates that the proposed recursive method of phase residuals shows a
more accurate prediction effect. The monitoring results of the injection phase of mode 1 are
shown in Figure 8. It can be seen that T2 statistics do not exceed the control limit, but SPE
statistics have exceeded the limit. The monitoring results of mode 1 in the packing-holding
phase are shown in Figure 9. It can be seen that SPE statistics of the proposed method have
exceeded the control limits in the beginning part. However, SPE statistics of the traditional
method do not exceed the control limit. So the proposed method can distinguish this batch
of mode 1 and is better than the traditional method. Thus, when a single mode is used for
modeling, the other modes can be distinguished by the proposed method.

In order to compare the prediction effect of different modes and different methods
under the single-mode modeling, RMSE of prediction results of five test batches of mode 3
and mode 1 are calculated respectively on the basis of the model of mode 3, as shown in
Table 3.
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Figure 7. Single-mode online prediction of mode 1.
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Figure 8. Single-mode online monitoring of injection phase of mode 1.
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Figure 9. Single-mode online monitoring of packing-holding phase of mode 1.

It can be seen from the above table that in the single-mode modeling and prediction,
the prediction effect of the test mode, which is the same as the modeling mode, is better
than that of other test modes. In addition, according to the comparison of different methods,
it can be concluded that the prediction effect of the proposed method is more accurate than
that of the traditional method.

In the injection molding process, there are two main faults. One is material disturbance.
A small amount of polypropylene (PP) is mixed into the original material HDPE. Because
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the viscosity of PP is higher than that of HDPE, higher heat will be generated in the
operation process, resulting in the melt temperature in the nozzle being higher than the
normal state. The second is the sensor fault. Due to the sensor fault, no data can be detected,
resulting in a fault in the process.

First, a faulty batch caused by material disturbance is selected for monitoring, where
the temperature variable is increased by 5 ◦C at the 60th sampling point. Therefore,
according to the actual process situation, a batch is selected in the test batch of mode
3, and the temperature variable is increased by 5 ◦C at the 60th sampling point. The
monitoring effects of the traditional method and the proposed method are shown in
Figure 10. Compared with the traditional method, the monitoring effect of the proposed
method is better since the statistics will rise rapidly when the fault occurs, especially for
the T2 statistics.
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Figure 10. Single-mode online monitoring of material disturbance fault.

For the sensor fault, a test batch with the pressure variable removed after the 150th
sampling point is monitored. The T2 and SPE monitoring effects of the traditional method
and the proposed method of the single-mode model are shown in Figure 11. Compared
with the traditional method, the statistics of the proposed method rise more rapidly, and
the amplitudes are relatively large.
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Figure 11. Single-mode online monitoring of sensor fault.

3.4. Multi-Mode Monitoring

For the between-mode modeling analysis, 18 batches in mode 1, mode 2, mode 4, and
mode 5 are selected respectively as historical modes. Mode 3 with 18 batches is used as the
new mode for modeling. The test data are constructed by the five test batches of mode 3.
According to the four-fold cross-validation method, in each phase of modeling, the number
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of reserved latent variables of the traditional method and the proposed method is two. The
confidence level of α is set to 0.99.

In order to illustrate the advantages of the method proposed in this paper, it is
compared with the traditional multi-mode and multi-phase methods, in which individual
models are built for a single phase within a single mode. One batch of five test batches
in mode 3 is selected to show the results. The simulation results of the prediction are
shown in Figure 12. The mean RMSE predicted for the five test batches under different
prediction methods are shown in Table 4. The mean RMSE predicted of mode 3 by the
traditional method is 0.0496, while the mean RMSE predicted by the proposed method is
0.0458, which indicates that the proposed method shows a more accurate prediction effect.
The monitoring results of the injection phase and the packing-holding phase of the first
test batch of mode 3 are shown in Figures 13 and 14, respectively. In Figure 13, it can be
seen that T2 and SPE do not exceed the control limits in the injection phase. In Figure 14,
in the packing-holding phase, T2 and SPE do not exceed their respective control limits.
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Table 4. RMSE of different prediction method.

Prediction Model Prediction Method Mode 3 Mode 1

Single-mode model Traditional method 0.0702 0.1398
Proposed method 0.0632 0.1154

Between-mode model
Traditional method 0.0496 0.1010
Proposed method 0.0458 0.0876
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Figure 13. Multi-mode online monitoring of injection phase of mode 3.
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Figure 14. Multi-mode online monitoring of packing-holding phase of mode 3.

In addition, in order to illustrate the monitoring of new test modes by the multi-
phase multi-mode model, 18 batches of mode 2, mode 3, mode 4, and mode 5 are selected
respectively as the historical modes for each phase, and the historical regression parameters
are obtained. Mode 3 with 18 batches is used as the new mode for modeling to predict
and monitor the new test batches of mode 1. The results of each phase of one batch of
five test batches in mode 1 are displayed. The simulation results of quality prediction
are shown in Figure 15. The mean RMSE predicted of mode 1 for the five test batches
under different prediction methods are shown in Table 4. The mean RMSE predicted by
the traditional method is 0.1010, while the mean RMSE predicted by the proposed method
is 0.0876, which indicates that the proposed method shows a more accurate prediction
effect. Figures 16 and 17, respectively, show the monitoring results of the injection phase
and the packing-holding phase of one test batch of mode 1. Because the historical mode
and training data do not contain the information of mode 1, when monitoring, T2 and SPE
in the injection phase exceed the control limit, which will lead to an alarm.
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Figure 17. Multi-mode online monitoring of packing-holding phase of mode 1.

In order to compare the prediction results of the single-mode model and the between-
mode model of different prediction methods, RMSE values of five test batches in mode 3
and mode 1 are used for judgment, as shown in Table 4.

According to the simulation results, it can be concluded that the between-mode model
extracts the related information in the historical modes, so it contains more necessary
information. It can be seen from Table 4 that the prediction results of the between-mode
model are better than those of the single-mode model. Comparing the RMSE of the
traditional method and the proposed method, it can be seen that the proposed method
is more accurate for quality prediction. From the monitoring figures, it can be seen that
if part of the mode information has been included in the modeling process, the statistics
do not exceed the control limit, leading to a suitable monitoring effect. In contrast, if
the modeling process does not contain the mode information, the statistics will exceed
the control limits. To sum up, compared with single-mode modeling, the between-mode
modeling contains more historical modal information, leading to better prediction, and
can achieve the purpose of information selecting for monitoring. Therefore, for the current
modes modeling, the between-mode modeling method can be selected.

For faulty batch monitoring using the between-mode modeling, the faulty batch data
is consistent with the single-mode modeling faulty batch data. First, the faulty batch caused
by material disturbance is monitored. The monitoring results of the traditional method
and the proposed method are shown in Figure 18. Both the proposed method and the
traditional method can detect the fault.
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Figure 18. Multi-mode online monitoring of material disturbance fault.

Secondly, the monitoring effects of the traditional method and the proposed method
for the sensor fault are shown in Figure 19. Compared with the traditional method, the
statistics of the proposed method rise more sharply, and the amplitudes are relatively large.
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Figure 19. Multi-mode online monitoring of sensor fault.

4. Conclusions

In this work, based on the analysis of multi-phase multi-mode batch processes, a
combination of the multi-phase quality residual recursion model for multiple phases
and the between-mode model for multiple modes is proposed, and according process-
monitoring strategies based on quality analysis are developed. Firstly, the critical-to-quality
phases are identified and selected based on the influence of different phases on the final
quality of the batch process. Then, the phase mean model is established, and based on the
multi-phase quality residual recursive model, the quality predictions of critical-to-quality
phases are obtained, and those phases are monitored. On the other hand, the between-
mode model is used to analyzes the regression relationship between the process variables
and the quality of the new mode through the historical modes, and online monitoring is
carried out on this basis. Through the simulation of the experimental data of an injection
molding process, it is proved that due to better quality predictions, the proposed strategy
can provide better process-monitoring results for multi-phase multi-mode batch processes.

However, the experimental data used in this paper are all processed so that the
length of the same phase of different batches is equal, which is often difficult to achieve
in the actual industry due to various reasons, such as the influence of climate, the quality
difference of raw materials, the data acquisition system based on a non-time coordinate, etc.
In order to solve this problem, the effect of this method on the data of the batch process with
unequal data lengths should be considered. For this, further research will be conducted in
the future.
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