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Abstract: A phenomenological multi-response multi-parameter Acetone–Butanol–Ethanol fermenta-
tion dynamic model is developed and calibrated for fermentation process studies. The model was
constructed based on other models reported in the literature and was calibrated with a maximum
likelihood parameter estimation over Acetone–Butanol–Ethanol fermentation experimental data from
the literature. After parameter estimation, a rigorous statistical analysis was conducted to evaluate
standard deviations of estimated parameters and predicted responses as well as their respective 95%
probability confidence intervals for correct parameters and responses. The significance of parameters
was assessed via a Fisher’s F test. From the Base-Model with 17 parameters, a tight, more compact,
Reduced-Model was developed with 9 highly significant parameters after deleting 8 nonsignificant
parameters from the Base-Model and re-estimating the remaining 9 parameters. This Reduced-Model
showed good adherence to the experimental data and had better performance comparatively relative
to the Base-Model with 17 parameters using two different inhibition functions reported in the litera-
ture. The Reduced-Model is sufficiently good for preliminary engineering and economic assessments
of ABE fermentation processes.

Keywords: phenomenological model; statistical analysis; parameter estimation; butanol; ABE
fermentation

1. Introduction

Acetone–Butanol–Ethanol (ABE) fermentation gets its name due to the simultaneous
production of acetone, butanol, and ethanol by Clostridium sp. bacteria over sucrose
substrates. This process was used in industrial scales at the beginning of the 20th century
due to the high acetone demand for the production of cordite, which was used as an
alternative for gunpowder during World War I [1]. At this time, the first ABE fermentation
patent was filed by Charles Weizmann [2].

However, in the decade of the 1950s, new petrochemical processes for Butanol and
Acetone productions initiated operations around the world, with incredible low-cost per-
formance and high efficiency thanks to low-cost utilities and low-cost raw materials from
the petroleum industry, which experienced a boom at that time. The immediate conse-
quence was that ABE fermentation lost its importance and became practically economically
unfeasible due to the high competitiveness of petroleum and petrochemical industries. As
a result, until the middle of the 1980s, there were no important industries in the world
using ABE fermentation for the production of n-butanol [1]. In parallel, studies on ABE
fermentation were also almost abandoned and reinitiated only in the 1980s due to high
oil prices that started with the Oil Crisis in the preceding decade. However, the Oil Crisis
did not stop in the 1970s and indeed became a chronical and cyclic event throughout the
incoming decades until today. Consequently, the continued Oil Crisis raised the prices of
petroleum and petrochemical commodities, deflagrating a research boom on alternative
fermentative routes for the production of fuel and chemical commodities. This gives rise
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to several large-scale successful industrial fermentation routes around the world, such as
the bioethanol industry from sugarcane in Brazil, which is currently the first in importance
in the world. In a similar manner, ABE fermentation research experienced a rebirth in
the 1980s. Mulchandani and Volesky (1986) [3] was one of the high-quality studies on
ABE fermentation of the 1980s. Among other things, this study presented a large set of
high-quality multi-response experimental points on dynamic ABE fermentation and also
developed a successful dynamic multi-response model for this fermentation.

In addition, about 20 years ago, the interest on sustainable processes that are not
dependent on fossil fuels such as carbon raw materials started growing due to a different
factor, namely, climate change concerns. In other words, the development and study
of technologies based on renewable raw materials for chemical and biofuel production
increased substantially once more. In concordance with this trend, the interest for ABE
fermentation renewed, and several studies have been conducted, aiming to improve ABE
fermentation’s economic competitiveness against the fossil-based petrochemical route [4].

The main challenge for the economic feasibility of ABE fermentation is the toxicity of
metabolites produced by the microorganism itself, primarily butanol. This toxicity inhibits
microorganism growth and results in low ABE titers that are not higher than 20 g/L [1].
Yang and Tsao (1994) [5] showed, by using an experiment design, that not only butanol but
also acetic and butyric acids inhibit Clostridium sp.’s growth. However, authors such as
Rochón et al. (2017) [6] do not consider such inhibitions in their mathematical modeling,
raising the question of whether this acid inhibition is prevalent or not.

There are two main approaches researchers follow to solve this problem. The first
approach uses synthetic biology, using concepts such as the metabolic adaptation and
genetic engineering of butanol-producing bacteria to improve their tolerance to inhibitory
substances. Jiang et al. (2009) [7] engineered a Clostridium acetobutylicum to decrease the
effects of acetone-producing genes in order to increase final butanol titers and produc-
tivity. The study resulted in a butanol yield improvement from 57% to 70.8%. Jiménez-
Bonilla et al. (2020) [8] overexpressed efflux pump genes from Pseudomonas putida on
Clostridium saccharoperbutylacetonicum in order to enhance the tolerance to lignocellulosic-
biomass-derived inhibitors for bio-butanol production. Even though butanol productivity
was not changed, the engineered strain was capable of growing in media containing notable
inhibition compounds such as furfural and ferulic acid, making way for the utilization of
lignocellulosic raw materials for the production of butanol. The second approach seeks
to improve butanol productivity via alternative process schemes and alternative raw ma-
terials without changing microorganism. Some authors tested alternative raw materials
such as black strap molasses and spent coffee grounds to produce biobutanol via ABE
fermentation [9,10]. Saadatinavaz et al. (2021) [11] applied a hydrothermal pretreatment
to orange waste to produce biobutanol, biohydrogen, and biomethane, achieving yields
as high as 42.3 kg butanol per 1000 kg of orange waste. In terms of process configuration,
some studies mainly attempt to remove butanol from the fermentation broth while growth
is still happening in order to decrease inhibition and to enhance butanol productivity. This
is often called in situ butanol recovery. Setlhaku et al. (2013) [12] investigated gas stripping
and per-evaporation techniques to remove butanol from the media. Gas stripping was able
to achieve butanol concentrations up to 59 g/L, while per-evaporation produced permeates
with 167 g/L of butanol. Valles et al. (2021) [13] applied gas stripping as an in situ product
recovery process to simultaneous saccharification and fermentation fed-batch processes.
The authors were able to increase butanol productivity by 100% when compared with the
same process without product recovery.

1.1. n-Butanol: Applications and Market

n-Butanol is a four-carbon saturated linear alcohol mainly used for the production
of acetates and acrylates. Its world market value is estimated at USD 3.1 billion in 2020,
and it is projected to reach USD 4.0 billion by 2025 [14]. It is mostly used as a secondary
chemical to produce derivatives, such as acetates, acrylates, glycolic ethers, and butylic
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esters. These derivatives are used, primarily, for cosmetics, shampoos, detergents, and
soaps and to improve fragrances and perfumes [14]. As a biofuel in fuel blends, n-butanol
can be used in current vehicle engines; it has a high energy density and increases the
tolerance to water contamination [15]. As an additive, when n-butanol is mixed to another
fuel used in internal combustion engines, it only generates carbon dioxide, making it an
environment friendly biofuel. Compared to ethanol, it has higher heat capacities, lower
vapor pressure, and is less volatile and less corrosive [16].

1.2. ABE Fermentation Mathematical Modeling

ABE fermentation has been modeled since the 1980s. The developed models range
from simple fermentation stoichiometric equations [17] to complex kinetics equations
based on microorganism metabolic routes. Older models represented the ABE fermentation
process in a macroscopic manner, associating the quantity of the consumed substrate to
generated biomasses and metabolites, as is the case with the model from Mulchandani and
Volesky (1986) [3]. Newer models aim to quantify metabolic fluxes, looking for intracellular
production bottlenecks and the optimization of substrate utilization as in the models of
Shinto et al. (2007) [18] and Buehler and Mesbah (2016) [19]. Even though the necessity
of modeling metabolic fluxes is clear and valuable for understanding cell mechanisms,
the pragmatic approach based on older models is more useful on practical grounds for
process engineering, as it simplifies calculations and process simulations for cost-estimation
purposes and techno-economic feasibility studies.

The effect of the inhibition on the microorganism growth rate still poses a modeling
challenge. Inhibition is often represented as an additional factor relative to the microorgan-
ism specific growth-rate term, as shown in Equation (1), where the inhibition term f (I) can
be expressed in various ways, as shown in Table 1.

µ = µmax
S

KS + S
f (I) (1)

For the most part, authors often develop models to represent their experiments in
order to assess which variable impacts more on productivity to optimize their processing
unit or to assess the impact of one variable on another. These models are usually tied to the
design of experiments and ANOVA analysis in order to judge the significance of the model
and their parameters. Many studies have been recently reported in the literature with this
type of approach [20–22].

Table 1. Inhibition terms reported in the literature for ABE fermentation.

Reference Inhibition Term

Mulchandani & Volesky
(1986) [3] f (I) =

{
exp[−0.01(B + BA)], (B + BA) < 8.0 g/L

2.16− 0.153(B + BA), 8.0 ≤ (B + BA) ≤ 13.9 g/L

Yang and Tsao (1994) [5] f (I) = 1−
(

AA
Cmaa

)maa
−
(

BA
Cmba

)mba
−
(

B
Cmb

)mb
−m1

(
AA

Cmaa

)maa( B
Cmb

)mb
−m2

(
BA

Cmba

)mba( B
Cmb

)mb

Velázquez-Sánchez and
Aguilar-López (2019) [23] f (I) =

(
1− B

KP

)
Eom et al. (2015)

[24] f (I) =
(

1− B
KB

)iB
(

1− X
KX

)iX

Buehler and Mesbah (2016)
[19] f (I) =

(
1

1+ B
KB

)(
1−

(
BA

BAmas

)mba
)(

1−mpH(5.6− pH)
)

Rochón et al. (2017) [6] f (I) =
(

1− B
KP

)a

Specifically, for ABE fermentation, Gattermayr et al. (2021) [25] used an experimental
design and model to find out that substrates (glucose) must not be limited and butyric
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acid should be supplied at a rate of 7.5 mmol.L−1·h−1 in order to maximize its specific
butanol production. Recent studies also used phenomenological models to represent their
fermentations, although proper statistical analyses were not conducted to assess estimated
parameters and responses [26,27].

1.3. The Present Work

With the increasing growth of biotechnology and fermentation processes at the indus-
trial scale, there is an increasing need of techno-economic feasibility analysis to advance
different grounds imposed by engineering projects. Being able to calculate and predict
mass/energy balances by using mathematical modeling and process simulations is vital
for performing such assessments. This entails the need of consistent phenomenological
multi-response models that reliably reproduce dynamic or steady-state fermentation pro-
cesses. Since these are semi-empirical models, they have to be calibrated with reliable
experimental data from the literature. To accomplish this, a statistically sound estimation
procedure must be followed.

A complete statistical analysis for model’s calibration regarding multi-response ABE
fermentation does not exist in the literature. To fill this gap, the present work develops a
sufficiently comprehensive multi-response ABE dynamic model and calibrates it according
to rigorous statistical procedures over multi-response ABE fermentation dynamic data
from the literature. The approach is based on the multi-response Maximum Likelihood
Principle and prescribes several rounds of parameter estimation and subsequent parameter
elimination by using significance tests in order to reach a tight Reduced-Model with all
parameters being sufficiently significant. The achieved multi-response Reduced-Model can
reproduce, with sufficient accuracy, ABE fermentations in both dynamic and in steady-state
modes. This model is able to support the preliminary techno-economic feasibility analysis
of the ABE fermentation process as a whole.

2. Methods

Aiming at to implement an ABE fermentation kinetic model on a computational simu-
lation environment for technology assessment, it is important that the model is based on a
species that already has pure properties and binary interaction parameters incorporated
in the professional process simulator in question. Because of this, the utilization of more
structured fermentation models that consider complex metabolites, coenzymes, and com-
plex reaction pathways is not easy (or even possible) to implement in professional process
simulators. In this regard, non-structured models have become more attractive. In conse-
quence, this study will develop an ABE fermentation model based on the non-structured
model of Mulchandani and Volesky (1986) [3] here referred to as the MV-Model.

2.1. ABE Fermentation Model Description

An ABE fermentation model is developed based on the Mulchandani and Volesky
(1986) [3] model, which represents a continuous ABE fermentation process with cell reten-
tion. To formulate it, the following assumptions are adopted:

(1) The carbon source is the only limiting substrate;
(2) There is no limitation of nitrogen and nutrients;
(3) There is product inhibition;
(4) Acetic acid and butyric acid are reduced to acetone and butanol, respectively;
(5) Acetone and butanol are also produced directly from carbon substrates;
(6) Ethanol is produced from carbon substrates only;
(7) Fermentation is performed at 37 ◦C and a pH of 4.5 under anaerobic conditions;
(8) All cells are considered metabolically active and viable.

The microbial growth rate is based on the classical Monod Equation [28] with the
addition of inhibition term f (I), as seen in Equations (2) and (3). This term takes into
account the growth inhibition by the presence of butanol and/or butyric acid, modeled as an
exponential equation when the concentration sum is below 8.0 g/L and by a linear equation
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when this sum is between 8.0 and 13.9 g/L. According to the authors, this approach
encompasses all inhibition ranges from the metabolites, where B and BA represent butanol
and butyric acid concentrations in g/L, respectively. Therefore, the biomass generation
rate is represented by Equation (3), where µmax is the maximum growth rate, KS is the
substrate’s affinity constant, and S is the substrate’s concentration (g/L).

f (I) =
{

exp(−0.01(B + BA)), (B + BA) < 8.0 g/L
2.16− 0.153(B + BA), 8.0 ≤ (B + BA) ≤ 13.9 g/L

(2)

rx =
µmaxS.X. f (I)

KS + S
(3)

The substrate’s consumption rate is modeled according to Pirt (1975) [29]. In addition,
acid reduction to alcohol demands energy, which is obtained by substrate consumption.
Therefore, consumption and energy generation terms were added to Equation (4), where k1
and k2 are kinetic constants and KBA and KAA are butyric acid and acetic acid saturation
constants, respectively.

− rS =

(
1

YX/S
µ + m +

(
S

KS + S

)(
k1BA

KBA + BA
+

k2 AA
KAA + AA

))
X (4)

The net butyric acid production rate is the difference between its production and con-
sumption rates in Equation (5), wherein the first term (rBA,P) represents the acid production
rate calculated by using its yield coefficient in Equation (6), where YBA/S is the butyric
acid yield coefficient, YX/S is cell yield coefficient, m is cell maintenance coefficient, and
X is the biomass concentration (g/L). The butyric acid consumption rate is written as a
function of acid and substrate concentrations. These functions are similar to the Langmuir
adsorption isotherm and represent the adsorption of butyric acid on the cell wall, as shown
in Equation (7). By arranging Equations (6) and (7), Equation (8) gives the net butyric acid
consumption rate, where k6 is a fitting parameter.

rBA = rBA,P − rBA,C (5)

rBA,P = YBA,P(−rS) =
YBA/S
YX/S

rX + YBA/SmX (6)

rBA,C =
k6BA

KBA + BA

(
S

KS + S

)
X (7)

rBA =

(
YBA/Sm +

(
S

KS + S

)(
YBA/S
YX/S

µmax f (I)− k6BA
KBA + BA

))
X (8)

For acetic acid, its net production rate (rAA) is analogous to the butyric acid production
rate and is represented in Equation (9), where k9 is another fitting parameter.

rAA =

(
YAA/Sm +

(
S

KS + S

)(
YAA/S
YX/S

µmax f (I)− k9 AA
KAA + AA

))
X (9)

The butanol production rate is represented by the sum of its production via substrate
conversion and via butyric acid conversion, as shown in Equation (10). The first term is
expressed in terms of the butanol yield coefficient (YB/S) in Equation (11) and the second
term is similar to butyric acid’s conversion in Equation (12), where k14 is another fitting
parameter. Using Equations (11) and (12) on Equation (10), the butanol net production rate
is written in Equation (13).

rB = rB,S + rB,BA (10)

rB,S = YB/S(−rS) =
YB/S
YX/S

rX + YB/SmX (11)
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rB,BA = k14
BA

KBA + BA

(
S

KS + S

)
X (12)

rB =

(
YB/Sm +

(
S

KS + S

)(
YB/S
YX/S

µmax f (I)− k14BA
KBA + BA

))
X (13)

The acetone production rate is expressed similarly as the butanol rate in Equation (14),
where k15 is a fitting parameter.

rA =

(
YA/Sm +

(
S

KS + S

)(
YA/S
YX/S

µmax f (I)− k15 AA
KBA + AA

))
X (14)

Finally, the ethanol production rate is expressed as a function of the substrate con-
sumption rate using its yield coefficient in Equation (15).

rE =

(
YE/S
YX/S

µmax
S

KS + S
f (I) + YE/Sm

)
X (15)

With all components production and consumption rates, the ABE fermentation biore-
actor dynamics (considering cell retention) is modeled by using Equations (16)–(22), where
D is the process dilution rate and S0 is the substrate feed concentration. This ABE fermen-
tation model represented by Equations (16)–(22) is referred as the Base-Model and has
17 adjustable parameters (µmax, k1, k2, YX/S, m, YBA/S, k6, YB/S, YAA/S, k9, YA/S, YE/S,
k14, k15, KS, KAA, KBA). Notice that after parameter estimation and the deletion of non-
significant parameters and re-estimation, the Base-Model becomes the Reduced-Model,
which is far different from the MV-Model of Mulchandani and Volesky (1986) [3] because
the MV-Model did not experience such a statistical treatment.

dX(t)
dt

= rX (16)

dS(t)
dt

= D(S0 − S) + rS (17)

dAA(t)
dt

= −D.AA + rAA (18)

dBA(t)
dt

= −D.BA + rBA (19)

dA(t)
dt

= −D.A + rA (20)

dB(t)
dt

= −D.B + rB (21)

dE(t)
dt

= −D.E + rE (22)

2.2. Parameter Estimation

Parameter estimation is conducted via the Maximum Likelihood Principle, which is
implemented for non-linear explicit multi-response models with known inputs, which is
the ABE fermentation case. The main reference is [30]. Firstly, the symbols have to be
defined as follows:

yn: nth response of the model where n is a response index (n = 1, 2, . . . , NR);
NR: Number of model responses; for the ABE fermentation model NR = 7;
I, k: Experiment indexes (i, k = 1, 2, . . . , NE);
NE: Number of experiments; for the ABE fermentation model NE = 27;
y

i
: NRx1 vector of observed response values for experiment i;

y: NRxNE matrix of observed responses for all experiments
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y =
[
y

1
y

2
· · · y

NE

]
;

η
i
: Unknown NRx1 vector of correct response values for experiment i;

x: NIx1 vector of independent (input) variables of the model (NI is number of inputs);
xi: Known vector x for experiment i;
β: Unknown NPx1 vector of correct model parameters;

βt =
[
β0 β1 . . . βq

]
(NP = q + 1);

β̂: NPx1 vector of estimated model parameters;
ŷ

i
: NRx1 vector of estimated responses for experiment i;

ŷ:NRxNE matrix of estimated responses for all experiments

ŷ =
[
ŷ

1
ŷ

2
· · · ŷ

NE

]
;

Wi: Weight matrix for responses of experiment i; this matrix is related to the inverse of the
variance–covariance matrix of responses for experiment i;
σ2

ε : Unknown fundamental variance of the problem;
Cov(y

i
) = σ2

ε W−1
i : NRxNR variance–covariance matrix of responses of experiment i;

Xi: NRxNP Jacobian matrix of model responses to parameters β̂ for experiment i.

In addition, the following statistical assumptions are imposed:

(1) The experiments are independent; i.e., data from experiment i are not influenced by
other experiments;

(2) Experimental responses are independent and each one obeys a normal distribu-
tion around the correct response value with the variance given by σ2

ε (0.1 ∗ yn,k)
2

(n = 1 . . . NR, k = 1 . . . NE);
(3) The model is correct; i.e., with the correct parameter vector (β), the model generates

the correct response vector (η
i
) for experiment i with inputs xi.

From Assumption II, the probability density function (PDF) of the vector of responses
for the ith experiment y

i
is provided by Equation (23), which can be inputted as shown in

Equation (24).

PDF(y
i
) =

1

(2π)NR/2
√

Cov(y
i
)

exp
{
−1

2

(
y

i
− η

i

)t[
Cov(y

i
)
]−1(

y
i
− η

i

)}
(23)

PDF(y
i
) =

√∣∣∣Wi

∣∣∣
(2πσ2

ε )
NR/2 exp

{
− 1

2σ2
ε

(
y

i
− η

i

)t
Wi

(
y

i
− η

i

)}
(24)

The Likelihood function for the vector of responses of experiment i is obtained by
replacing η

i
by ŷ

i
in Equation (24), leading to Equation (25) [30].

L
(

y
i
, β̂
)
=

√∣∣∣Wi

∣∣∣
(2πσ2

ε )
NR/2 exp

{
− 1

2σ2
ε

(
y

i
− ŷ

i

)t
Wi

(
y

i
− ŷ

i

)}
(25)

With Assumption I, the total Likelihood function for all experiments is given by
Equation (26), which is transformed in Equation (27) after logarithms.

L
(

y, β̂
)
=

NE

∏
k=1

L
(

y
k
, β̂
)

(26)

lnL
(

y, β̂
)
=

1
2

NE

∑
k=1

ln
∣∣∣Wk

∣∣∣− NR.NE
2

ln(2πσ2
ε )−

1
2σ2

ε

NE

∑
k=1

(
y

k
− ŷ

k

)t
Wk

(
y

k
− ŷ

k

)
(27)
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The estimation of β̂ is performed by maximizing the logarithm of the Likelihood
function in Equation (27), which corresponds to minimizing the weighted sum of squares
in the last term of Equation (27), since the other terms are constant in Equation (27). This is
the objective function for minimization in the Maximum Likelihood Principle and is given
in Equation (28) [30]. This minimization was conducted in Matlab® R2016a. To construct
the response weight matrices Wk (k = 1 . . . NE), Assumption II and Assumption I are
used again alongside Cov(y

i
) = σ2

ε W−1
i , leading to Equation (29).

Φ =
1
2

NE

∑
k=1

(
ŷ

k
− y

k

)t
Wk

(
ŷ

k
− y

k

)
(28)

Wk =


1/(0.1y1,k)

2 0 . . . 0
0 1/(0.1y2,k)

2 . . . 0
...
0

...
0

. . .
...

. . . 1/(0.1yNR,k)
2

 (29)

2.3. Statistical Analysis of Estimated Parameters

Statistical analysis has the objective of evaluating the quality of the estimated parame-
ters and estimated responses by means of parameter standard deviations, correct parameter
confidence intervals, standard deviations of the estimated responses, and correct response
confidence intervals. These calculations are conducted with estimators of the variance–
covariance matrix of estimated parameters and estimated responses. All estimators used in
this analysis are characterized before utilization.

Admitting that the vector of estimated parameters (β̂) is close to the (unknown) vector
of correct parameters (β), a linearization of the predicted response vector of experiment k is
constructed in Equation (30). Applying the stationary point condition to the incumbent
β̂ in Equation (31) and using Equations (28) and (30), one obtains Equation (32). Using
Equation (30) in Equation (32), one can write an asymptotic expression for β̂ in Equation (33)
in order to perform the statistical analysis [30].

ŷ
k
∼= η

k
+ Xk

(
β̂− β

)
(30)

∇β̂Φ = 0 (31)

NE

∑
k=1

Xt
kWk

(
ŷ

k
− y

k

)
= 0 (32)

β̂ = β +

[
NE

∑
k=1

Xt
k Wk Xk

]−1 NE

∑
k=1

Xt
kWk

(
y

k
− η

k

)
(33)

With Equation (33), estimator β̂ can be characterized. Since β̂ is a linear function of
normal vectors yn, β̂ also follows a multivariate normal distribution. In addition, since the

expected value of responses comprises their correct values in Equation (23), E
(

y
k

)
= η

k
,

Equation (33) gives E
(

β̂
)
= β; i.e., β̂ is an unbiased estimator, where E(.) is the expectancy

operator. Lastly, since experiments are independent by Assumption I, one can write
Equation (34). By the definition of the variance–covariance matrix of β̂ in Equation (35),
Equation (36) is obtained via Equations (33) and (34).

E
{(

y
k
− η

k

)(
y

j
− η

j

)t
}

=

{
0, k 6= j

σ2
ε W−1

k , k = j
(k, j = 1 . . . NE) (34)
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Cov
(

β̂
)
= E

[(
β̂− E

(
β̂
))(

β̂− E
(

β̂
))t
]

(35)

Cov
(

β̂
)
= σ2

ε

[
NE

∑
k=1

Xt
k Wk Xk

]−1

(36)

Now, when NE→ ∞ ,
NE
∑

k=1
Xt

k Wk Xk → ∞ and
[

NE
∑

k=1

(
Xt

k Wk Xk

)]−1

→ 0 . Con-

sequently, NE→ ∞ implies Cov
(

β̂
)
→ 0 ; hence, β̂ is also a consistent (coherent) estima-

tor [30].
The characterization of the estimator of predicted responses ŷ

k
(k = 1 . . . NE) is

analogous to the case of β̂. With Equation (30), ŷ
k

is a linear function of β̂ and, therefore,
follows a multi-variate normal distribution as well. Moreover, by Equation (30), since
E
(

β̂
)
= β, E

(
ŷ

k

)
= η

k
; i.e., estimator ŷ

k
is also unbiased. Finally, using Equation (30)

with the definition of the variance–covariance matrix for ŷ
k

in Equation (37), Equation (38)
is obtained. In a similar manner as used in the previous discussion, when NE→ ∞ ,
Cov

(
β̂
)
→ 0 ; hence, Cov

(
ŷ

k

)
→ 0 . Thus, the estimator of predicted responses ŷ

k
is

also consistent (coherent).

Cov
(

ŷ
k

)
= E

[(
ŷ

k
− E

(
ŷ

k

))(
ŷ

k
− E

(
ŷ

k

))t
]

(37)

Cov
(

ŷ
k

)
= Xk

(
Cov

(
β̂
))

Xt
k (38)

As the variance–covariance matrices of β̂ and ŷ
k

depend on the unknown fundamental
variance σ2

ε via Equation (36), an estimator for σ2
ε is needed. It can be shown [30] that the

best estimator for σ2
ε is the statistic S2

R, which is the weighted sum of residue squares in

Equation (39). With S2
R in place of σ2

ε , one can write estimators C
_
o v
(

β̂
)

and C
_
o v
(

ŷ
k

)
for

ˆCov
(

β̂
)

and Cov
(

ŷ
k

)
in Equations (40) and (41).

S2
R = σ̂2

ε =

(
1

NR.NE− NP

) NE

∑
k=1

(
y

k
− ŷ

k

)t
Wk

(
y

k
− ŷ

k

)
(39)

C
_
o v
(

β̂
)
= S2

R

[
NE

∑
k=1

Xt
k Wk Xk

]−1

(40)

C
_
o v
(

ŷ
k

)
= Xk

(
C
_
o v
(

β̂
))

Xt
k (41)

As the diagonal terms of variance–covariance matrices are variances, estimators of
standard deviations of estimated parameters and standard deviations of estimated re-
sponses are given by square roots of the respective diagonal terms of C

_
o v
(

β̂
)

, C
_
o v
(

ŷ
k

)
,

as in Equations (42) and (43).

σ̂β̂k
=

√(
C
_
o v
(

β̂
))

kk
(42)

σ̂ŷn,k =

√(
C
_
o v
(

ŷ
k

))
nn

(43)

Correct parameter and correct response confidence intervals with probability
(1 − α) × 100% (α = 0.05) are found via Student’s t theorem. One can show [30] that
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the left-hand-side of Equation (44) follows a Student PDF with NR.NE-NP degrees of
freedom, as written in Equation (44).

β̂k − βk√(
C
_
o v(β̂)

)
kk

→ tν=NR.NE−NP (44)

Defining t1−α/2 (α = 0.05) as the abscissa of t PDF (at NR.NE-NP degrees of freedom)
with 1 − α/2 probability (α = 0.05), Equation (45) can be written; consequently, the confi-
dence interval with 1− α (0.95 = 95%) probability for the correct parameter βk (k = 1 . . . NP)
is given by Equation (46).

− t1−α/2 ≤
β̂k − βk√(
C
_
o v
(

β̂
))

kk

≤ t1−α/2 (probability 1− α) (45)

β̂k − t1−α/2σ̂β̂k
≤ βk ≤ β̂k + t1−α/2σ̂β̂k

(probability 1− α) (46)

In a similar manner, the 1 − α probability confidence interval for the nth correct
response of experiment k (n = 1 . . . NR, k = 1 . . . NE) is obtained via Equation (47).

ŷn,k − t1−α/2σ̂ŷn,k ≤ ηn,k ≤ ŷn,k + t1−α/2σ̂ŷn,k (probability 1− α) (47)

To evaluate the significance of estimated parameters, Fisher’s F Test is used. The
significance test is formulated by assuming the null hypothesis that βk is not significant
and is indistinguishable from zero. In this case, it can be shown [30] that the group at the
left-hand-side of Equation (48) follows Fisher PDF with νA = 1 and νB = NR · NE− NP
degrees of freedom, as shown in Equation (48).

The significance of parameter βk is established if the null hypothesis is denied when
Equation (49) is satisfied, where Φ1−α is the abscissa of the Fisher PDF with νA = 1 and
νB = NR ·NE−NP degrees of freedom for probability 1− α (α = 0.05). In this case, there is
a (1− α).100% probability that parameter βk is significant to the model and should be kept.
On the other hand, if Equation (49) is not satisfied, additional criteria are defined in order
to try establishing lower parameter significance. If Equation (50) is true, βk is probably
significant but has a small value; i.e., in principle, βk should not be removed from the
model, and new information is required for a complete assessment of its significance. On
the other hand, if Equation (51) is true, βk is probably nonsignificant, and new information
is required for a complete assessment of its lack of significance. Finally, if Equation (52) is
true, parameter βk is definitely nonsignificant to the model. In other words, if Equation (52)
is true, parameter βk should definitely be removed from the model and all remaining
significant parameters should be re-estimated in order to improve performance.

β̂2
k(

C
_
o v
(

β̂
))

kk

→ F(νA = 1, νB = NR.NE− NP) (48)

β̂2
k(

C
_
o v
(

β̂
))

kk

> Φ1−α (49)

Φ1−α

1.1
≤

β2
k(

C
_
o v
(

β̂
))

kk

≤ Φ1−α (50)

Φ1−α

2.5
≤

β̂2
k(

C
_
o v
(

β̂
))

kk

<
Φ1−α

1.1
(51)
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β̂2
k(

C
_
o v
(

β̂
)) <

Φ1−α

2.5
(52)

2.4. Analysis of Sensitivity to Input Variables

To test the representativeness of the model with estimated parameters, disturbances
are applied over the two most important input variables of the model, namely: (i) substrate
feed flowrate (impacting directly on the dilution rate) and (ii) substrate feed concentration.
Thus, the objective is to compare the responses to undisturbed inputs against the model’s
responses to disturbed inputs in order to observe whether other forms of inhibition have to
be sought to improve the model behavior. For undisturbed and disturbed inputs, an initial
concentration of the substrate was considered in the bioreactor of 5.0 g/L and the inoculum
of 0.5 g/L. Table 2 discriminates the input variations imposed to assess the model and the
respective identification codes.

Table 2. Inputs variations for sensitivity analysis (Base-Case is code 0).

Code Type of Disturbance Substrate Feed
Concentration (g/L)

Feed
Flowrate (m3/h)

0 Undisturbed Base-Case 35 35.6

+1/0 +43% Feed Concentration
Disturbance 50 35.6

−1/0 −43% Feed Concentration
Disturbance 20 35.6

0/+1 +85% Feed Flowrate
Disturbance 35 66

0/−1 −89% Feed Flowrate
Disturbance 35 4

The original model of Mulchandani and Volesky (1986) [3]—MV-Model—is the bench-
mark virtual plant for obtaining in silico data from various fermentation times. Three
models were then compared with the MV-Model.

The first model—Reduced-Model—was obtained via a two-step procedure: (i) Pa-
rameters of the Base-Model (Equations (16)–(22) with 17 parameters) were estimated over
experimental data from [3]; (ii) nonsignificant parameters of the Base-Model were deleted
via significance F tests and the remaining significant parameters were re-estimated by
another round of parameter estimation, giving rise to the Reduced-Model. As shown in
Section 3, the Reduced-Model only has 9 parameters.

The other two models correspond to the Base-Model in Equations (12)–(22), carry-
ing its 17 original parameters but with different inhibition functions— f (I) function in
Equation (1)—reported in the literature compared to Equations (53) and (54).

Equation (53) is the Yang and Tsao (1994) [5] function, which considers isolated
inhibitions by acetic acid, butyric acid, and butanol, as well as crossed inhibitions from in-
teractions of these species. The Base-Model with 17 parameters adopting Yang and Tsao [5]
inhibition is the second model for comparison and is referred to as the Yang–Tsao-Model.

Equation (54) is the Rochón et al. (2017) [6] inhibition function that does not consider
inhibition by acids and considers inhibition only from butanol. The Base-Model with
17 parameters adopting Rochón et al. (2017) [6] inhibition is the third model for comparison
and is referred to as the Rochón-Model.

f (I) = 1−
(

AA
Cmaa

)maa
−
(

BA
Cmba

)mba
−
(

B
Cmb

)mb
−m1

(
AA

Cmaa

)maa( B
Cmb

)mb
−m2

(
BA

Cmba

)mba( B
Cmb

)mb
(53)
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f (I) =
(

1− B
KP

)a
(54)

For each proposed model—Reduced-Model, Yang–Tsao-Model, and Rochón-
Model—parameters were obtained via the methodology described in Section 2.3 using
in silico model responses to perform parameter estimation via the Maximum Likelihood
Principle. The estimated parameters of all models were used to calculate concentration
profiles for the disturbed and undisturbed substrate concentration and dilution rates in
Table 2.

After calibration, the Reduced-Model, Yang–Tsao-Model, and Rochón-Model were
compared in terms of adherence of their predicted responses to the responses generated
by the MV-Model via the squared error measure defined by Equation (55) (Equation (39)
could also be used), where NE, NR, NP are, respectively, the numbers of experiments,
responses, and parameters.

ε2 =

NE
∑

k=1

NR
∑

n=1

(
ŷn,k−ŷMV−Model

n,k

ŷMV−Model
n,k

)2

NE.NR− NP
(55)

3. Results and Discussion
3.1. Parameter Estimation and Statistical Analysis

The ABE fermentation Base-Model—Equations (16)–(22)—was adjusted relative to
experimental data via a minimization of the objective function in Equation (28), resulting in
17 parameter values shown in Table 3. The experimental data of observed responses of ABE
fermentation come from [3]. Figure 1 shows the model regression and predicted response
adherence to experimental data. Base-Model adheres satisfactorily to biomass, acetone,
butanol, and ethanol curves, while acetic and butyric acid predictions could not fully
represent the data throughout the fermentation time because the Base-Model predictions of
acetic and butyric acids remained constant after t = 60 h, while experimental data oscillated.
An important fact about ABE fermentation is that acetic and butyric acids are intermediate
compounds in the production of butanol and acetone. That is, acids are produced firstly
and then converted into the final products butanol and acetone. However, butanol and
acetone are also produced directly from the substrate, while ethanol is only produced from
the substrate. This implies that ABE fermentation has two distinct phases regarding acetic
and butyric acids behaviors [3]. In the first phase, acids are produced and accumulate in
the broth until certain concentrations are reached (known as the acid break), after which
the conversion of acids into the final products butanol and acetone dominates until a
low acid concentration is attained, which again deflagrates acid production and the cycle
reinitiates. This mechanism is a possible reason for the concentration oscillation of acids
around the almost constant model values. Unfortunately, it is hard for semi-empirical non-
structured microbial models to capture such complex dynamics specific for intermediate
acetic and butyric acids, despite the correct prediction of their average concentrations. This
oscillatory behavior of acid concentrations around the model values was also observed by
Mulchandani and Volesky (1986) [3] and their model also exhibited a similar shortcoming.
However, the important fact with respect to the steady-state production of butanol, acetone,
and ethanol via anaerobic cell-retention ABE fermentation from glucose is that the main
responses are correctly predicted, such as biomass growth, substrate consumption, and
butanol, acetone, and ethanol productions. That is, the model is still useful for the process
analysis of ABE fermentation since solvent and biomass outputs are essentially correct, and
acids are not exported; i.e., after product separation, recovered acids are returned to the
fermenter because it is important to allow the microorganism to finalize its conversion into
valuable solvents.
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Table 3. Estimated parameters for the Base-Model with 17 parameters.

Parameter
Number Parameter Estimated Value Unit Confidence Interval

(95% Probability)

1 µmax 0.3488 h−1 0.2833 ≤ µmax ≤ 0.4143
2 k1 0.0588 gsubst/gcel.h −8.7363 ≤ k1 ≤ 8.8540
3 k2 0.0972 gsubst/gcel.h −8.0278 ≤ k2 ≤ 8.2222
4 YX/S 0.0564 gcel/gsubst 0.0214 ≤ YX/S ≤ 0.0914
5 m 0.0575 gsubst/gcel.h 0.0405 ≤ m ≤ 0.0745
6 YBA/S 0.0573 gBA/gsubst 0.0028 ≤ YBA/S ≤ 0.1118
7 k6 0.0298 gBA/gcel.h −0.7728 ≤ k6 ≤ 0.8323
8 YB/S 0.1613 gB/gsubst −0.0403 ≤ YB/S ≤ 0.3629
9 YAA/S 0.0650 gAA/gsubst 0.0049 ≤ YAA/S ≤ 0.1252
10 k9 0.0487 gAA/gcel.h −0.9311 ≤ k9 ≤ 0.1252
11 YA/S 0.0728 gA/gsubst −0.0399 ≤ YA/S ≤ 0.1855
12 YE/S 0.0177 gE/gsubst 0.0093 ≤ YE/S ≤ 0.0262
13 k14 0.0967 gB/gcel.h −2.5875 ≤ k14 ≤ 2.7808
14 k15 0.1143 gA/gcel.h −2.0068 ≤ k15 ≤ 2.2355
15 KS 3.2054 g/L 3.0614 ≤ KS ≤ 3.3493
16 KAA 0.3975 g/L −28.9374 ≤ KAA ≤ 29.7323
17 KBA 1.0405 g/L −8.8492 ≤ KBA ≤ 10.9303
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Figure 1. ABE fermentation Base-Model with 17 parameters: predicted concentration versus time
against experimental values.

The confidence intervals of correct parameters at 95% probability and standard devia-
tions of estimated parameters of the Base-Model with 17 parameters are shown in Figure 2
and Table 3. It is seen that there are some parameters with near zero values that have large
confidence intervals (e.g., parameters No. 2, 3, 13, 14, 16, and 17). The underlying reason
is related with the fact that the majority of these parameters are probably nonsignificant
to the model, as confirmed in Table 4. Regarding the remaining parameters, their narrow
confidence intervals unveil that they are important to the model and were satisfactorily
estimated with low standard deviations.
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Figure 2. Correct parameters confidence interval with 95% probability for the Base-Model with
17 parameters.

Table 4. Fisher F test results for the 17 parameters of the Base-Model.

Parameter
Number Parameter Test Value Fisher Test

Abscissa φ1−α
Result

1 µmax 110.3981 3.8961 Significant
2 k1 1.743 × 10−4 3.8961 Nonsignificant
3 k2 5.576 × 10−4 3.8961 Nonsignificant
4 YX/S 10.1117 3.8961 Significant
5 m 44.4632 3.8961 Significant
6 YBA/S 4.3046 3.8961 Significant
7 k6 0.0054 3.8961 Nonsignificant
8 YB/S 2.4946 3.8961 Probably Nonsignificant
9 YAA/S 4.5595 3.8961 Significant

10 k9 0.0096 3.8961 Nonsignificant
11 YA/S 1.6276 3.8961 Probably Nonsignificant
12 YE/S 17.2535 3.8961 Significant
13 k14 0.0051 3.8961 Nonsignificant
14 k15 0.0113 3.8961 Nonsignificant
15 KS 1931.0 3.8961 Significant
16 KAA 7.153 × 10−4 3.8961 Nonsignificant
17 KBA 0.0431 3.8961 Nonsignificant

Table 4 shows the Fisher F-Test with 95% probability to assess the significance of the
17 parameters of the Base-Model. Eight parameters were spotted as definitely nonsignificant
(k1, k2, k6, k9, k14, k15, KAA, KBA), while two are probably nonsignificant (YB/S, YA/S).
The eight nonsignificant parameters are related to the energy requirement to produce
or consume intermediate acids in the fermentation. As commented in Section 2, these
acids were supposed to have adsorption on the cell wall. Hence, these nonsignificant
parameters suggest that this adsorption phenomenon is not significant in a macroscopic
scale, although it can be further assessed by more structured models to find internal and
metabolic bottlenecks of their production and consumption. The two parameters identified
as probably nonsignificant, YB/S and YA/S, constitute a somewhat surprising outcome
regarding the model structure because these parameters represent butanol and acetone
production yields from the substrate and are strongly related to biochemical performances.
Moreover, it can be seen in Table 4 that their significance scores are smaller than the
Fisher abscissa but have the same order of magnitude, while all definitely non-significant
parameters reached scores of much inferior orders of magnitude. Therefore, the status of
YB/S and YA/S is a different one, and it cannot be said that they are simply nonsignificant.
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These parameters are important in the model because they are related to product generation
directly from the substrate (i.e., not coming from the reduction of butyric and acetic acids),
a phenomenon that is known to exist in ABE fermentation [3]. Thus, it is reasonable
to keep these two parameters in the Reduced-Model after removing the eight definitely
nonsignificant parameters.

The eight definitely nonsignificant parameters were removed from the Base-Model
(i.e., were considered zero) and the remaining nine parameters were re-estimated again
and statistically analyzed to re-evaluate their significance and confidence intervals. This
new model with only nine adjustable parameters is the Reduced-Model. The new rate
equations of the Reduced-Model after deleting the eight parameters are represented by
Equations (56)–(62), with the same bioreactor dynamics in Equations (16)–(22).

rx =

{
µmaxS
KS+S exp[−0.01(B + BA)]X, (B + BA) < 8.0g/L
µmaxS
KS+S [2.16− 0.153(B + BA)]X, 8.0 ≤ (B + BA) ≤ 13.9g/L

(56)

− rS =

(
1

YX/S
µ + m

)
X (57)

rAA =

(
YAA/S
YX/S

µmax
S

KS + S
f (I) + YAA/S.m

)
X (58)

rBA =

(
YBA/S
YX/S

µmax
S

KS + S
f (I) + YBA/S.m

)
X (59)

rA =

(
YA/S
YX/S

µmax
S

KS + S
f (I) + YA/S.m

)
X (60)

rB =

(
YB/S
YX/S

µmax
S

KS + S
f (I) + YB/S.m

)
X (61)

rE =

(
YE/S
YX/S

µmax
S

KS + S
f (I) + YE/S.m

)
X (62)

Table 5 shows the new estimated parameters and their confidence intervals for the
Reduced-Model. Figure 3 depicts the 95% probability confidence intervals of correct
parameters—in terms of percentages relative to the absolute estimated value—for the
Reduced-Model with 9 parameters. All confidence intervals are narrow and well-behaved,
indicating a well-posed parameter estimation of significant parameters. As can be seen
in Table 6, all nine parameters of the Reduced-Model have passed the Fisher F-Test of sig-
nificance with flying colors, including the two parameters, YB/S, YA/S, that were deemed
as probably nonsignificant in the old Base-Model. Parameters YB/S, YA/S regained their
status in the Reduced-Model because the smaller set of parameters forced a re-distribution
of importance among them, reinforcing the role of YB/S, YA/S for a successful predictive
performance. This is a common outcome in parameter estimation coupled to significance
analysis. However, this is also a symptom that the important status of YB/S, YA/S in the
phenomenology of ABE fermentation was limpidly recognized in the Reduced-Model
after the removal of several redundant or non-significant parameters and their associated
algebraic terms. It is probable that the excessive set of 17 parameters in the Base-Model
may have cloaked the critical importance of YB/S, YA/S for the mechanism of butanol and
acetone production, while the roles of YB/S, YA/S are more evident in this mechanism in
the Reduced-Model. Additionally, to represent a process with a Reduced-Model with less
parameters is a positive outcome since the Reduced-Model is installable in professional sim-
ulators requiring less machine effort and that are quicker. In addition, less experimentation
is required to adjust the Reduced-Model, saving bench costs and time.
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Table 5. Parameter estimation and 95% probability confidence intervals of correct parameters for the
Reduced-Model with 9 parameters.

Parameter
Number Parameter Estimated Value Unit Confidence Interval

(95% Probability)

1 µmax 0.3244 h−1 0.2739 ≤ µmax ≤ 0.3749
2 YX/S 0.0538 gcel/gsubst 0.0506 ≤ YX/S ≤ 0.0569
3 m 0.0521 gsubst/gcel.h 0.0389 ≤ m ≤ 0.0652
4 YBA/S 0.0541 gBA/gsubst 0.0481 ≤ YBA/S ≤ 0.0601
5 YB/S 0.1688 gB/gsubst 0.1486 ≤ YB/S ≤ 0.1890
6 YAA/S 0.0582 gAA/gsubst 0.0502 ≤ YAA/S ≤ 0.0661
7 YA/S 0.0854 gA/gsubst 0.0734 ≤ YA/S ≤ 0.0973
8 YE/S 0.0173 gE/gsubst 0.0161 ≤ YE/S ≤ 0.0185
9 KS 2.8923 g/L 2.8066 ≤ KS ≤ 2.9781

Processes 2022, 10, 1978 19 of 23 
 

 
Figure 3. Parameter confidence intervals for the Reduced-Model with 9 parameters (95% probabil-
ity). 

3.2. Input Variables Sensitivity Analysis 
Reduced-Model, Yang–Tsao-Model, and Rochón-Model were compared in terms of 

the adherence of their predicted responses relative to the responses generated by the 
MV-Model—via the error measured by Equation (55)—under disturbances directed to 
the input variables specified in Table 2. In all five cases in Table 2, the simulated fermen-
tation time was 120 h.  

Figure 4 shows the average deviation via Equation (55) of each compared model—
Reduced-Model, Yang–Tsao-Model, and Rochón-Model—relative to the MV-Model. 
Over (undisturbed) Case 0, the new Reduced-Model (9 parameters), the Yang–Tsao-
Model (17 parameters), and the Rochón-Model (17 parameters) attained low errors, indi-
cating that at these Case 0 conditions the three models behave similarly to the MV-
Model.  

On the other hand, on the four input disturbed cases (Table 2), only the Reduced-
Model could attain a better adherence to the MV-Model, while the Yang–Tsao-Model 
and the Rochón-Model exhibited some lack of adherence, particularly the latter. Since 
the Reduced-Model has lesser parameters than the original MV-Model and also than the 
Yang–Tsao-Model and the Rochón-Model (these with different inhibition functions), it is 
evident that the Reduced-Model is the best model to use under undisturbed inputs or 
under disturbed inputs. In addition, the Reduced-Model will always require a lower 
number of experiments for calibration via parameter estimation, attaining inferior 
standard deviations with respect to parameters/responses and narrower correct parame-
ter/response confidence intervals, which mean less generated uncertainty. 

-100%
-80%
-60%
-40%
-20%
0%
20%
40%
60%
80%
100%

1 2 3 4 5 6 7 8 9

Es
tim

at
ed
 v
al
ue

Parameter number

Superior limit
Parameter + Standard deviation
Estimated parameter
Parameter - Standard deviation
Inferior limit

%
D

ev
ia

tio
n 

fr
om

 E
st

im
at

ed
 V

al
ue

Parameter Number

Superior Conf. Limit
Parameter + Std Dev.
Estimated Parameter
Parameter – Std Dev.
Inferior Conf. Limit

Figure 3. Parameter confidence intervals for the Reduced-Model with 9 parameters (95% probability).

Table 6. Fisher F test of significance for the 9 parameters of the Reduced-Model.

Parameter
Number Parameter Test Value Fisher Test

Abscissa Result

1 µmax 160.776 3.8936 Significant
2 YX/S 1119.0 3.8936 Significant
3 m 60.746 3.8936 Significant
4 YBA/S 313.904 3.8936 Significant
5 YB/S 271.948 3.8936 Significant
6 YAA/S 207.651 3.8936 Significant
7 YA/S 198.535 3.8936 Significant
8 YE/S 805.819 3.8936 Significant
9 KS 4430.0 3.8936 Significant

3.2. Input Variables Sensitivity Analysis

Reduced-Model, Yang–Tsao-Model, and Rochón-Model were compared in terms of
the adherence of their predicted responses relative to the responses generated by the MV-
Model—via the error measured by Equation (55)—under disturbances directed to the input
variables specified in Table 2. In all five cases in Table 2, the simulated fermentation time
was 120 h.
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Figure 4 shows the average deviation via Equation (55) of each compared
model—Reduced-Model, Yang–Tsao-Model, and Rochón-Model—relative to the MV-Model.
Over (undisturbed) Case 0, the new Reduced-Model (9 parameters), the Yang–Tsao-Model
(17 parameters), and the Rochón-Model (17 parameters) attained low errors, indicating that
at these Case 0 conditions the three models behave similarly to the MV-Model.
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On the other hand, on the four input disturbed cases (Table 2), only the Reduced-
Model could attain a better adherence to the MV-Model, while the Yang–Tsao-Model
and the Rochón-Model exhibited some lack of adherence, particularly the latter. Since
the Reduced-Model has lesser parameters than the original MV-Model and also than the
Yang–Tsao-Model and the Rochón-Model (these with different inhibition functions), it
is evident that the Reduced-Model is the best model to use under undisturbed inputs
or under disturbed inputs. In addition, the Reduced-Model will always require a lower
number of experiments for calibration via parameter estimation, attaining inferior standard
deviations with respect to parameters/responses and narrower correct parameter/response
confidence intervals, which mean less generated uncertainty.

Among the cases in Figure 4, Case +1/0 stands out as all models attained greater
errors. This can be explained by the limitations of the MV-Model [3]. The authors discuss
that for feed substrate concentrations above 52 g/L, the MV-Model generated higher errors
since there is no steady-state for ABE fermentation, while the predicted responses stabilize,
as seen in Figure 1. Therefore, since the feed substrate concentration of Case +1/0 is close
to this limit, the models may have difficulties in predicting correct concentrations, resulting
in an increase in errors.

For all cases, the model with Rochón et al. (2017) [6] inhibition attained the highest
errors among all models, which may entail two explanations: (i) ABE fermentation is not
only inhibited by butanol, as the authors suppose, and modeling must also incorporate
terms for acetic acid and butyric acid inhibitions as well; (ii) butanol is the predominant
inhibition factor, as the authors suppose, but how this inhibition occurs may need a different
mathematical approach. Among all models, the Reduced-Model with 9 parameters attained
the best performance on the undisturbed case and on the four input-disturbed cases.

4. Conclusions

A phenomenological multi-response model was developed for ABE fermentation
based on the Mulchandani and Volesky [3] ABE model. The Base-Model with 17 pa-
rameters was adjusted via the Maximum Likelihood Principle for multi-response models
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relative to experimental data from [3]. After statistical analysis, parameter significance tests,
nonsignificant parameter deletion, and re-estimation, a tight and more compact Reduced-
Model with 9 parameters was developed. This new Reduced-Model is improved compared
to the Base-Model with 17 parameters because it is smaller, runs with less numerical effort,
and, above all, has parameters/responses with lower standard deviations and narrower
95% probability confidence intervals for correct parameters/responses, which result in
lower generated uncertainties. The Reduced-Model was compared with the Mulchandani
and Volesky [3] original model and with the Base-Model using alternative inhibition func-
tions reported in the literature. It was found that the Reduced-Model adhered well to
the Mulchandani and Volesky [3] model, with improved efficiencies than the Base-Model
with alternative inhibition functions. Thus, the Reduced-Model is the best substitute of the
Mulchandani and Volesky [3] model and is appropriate for preliminary ABE fermentation
process studies and evaluations.
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Abbreviations

ABE Acetone–Butanol–Ethanol
MV-Model Mulchandani–Volesky
ABE fermentation model
PDF probability density function
Nomenclature
A Acetone concentration (g/L)
AA Acetic acid concentration (g/L)
B Butanol concentration (g/L)
BA Butyric acid concentration (g/L)
D Dilution rate (h−1)
E Ethanol concentration (g/L)
KS Substrate affinity constant (g/L)
m Cell maintenance coefficient (g/g.h)
NE Number of experiments
NP Number of parameters
NR Number of responses
S Substrate concentration (g/L)
S0 Substrate feeding concentration (g/L)
X Biomass concentration (g/L)
YA/S Acetone yield coefficient (g/g)
YAA/S Acetic acid yield coefficient (g/g)
YB/S Butanol yield coefficient (g/g)
YBA/S Butyric acid yield coefficient (g/g)
YE/S Ethanol yield coefficient (g/g)
YX/S Biomass yield coefficient (g/g)
µmax Maximum cellular growth rate (h−1)
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