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Abstract: Traditional multivariate statistical methods, which are often used to monitor stationary
processes, are not applicable to nonstationary processes. Cointegration analysis (CA) is considered
an effective method to deal with nonstationary variables. If there is a cointegration relationship
among the nonstationary series in the system, it indicates that a stable long-term dynamic equilibrium
relationship exists among these variables. However, due to the complexity of modern industrial
processes, there are nonlinear relations between variables, which are not considered by the tradi-
tional linear cointegration theory. Alternating conditional expectation (ACE) can perform nonlinear
transformation on these variables to maximize the linear correlation of the transformed variables. It
will be helpful to deal with the nonlinear relations by modeling with transformed variables. In this
work, a new monitoring strategy based on ACE and CA is proposed. The data are first transformed
by an ACE algorithm, CA is performed after that, and then monitoring statistics are calculated to
determine whether the system is faulty. The strategy is applied to the monitoring of a simulation case
and a catalytic reforming unit in a petrochemical company. The results show that the strategy can
realize the monitoring of nonstationary process, with a higher fault detection rate and a lower false
alarm rate compared with the monitoring strategy based on traditional cointegration theory.

Keywords: nonlinear transformation; actual industrial process; long-term equilibrium trend

1. Introduction

With the increasing scale and complexity of the modern production industry, the prob-
ability of system fault also increases, which may cause economic losses or even major safety
incidents. Therefore, it is particularly necessary to monitor the production process. Due
to the wide application of distributed control system (DCS), a large number of industrial
process data have been recorded [1,2], and data-driven process monitoring methods have
developed rapidly with the application of computer technology and artificial intelligence
technology in process monitoring. The characteristics of historical data can be extracted by
data-driven monitoring methods without detailed modeling of the internal mechanism of
the process.

As a traditional data-driven method, multivariate statistical process monitoring
(MSPM) has been widely used in the monitoring of stationary processes. The high-
dimensional samples are projected into the low-dimensional subspace through MSPM, and
the monitoring statistics in the low-dimensional subspace are calculated to monitor the
process operation status [3].

Among the methods based on multivariate statistics, principal components analysis
(PCA) is one of the classical algorithms. The covariance matrix of the process data set is
calculated to obtain the eigenvector of the matrix, so as to determine the direction of the
reduced dimension projection [4]. Partial least squares (PLS) is similar to PCA. The basic
idea of PLS is to establish a small number of input and output comprehensive variables, so
as to reflect the change information contained in the original variables more intensively,
and then a linear regression model is established [5]. The square prediction error (SPE)

Processes 2022, 10, 2003. https://doi.org/10.3390/pr10102003 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr10102003
https://doi.org/10.3390/pr10102003
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0001-9417-5829
https://orcid.org/0000-0003-4027-3751
https://doi.org/10.3390/pr10102003
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr10102003?type=check_update&version=2


Processes 2022, 10, 2003 2 of 17

and Hotelling’s statistics (T2) are calculated to achieve process monitoring in these two
methods [6]. However, it is usually assumed in traditional MSPM that the relationship
among process variables is linear and variables are stationary. Dynamic and nonstationary
characteristics in the process are not taken into account, which refers to the autocorrelation
and time-varying characteristics of variables. The abnormal deviations at an early stage
of process faults could be buried in these nonstationary trends, and cannot be effectively
detected in time [7]. Therefore, several new monitoring methods are proposed for the
complex characteristics of the process.

In order to deal with the dynamic characteristics of the process, Ku proposed dynamic
principal components analysis (DPCA) on the basis of PCA [8]. The time-lagged variables
of the original data were extended to reflect the dynamic relationship among variables.
However, Rato [9] pointed out that the principal components extracted by DPCA still
retain strong autocorrelation, which result in reduced monitoring performance of T2 and
SPE. A common way to deal with the nonstationary process is to make several differences
on the nonstationary variables to obtain the stationary variables and then establish the
monitoring model. The autoregressive integrated moving average model (ARIMA) was
first proposed by Box and Jenkins [10], whose basic idea is to analyze the characteristics of
autocorrelation and partial autocorrelation functions of stationary series after difference,
and the parameters of the model are calculated to test the effectiveness of the model to
predict the future time series. However, the dynamic information of the process is lost after
the difference, which makes the monitoring model less effective.

Cointegration analysis (CA) was first proposed by Engle to deal with nonstationary
economic variables [11]. Hendry proposed the error correction model (ECM) in 1978,
through which the nonstationary series are converted into stationary series without dif-
ference modeling. Granger proposed the relationship between cointegration and ECM in
1981 [12]. In 1987, Engle and Granger integrated the vector autoregressive model (VAR),
ECM and cointegration theory to form the Granger representation theorem. Through this
theory, the advantages of short-term and long-term models in time series analysis are
combined, which provides a better solution for the modeling of nonstationary time series.
Due to the internal physical and chemical mechanism of modern industrial process, there
is a long-term dynamic equilibrium relationship among variables, which can be handled
by cointegration theory. Therefore, CA has been widely used in the industrial field in
recent years. Chen applied CA to the industrial field for the first time and introduced the
reduced-order model diagnosis method to isolate the system fault. The simulation example
in the fluid catalytic cracking unit (FCCU) system showed that cointegration has a good
prospect in the application of condition monitoring and fault diagnosis for engineering
systems [13].

Xu revealed the shortcomings of the monitoring strategy based on the traditional
unit root test method which is insensitive to some system faults and the limitations of the
reduced order cointegration model method through some examples, and put forward the
method of using the unit root of structural mutation and the Gregory–Hansen cointegration
test to carry out system condition monitoring and fault diagnosis. The results showed that
the deficiencies of the ADF test were remedied and the variables containing fault informa-
tion can be directly determined [14]. Yu proposed an adaptive monitoring scheme based
on recursive CA to address the issues that when the cointegration relationship changes, the
operation status of future nonstationary process could not be reflected accurately by the
previous CA. Three monitoring statistics were developed to reflect the operation status of
the industrial process, and experimental results of two real industrial processes showed
that the adaptive monitoring strategy based on recursive CA could effectively adapt to
normal process changes without frequent model updating [15]. A new monitoring index
that contains multiple order moments was proposed by Wen [16] to capture different statis-
tical features of the stationary data set. The results showed that the use of multiple order
moments as a monitoring index based on cointegration analysis can provide early alarms
for abnormal conditions and can effectively identify normal changes and abnormalities.
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In simple terms, if a linear combination of a group of nonstationary time series is sta-
tionary, it means that linear cointegration exists in the time series. However, the traditional
linear cointegration model is not sensitive enough to some faults when the relationship of
most industrial process variables is nonlinear, which should be considered when establish-
ing the monitoring model.

Alternating conditional expectation (ACE) was proposed by Breiman [17] and im-
proved by Xue [18] through replacing the conditional expectation calculation of finite data
sets with a data smoothing technique called Supermoore. The basic principle of ACE is
to transform the dependent variable and the independent variable to maximize the linear
correlation between the transformed dependent variable and the independent variable.

Zhang [19] applied it to answer the question that if the sequences Yt and Xt are non-
stationary and non-cointegrated, then under what conditions the cointegration relationship
exists between the nonlinear transformation f (Yt) and g(Xt). He pointed out that it is not
necessary to consider whether there is a cointegration relationship between the transformed
sequence f (Yt) and g(Xt) any more if there is a cointegration relationship identified be-
tween Yt and Xt. In such a case, the theory of linear cointegration can perform well. On
the contrary, if there is no cointegration relationship between Yt and Xt, the existing linear
cointegration theory will no longer be applicable. In this case, the establishment of the
structural model of the transformed sequence f (Yt) and g(Xt) will broaden the application
scope of the cointegration theory.

Based on above discussion, a new monitoring strategy is proposed in this paper. An
ACE algorithm is used to transform historical data to maximize the linear correlation be-
tween variables, then CA is used to analyze the cointegration relationship among variables
and establish the cointegration model, and finally the statistics are calculated to monitor
the process. The strategy is applied to the monitoring of a simulation case and a catalytic
reforming unit in a petrochemical company. The results show that this method can realize
the monitoring of nonstationary process and find the equilibrium relationship which cannot
be found by the traditional cointegration method, and it can improve the sensitivity of the
monitoring model.

The rest of this paper is organized as follows: the theories and methods used in this
paper are introduced in Section 2. The detailed steps of the method proposed in this paper
are introduced in Section 3. Three cases are used to verify the effectiveness of the proposed
method in Section 4, including two simulation cases and a real industrial case. Finally, the
paper is concluded in Section 5.

2. Theory and Method
2.1. Difference and Unit Root Test

If a nonstationary series becomes stationary by differencing it d times, it is called
integrated of order d, which can be also represented as: X ∼ I(d). When d = 1, the
difference process is called unit root process. In this paper, we only discuss the case of
d = 1 as most nonstationary signals can be considered as the 1st order cointegration, if
linear cointegration exists. A unit root test can be used to determine whether a time series
is consistent with a unit root process.

A popular tool to test whether a time series is stationary is Augmented Dickey–Fuller
(ADF) [20]. An autoregressive model can be written as the following form:

yt = a1yt−1 + a2yt−2 + · · ·+ apyt−p + ut, (1)

where p is the lag order, ut is the random part of a sequence. The characteristic Equation of
the above formula is:

λp − a1λp−1 − · · · − ap = 0, (2)
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If the obtained p nonzero eigenvalues λ1, λ2, . . . , λp are all within the unit circle, the
sequence yt is stationary. Otherwise, there is at least one unit root, assuming λ1 = 1,
Equation (2) can be written as:

1− a1 − a2 − . . .− ap = 0, (3)

This shows that if the series is nonstationary, the sum of the regression coefficients is 1.
Equation (1) can be transformed into:

yt = ρyt−1 + ∑p−1
i=1 θi∆yt−i + ut, (4)

in which: ρ = ∑
p
j=1 αj, θi = −∑

p
j=i+1 αj, (i = 1, 2, · · · , p− 1). When ρ < 0, the series is

stationary.
Parameters in Equation (4) are estimated by ordinary least squares and ρ is tested to

determine whether the series is stationary.

2.2. Cointegration Theory

The basic idea of cointegration theory is that although a set of variables are nonstationary
over time, they will change together and maintain a common long-term random trend. The
random trend can be eliminated by linear combination, and a stationary series can be obtained.
It can be considered that there is a long-term equilibrium relationship between them.

On the concept of simple integration, the cointegration theory can be further explained.
x1t, x2t, x3t . . . . . . xit are nonstationary series, where xit ∼ I(1), i = 1, 2, 3 . . . . . . i. These
series meet the cointegration relationship if the following equation can be established by a
set of coefficients, α1, α2, α3 . . . . . . αi:

ξ = α1x1t + α2x2t + α3x3t + . . . . . . + αixit, (5)

where ξ is a stationary series of I(0), and αi is called the cointegration coefficient. The equa-
tion above can be explained as follows: the linear combination of a group of I(1) variables
can derive an I(0) variable, then these variables are cointegrated.

2.3. Cointegration Test
2.3.1. Engle and Granger Test

In order to test whether there is a cointegration relationship between two sequences Yt
and Xt, Engle and Granger proposed a two-step test, also known as the EG test, in 1987.

Step 1: estimate the following equation with ordinary least squares regression:

Yt = c + βXt + µt, (6)

in which c is the constant term, β is the regression coefficient, and µt is the residual sequence,
which can be calculated as follows:

µ̂t = Yt − Ŷt = Yt − α̂− β̂Xt, (7)

Step 2: carry out the ADF test mentioned above on µ̂t, if the residual sequence is
stationary, Yt and Xt are cointegrated.

The EG test is mainly applicable to the cointegration test between two variables, and
not applicable when there are multiple cointegration relationships between variables.

2.3.2. Johansen Test

The Johansen test [21,22] based on the VAR model is a method which is used to
determine the cointegrated relationship among multiple nonstationary variables. The VAR
model can be described as follows:

Yt = ∑p
j=1 AjYt−j + Dt + Ut, (8)
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where Yt ∈ Rm is a m-dimensional series, Aj ∈ Rm×m is the coefficient matrix, and Ut is an
m-dimensional white noise that conforms to normal distribution.

The vector error-correction (VEC) model transformed from Equation (8) can be ex-
pressed as:

∆Yt = −ΠYt−1 + ∑p−1
j=1 A∗j ∆Yt−j + Dt + Ut, (9)

Π = A(1) = I −∑p
j=1 Aj, (10)

A∗j = −∑p
i=j+1 Ai, j = 1, 2, · · · , p− 1, (11)

Π can be estimated by the maximum likelihood estimate (MLE). Depending on its
rank, if rank (Π) = 0: there is no cointegrated relationship between the series. The number
of cointegrated relationship can be calculated by testing the significance of the characteristic
roots of Π. The characteristic roots of Π are sorted in descending order, λ1 > λ2 > · · · > λm.
If there are r cointegrated vectors, the other characteristic roots should be zero. The number
of cointegration relationships can be obtained by a trace test of characteristic roots, of which
statistics can be calculated by:

λtrace(r) = −T ∑m
i=r+1 ln

(
1− λ̂i

)
, (12)

The critical value of the statistic can be obtained by the Monte Carlo method, then the
number of independent cointegration vectors can be determined. Π is decomposed into
two full rank matrices:

Π = ΓB′, (13)

where Γ, BεRm×r,0 < r < m, then:
ξt = B′xt , (14)

in which ξt is a stationary series, and B′ is the cointegration coefficient matrix.

2.4. Alternating Conditional Expectation

A method is provided by the ACE algorithm to derive a pair of nonlinear transforma-
tion functions f (·) and g(·) to maximize the correlation between f (Yt) and g(Xt). If f (Yt)
is regressed to g(Xt) to calculate goodness of fit R2, the ACE algorithm is equivalent to
selecting nonlinear transformation function to maximize goodness of fit R2, which makes
Equation (15) a significant regression relation expression.

f (Yt) = g(Xt) + µt, (15)

where µt is the random errors. f (·) and g(·) are used to minimize the sum of squares of
residuals in the above regression relationship, that is:

( f , g) = arg min
f ,g

∑T
t [ f (Yt)− g(Xt)]

2, (16)

The process of finding the optimal transformation function by the ACE algorithm is an
iterative process. The mean square error of the simple linear regression process is defined:

e2( f , g) = E[ f (Yt)− g(Xt)]
2, (17)

the e2( f , g) for f (Yt) are minimized and if E
[

f 2] = 1, the result is:

f1(Y) =
E[g(Xt)|Yt]

||E[g(Xt)|Yt||
, (18)
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where ||·|| =
[

E(·)2
]1/2

, then the next step of ACE algorithm is minimizing the e2( f1, g)
for g(Xt). The result is:

g1(Xt) = E[ f1(Yt)|Xt], (19)

The process to calculate nonlinear transformation functions ( f1(·), g1(·)) is the first
iteration in the whole ACE calculation. The iterative process will continue until the value
of e2( f , g) is no longer reduced. The iterative basis is defined as follows:

fm(Yt) =
E[gm−1(Xt)| fm−1(Yt)]

||E[gm−1(Xt)| fm−1(Yt)||
, (20)

gm(Xt) = E[ fm(Yt)|gm−1(Xt)] , (21)

where the initial values are f0(Yt) = Yt/||Yt||, g0(Xt) = Xt.

2.5. Monitoring Statistics

A stationary multivariate series can be combined by cointegration test:

ξt = β̂xt + µ̂, (22)

where ξt is a stationary multivariate series, so it can be monitored by traditional multivariate sta-
tistical methods. When the process becomes abnormal, the long-term equilibrium relationship
among variables will be broken, and the statistical characteristics of ξt will also change.

The monitoring of process operation status can be realized through monitoring the
statistical characteristics of ξt. The original nonstationary variables are projected into a new
space through the cointegration vector, and the common random trend among variables is
eliminated. The stochastic trends in residual subspace can be extracted as:

τt = β⊥Txt, (23)

τt is differenced to eliminate its nonstationary trend.

∆τt = β⊥T(xt − xt−1), (24)

T2
τ statistic is constructed as:

T2
τ = ∆τTΛ−1

z ∆τ, (25)

T2
τ is used to monitor the change of nonstationary part [23], which is similar to T2

statistic in PCA. The control limit C can be obtained by kernel density estimation.

3. The Proposed Monitoring Strategy

Nonstationary working conditions often exist in actual industrial production. The
nonstationary trend of variables cannot be distinguished from the trend caused by an
abnormal process through the traditional multivariate statistical method. The change of
a long-term equilibrium relationship among nonstationary variables can be monitored
instead of the nonstationary variables themselves by CA. However, the traditional linear
cointegration model is not sensitive to some faults if there is a nonlinear relationship among
certain process variables. The purpose of the ACE algorithm is to find a pair of nonlinear
transformation functions that maximize the linear correlation of the transformed sequences.
Therefore, establishing the structural model of the transformed sequence will broaden the
application range of the cointegration theory.

The monitoring strategy based on ACE and CA is proposed in this article. The
algorithm block diagram is as shown in Figure 1.
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Figure 1. Monitoring strategy based on ACE and CA.

3.1. Offline Modeling

Step 1: Perform ADF test on the training data to distinguish the nonstationary vari-
ables, I(1) variables will be selected as the modeling variables.

Step 2: Select one of the I(1) variables as target variable Yt , which is a general variable
prone to abnormal changes, other variables as Xt. A group of transform data Xt−transand
Yt−transare calculated through ACE. Then Yt is replaced with the average of Yt−trans. The
original variables are polynomial fitted to the transformed variables to obtain the nonlinear
transformation equation.

Step 3: Normalize the transformed variables with the following formula:

x∗ =
x− x

s
, (26)

where x is the average of Xt−trans, s is the standard deviation. The number of cointegration
vectors r is obtained through Johansen test, and the cointegration coefficient matrix B =
(β1, β1, · · · , βr) is obtained from maximum likelihood estimation.

Step 4: Construct the monitoring statistics T2
τ and control limit C so that online data

can be monitored.

3.2. Online Monitoring

Step 1: Select the I(1) variables determined by the training data as the model input
variables.

Step 2: Transform variables by the nonlinear transformation equations in step 2 above.
Step 3: Normalize the transformed variables by the process variables calculated in

step 3 above. Project the transformed variables onto the cointegration coefficient matrix
obtained in step 3 above:

ξnew = BXt−new, (27)

Step 4: Construct monitoring statistics T2
τ−new. When the monitoring statistics exceed

the control limit C, the system will trigger an alarm.
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4. Case and Result
4.1. Two-Dimensional Simulation Case
4.1.1. Data Construction

In order to verify whether the two sets of sequences f (Yt) and g(Xt) transformed by the
ACE algorithm are cointegrated, the following nonstationary variables X and Y are constructed.

at = at−1 + e1t, (28)

xt = −0.01a2
t + e2t, (29)

yt = at + e3t + 3, (30)

where a0 = 0, e1t ∼ N(0, 1), e2t, e3t ∼ N(0, 0.5). The total number of samples is 1000, and
X and Y are shown in the Figure 2:
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4.1.2. ACE and EG Test

Least square regression is performed between Xt and Yt, the following equation is
obtained:

Yt = −17.7144 + 0.9250Xt + µt, (31)

µt is shown in Figure 3:
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The ADF test shows that the series is nonstationary. The result of the EG test indicates
that there is no cointegration relationship between Xt and Yt. The constructional data after
ACE is shown in Figure 4:



Processes 2022, 10, 2003 9 of 17

Processes 2022, 10, 2003 9 of 17 
 

 

The ADF test shows that the series is nonstationary. The result of the EG test indicates 

that there is no cointegration relationship between 𝑋𝑡 and 𝑌𝑡. The constructional data af-

ter ACE is shown in Figure 4: 

 

Figure 4. Two-dimensional transformed data. 

Least square regression is performed between 𝑋𝑡−𝑡𝑟𝑎𝑛𝑠 and 𝑌𝑡−𝑡𝑟𝑎𝑛𝑠, the following 

equation is obtained: 

𝑌𝑡−𝑡𝑟𝑎𝑛𝑠 = 1.4844 × 10−11 + 1.00024𝑋𝑡−𝑡𝑟𝑎𝑛𝑠 + 𝜇𝑡, (32) 

𝜇𝑡 is shown in Figure 5. 

 

Figure 5. Residual sequence of transformed data. 

The ADF test shows that the series is nonstationary. The result of the EG test indicates 

that the transformed data are cointegrated. It is proved that the ACE algorithm can trans-

form two non-cointegration variables into cointegration variables. 

4.2. Multidimensional Simulation Case 

4.2.1. Data Construction 

To verify the effectiveness of the proposed monitoring method, a set of simulation 

variables is constructed as follows: 

𝑥𝑡 = 𝑥𝑡−1 + 𝑒1𝑡, (33) 

𝑦0𝑡 = −0.02𝑥𝑡
2 + 𝑒2𝑡, (34) 

𝑦1𝑡 = 𝑥𝑡 + 𝑒3𝑡, (35) 

Figure 4. Two-dimensional transformed data.

Least square regression is performed between Xt−trans and Yt−trans, the following
equation is obtained:

Yt−trans = 1.4844× 10−11 + 1.00024Xt−trans + µt, (32)

µt is shown in Figure 5.
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The ADF test shows that the series is nonstationary. The result of the EG test indicates
that the transformed data are cointegrated. It is proved that the ACE algorithm can
transform two non-cointegration variables into cointegration variables.

4.2. Multidimensional Simulation Case
4.2.1. Data Construction

To verify the effectiveness of the proposed monitoring method, a set of simulation
variables is constructed as follows:

xt = xt−1 + e1t, (33)

y0t = −0.02x2
t + e2t, (34)

y1t = xt + e3t, (35)

y2t = −0.01x2
t + e4t − 10, (36)

y3t = 0.01x2
t + e5t + 4, (37)

y4t = 0.03x2
t − e6t − 20, (38)
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where e1t ∼ N(0, 1), e2t, e3t, e4t, e5t, e6t ∼ N(0, 0.5), x0 = 0. The total number of samples is
1600 and the training data sample are shown in Figure 6:
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Figure 6. Training data sample.

Figure 6 shows that trends of these variables are roughly the same. At the 300th sample
of the test data, a fault is introduced to y1 to break the long-term equilibrium relationship
between variables. After 300 samples, y1 is constructed as follows:

y1t = y1t−1 + et, (39)

where e1t ∼ N(0, 0.5), y1 changes as shown in the Figure 7, where the solid line indicates
normal data and the dotted line indicates fault. After the fault is introduced, the long-term
equilibrium trend no longer exists between y1 and other variables.
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4.2.2. ACE and Johansen Test

Transformed data by ACE are shown in Figure 8:
The following quartic polynomial fitting on the transformed data is performed to

obtain the nonlinear transformation function, and the results are shown in Table 1.

f (x) = Ax4 + Bx3 + Cx2 + Dx + E, (40)
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Table 1. Polynomial fitting coefficient table.

y0 y1 y2 y3 y4

A 3.803 × 10−7 −2.346 × 10−6 7.105 × 10−6 −5.025 × 10−7 −2.341 × 10−8

B 9.533 × 10−5 1.788 × 10−4 1.308 × 10−3 −7.445 × 10−4 −2.182 × 10−5

C 4.193 × 10−3 −1.713 × 10−3 5.973 × 10−2 3.087 × 10−2 5.489 × 10−4

D −4.106 × 10−2 2.945 × 10−3 8.172 × 10−1 −1.893 × 10−1 6.948 × 10−2

E −9.707 × 10−1 −8.798 × 10−1 2.565 −5.595 × 10−1 6.563 × 10−2

The test data are transformed through the equation above.
In Figure 9, it can be observed that the change trend of the training and test data is

the same in addition to the fault data, so that the Johansen test can perform well. The
Akaike information criterion is used to determine the lag order of the VAR model, which is
calculated as 2. Table 2 shows the results:
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Table 2. Johansen test results with ACE.

Johansen H0 Hypothesis Trace Statistics Critical Value (5%)

r ≤ 0 549.353 3.8415
r ≤ 1 286.844 15.4943
r ≤ 2 65.3606 29.7961
r ≤ 3 1.85367 47.8545
r ≤ 4 0 69.8189

Table 2 shows the results of the Johansen test with ACE, while the results of Table 3
are obtained without ACE transformed. At the 5% significance level, the assumption that
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r ≤ 3 is acceptable in Table 1. The number of cointegration relationship is 3, that is, there
are three forms of linear combination that can eliminate the nonstationary trend among
these variables.

Table 3. Johansen test results without ACE.

Johansen H0 Hypothesis Trace Statistics Critical Value (5%)

r ≤ 0 566.01 3.8415
r ≤ 1 276.362 15.4943
r ≤ 2 11.0395 29.7961
r ≤ 3 2.89588 47.8545
r ≤ 4 0 69.8189

However, in Table 3, the assumption that r ≤ 2 is acceptable. It shows that there are
more cointegration relationships among variables after ACE algorithm transform.

4.2.3. Monitoring Results

The monitoring results based on common cointegration and the method proposed in
this paper are shown in Figures 10 and 11:
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The blue solid line represents the monitoring statistics, and the red horizontal solid
line represents the monitoring control limit. If the statistics exceed the control line, it is
considered to be in an abnormal state. It can be observed from Figures 10 and 11 that the
monitoring method based on common cointegration analysis will not trigger an alarm
when a fault occurs, while the method proposed in this paper can trigger an alarm in time,
which shows that the monitoring strategy proposed in this paper is more sensitive to this
type of fault.

4.3. Industrial Case
4.3.1. Introduction

The pressure drop at the hot end of the heat exchanger in the catalytic reforming process
unit of a petrochemical company often rises abnormally, which may lead to safety incidents if
it is not handled quickly. Therefore, it is particularly necessary to monitor the process.
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A section of historical data with an abnormal rise of pressure drop is selected, including
2000 sample points. The sampling frequency is 1 min, and each sample consists of 27 variables.

The pressure drop at the hot end of the heat exchanger is mainly affected by the feed
rate of naphtha and circulating hydrogen. Figure 12 shows the changes of pressure drop at
the hot end of the heat exchanger, naphtha feed rate and circulating hydrogen feed rate
with time from top to bottom. The naphtha feed rate has been stable, while the change
trend of the pressure drop at the hot end of the heat exchanger is basically the same as
that of the circulating hydrogen feed. Near about the 1400th sample points (the red frame),
that is, the 500th sample point in the test set, the pressure drop at the hot end of the heat
exchanger shows an upward trend, while the feed rate of circulating hydrogen and naphtha
changes steadily, indicating that an abnormal increase in the pressure drop at the hot end
of the heat exchanger occurred near this point.
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Figure 12. Variation trend of pressure drop at hot end.

The first 900 samples are used as the training data to establish the model, and the
remaining samples are used as the test set to verify the effectiveness of the method.

4.3.2. Modeling

In total, 27 variables in the training data are tested by ADF, and I (1) variables are
selected to establish the monitoring model.

If the test statistic of ADF is greater than the critical value under 1% significance, the
variable can be considered as nonstationary. These nonstationary variables are stationary
after difference of the first order. Finally, eight variables are determined as modeling
variables. The test statistic and critical value are showed in Table 4.

Table 4. Unit root test results of training data.

Variable Test Statistic Critical Value (1%) Variable Test Statistic Critical Value (1%)

Inlet flow of cold end −30.5959 −3.43764 Inlet temperature of
hot end −4.4610 −3.43765

Hydrogen flow rate −2.8303 −3.43766 Inlet temperature of
cold end −5.0377 −3.43765

Inlet pressure of
cold end −3.3003 −3.43766 Outlet temperature of

cold end −4.0436 −3.43766

Hydrogen pressure −2.8968 −3.43766 Outlet temperature of
the first furnace −15.7487 −3.43766

Outlet pressure of
hot end −11.3220 −3.43766 Outlet temperature of

the second furnace −19.9573 −3.43765

Pressure drops of
hot end −3.1284 −3.43766 Outlet temperature of

the first reactor −3.3998 −3.43766

Pressure drops of
cold end −3.4391 −3.43766 Outlet temperature of

the second reactor −3.1017 −3.43766

Pressure drops of the
first reactor −3.6682 −3.43766 Outlet temperature of

the third furnace −19.2434 −3.43766
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Table 4. Cont.

Variable Test Statistic Critical Value (1%) Variable Test Statistic Critical Value (1%)

Pressure drops of the
second reactor −2.8726 −3.43766 Outlet temperature of

the third reactor −4.2464 −3.43766

Pressure drops of the
third reactor −3.5858 −3.43766 Outlet temperature of

the fourth furnace −18.8509 −3.43766

Pressure drops of the
fourth reactor −3.8137 −3.43766 Temperature drops of

the third furnace −9.2383 −3.43766

Inlet pressure of the
fourth reactor −3.8399 −3.43766 Temperature drops of

the fourth furnace −7.7637 −3.43766

Pressure drops of
cold end filter −12.1079 −3.43766 Temperature drops of

the second furnace −4.3286 −3.43766

Outlet temperature of
hot end −2.8410 −3.43766

The relationship of some variables in training data transformed by the ACE algorithm
is shown in Figure 13, where the abscissa represents the original values and the ordinate
represents the transformed values.
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Then the Johansen test is performed on these variables The results of the Johansen test
and the Johansen test with the ACE algorithm are shown in Tables 5 and 6.

Table 5. Johansen test results for industrial case.

Johansen H0 Hypothesis Trace Statistics Critical Value (5%)

r ≤ 0 419.515 3.8415
r ≤ 1 215.018 15.4943
r ≤ 2 121.076 29.7961
r ≤ 3 50.9084 47.8545
r ≤ 4 26.0231 69.8189
r ≤ 5 9.88992 95.7542
r ≤ 6 2.44853 125.618
r ≤ 7 0 159.529
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Table 6. Johansen test with ACE results for industrial case.

Johansen H0 Hypothesis Trace Statistics Critical Value (5%)

r ≤ 0 419.486 3.8415
r ≤ 1 250.82 15.4943
r ≤ 2 161.232 29.7961
r ≤ 3 96.6288 47.8545
r ≤ 4 54.8984 69.8189
r ≤ 5 20.8353 95.7542
r ≤ 6 6.35215 125.618
r ≤ 7 −0 159.529

At the 5% significance level, the assumption that r ≤ 4 is acceptable while r ≤ 3 is
rejected. Thus, there are four cointegration relationships among these variables. Although
both methods have tested four cointegration relationships, the trace statistics of the Johansen
test processed by the ACE algorithm are larger than that of the ordinary Johansen test, which
means that the ACE algorithm still has the possibility to test more cointegration relationships.

4.3.3. Monitoring Results

The control limit C is calculated with training set data, and T2
τ statistics are calculated

for test data. The monitoring results of the two methods are as follows:
It can be observed from Figure 14 that the T2

τ statistics of the monitoring method based
on conventional cointegration analysis have exceeded the control limit before the abnormal
rise of the pressure drop at the hot end of the heat exchanger, and there are a large number
of false alarms, which indicates that inherent features of process data are not well captured
by the traditional cointegration method.
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In Figure 15, the system triggers an alarm at approximately the 517th sample point,
when the monitoring statistics exceed the control limit, which shows that the monitoring
method based on cointegration analysis with ACE also shows a good monitoring perfor-
mance in practical industrial cases, which also verify that nonlinear cointegration exists in
the considered process.
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5. Conclusions

In this work, a nonstationary process monitoring strategy based on CA and an ACE
algorithm is proposed. Through traditional CA, only the linear cointegration relationship
between variables can be extracted. As a nonparametric method, the ACE algorithm
only depends on the extremely weak distribution assumption, and a variety of nonlinear
transformation forms of data can be obtained, so that the nonlinear characteristics of
different forms of variables can be described [24]. Thus, the nonlinear cointegration
relationship can be extracted by CA combined with ACE.

Aiming at nonlinear and nonstationary industrial data, nonlinear transformation
derived by ACE is first performed on non-cointegration series. These transformations
converge gradually to an optimal transformation obtained through the nonparametric data
smoothing technique, namely the optimal ACE transformation, which is similar to robust
optimization [25,26]. If there is a certain long-term nonlinear relationship between these
series, this long-term equilibrium relationship among these transformed series could be
extracted by traditional CA, which means that the transformed series become cointegrated
and the nonlinear and nonstationary data characteristics can be extracted.

The strategy proposed is also applied in multi-dimensional simulation data and
industrial data. The results show that the strategy can trigger an alarm in time when the
fault occurs, while the traditional monitoring strategy based on cointegration theory results
in a large number of false alarms, which means that the strategy has a wider application
range and higher sensitivity.
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