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Abstract: The quality-control process in manufacturing must ensure the product is free of defects
and performs according to the customer’s expectations. Maintaining the quality of a firm’s
products at the highest level is very important for keeping an edge over the competition. To
maintain and enhance the quality of their products, manufacturers invest a lot of resources in
quality control and quality assurance. During the assembly line, parts will arrive at a constant
interval for assembly. The quality criteria must first be met before the parts are sent to the assembly
line where the parts and subparts are assembled to get the final product. Once the product has
been assembled, it is again inspected and tested before it is delivered to the customer. Because
manufacturers are mostly focused on visual quality inspection, there can be bottlenecks before
and after assembly. The manufacturer may suffer a loss if the assembly line is slowed down
by this bottleneck. To improve quality, state-of-the-art sensors are being used to replace visual
inspections and machine learning is used to help determine which part will fail. Using machine
learning techniques, a review of quality assessment in various production processes is presented,
along with a summary of the four industrial revolutions that have occurred in manufacturing,
highlighting the need to detect anomalies in assembly lines, the need to detect the features of the
assembly line, the use of machine learning algorithms in manufacturing, the research challenges,
the computing paradigms, and the use of state-of-the-art sensors in Industry 4.0.

Keywords: data-driven; artificial intelligence; quality control; anomaly; machine learning;
manufacturing; Industry 4.0

1. Introduction

The state of industrial engineering that we see today is the result of consecutive
advancements in the field of manufacturing in terms of innovation and economic develop-
ment. Generally, the industrial revolution has been considered as the ongoing process that
was initiated in the late 18th century, but four major changes in the field of manufacturing
are the reason for what the industry looks like right now. These four major changes are often
regarded as the pioneer that brought landscape changes in the manufacturing industry, so
they are generally classified as the industrial revolution that shaped the manufacturing
industry. A revolution builds on the knowledge gained from previous revolutions and
creates progressively complex networks for commercial exchange. The foremost industrial
revolution came in the late 18th century, mainly aimed at the benefits of mechanisms. The
main focus of the 1st industrial revolution was to find a substitute for humans or animals
by the means of mechanical labour. The machines of this time required a large amount of
energy and were generally situated near the source of the energy, such as coal. The means of
energy generation was also limited to coal as modern sources of energy, such as solar energy,
hydro energy, and wind energy, were not discovered yet. This combination of machines
situated near the energy source gave rise to a new form of living, called industrial cities.
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These towns tend to be situated near an energy source and had a well-connected
transportation network. New forms of manufacturing activities emerged in these cities as
they grew in terms of population. These manufacturing activities include steel, textiles,
tools, etc. Thus, by the use of mechanisms, machines were created using conventional
energy sources, and these attracted the population, which brought more manufacturing
activities. As the relationship between man and machine grew more and more, this created
complex commercial relations and an advanced form of manufacturing.

The principle of the 2nd revolution was based on mass production along assem-
bly lines, which helped in scaling up the output of the manufacturing industries. The
2nd revolution assisted in the advancement of the workforce, task, procedure, and machine
coordination. This coordination also helped in growing the output of the manufacturing
industries. The introduction of specialty and connection in manufacturing engineering,
which gave rise to several manufacturing parks, was one of the primary outputs of the
2nd revolution (industrial belts). The access to electricity at a cheaper cost also fuelled the
development of these industrial parks in the 2nd revolution. The 2nd industrial revolution
had a heavy dependence on modern telecommunication systems, such as radios, telegraphs,
and telephones, for better communication among these interdependent manufacturing
ecosystems. In this era, we experienced a major shift in the aspect of manufacturing units
and the place of energy sources. Due to the development of long-distance transportation,
such as railway and ferry services, we were able to create manufacturing parks at locations
that were far from coal mining cities, as the coals were transported to the respective loca-
tions by the means of railway and ferry services. The 3rd industrial revolution took place
in the late 20th century, where the driving factor of the advancement in manufacturing
was automation. As the burden of employing humans for doing repetitive work in the
manufacturing industry increased, the industrialist focused on finding an alternate solution
to the problem. This gave rise to the deployment of computer-aided manufacturing pro-
cesses. Computers took a central role, as many processes in manufacturing were assisted
by the computers. This gave rise to the Computer-Aided Design (CAD) package besides
Computer-Aided Manufacturing (CAM) in the industrial engineering industry.

Computer-Aided Design (CAD) is the process of designing the parts to be manufac-
tured with the assistance of a computer. By using a computer to design the parts, the
accuracy of the part to be produced increases and computers are easily able to simulate the
conditions in which the manufactured part will be used. In turn, Computer-Aided Manu-
facturing (CAM) is a process in which the software and computer-controlled machinery are
combined to manufacture the part. CAM increases the accuracy of the product by neglect-
ing the error possibility caused by a human operator. During the 3rd industrial revolution,
globalization played a vital role as the trade policies between the countries were relaxed
and low-cost labour from developing countries was available as a suitable alternative to
mechanization. So, globalization greatly benefited the manufacturing industry as it enabled
minimum input costs, especially related to labour and technology sharing among various
manufacturing countries.

The term “Industry 4.0” was first used in the Federal Republic of Germany in 2011
during the “Hannover Fair”. The event’s objective was to unveil a new German financial
strategy related to high initiatives, heralding the start of the 4th industrial revolution [1,2].
In the 4th industrial revolution, it was accepted that industrialization was the main cause
of environmental degradation. So, in the 4th industrial revolution, the main aim of the
manufacturing industry is to create a viable and sustainable ecosystem that minimizes the
degradation of the environment. The manufacturing industry in the industrial revolution
focuses on improving the product life cycle, collaborative manufacturing along with cyber-
physical systems, and applying industrial principles, such as decentralizing, virtualization,
and interoperability. Manufacturing’s emphasis has switched from mass production to
smaller batch manufacturing, which can result in a more exact reaction to variations in
the request curve while also reducing production waste [3]. Figure 1 shows the four
industrial revolutions.
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Industry 4.0 also works on complete network communication between companies,
factories, suppliers, logistics, resources, customers, etc. This will assist the company in
staying current with real-time demand curve fluctuations. Industry 4.0 primarily focuses on
creating “smart factories” [4], where items may be distinguished and located at all periods
by stakeholders. The stakeholders will also be able to know the history of the product,
the current status of the product, and all the possible routes the product has to reach its
target state. Thus, the stakeholders can efficiently guide the product to its target state and
reduce the transportation time to a minimum. As a result, Industry 4.0 encompasses a wide
variety of critical factors for the evolution of a sustainable industrial sector. Minimizing
waste, the wise utilization of natural resources, efficient usage of raw materials, high power
capacity, and streamlining production time are all vital values for the sector’s long-term
management. In this paper, we aim to find the recent trends and changes that have taken
place after Industry 4.0 concerning machine learning.

The rest of the paper is organized as follows: Section 1 deals with a summary of
the four industrial revolutions that took place in the manufacturing sector; Section 2
describes the background of existing technologies; Section 3 highlights the need to detect
the anomalies and features of an assembly line; Section 4 deals with machine learning
algorithms; Section 5 discusses the research challenges; Section 6 discusses the computing
paradigm; Section 7 discusses the state-of-the-art sensors used in Industry 4.0; Section 8
shows a multi-level graph approach of Industry 4.0; Section 9 contain the conclusions; and
Section 10 discusses future work.

2. Background

Industry 4.0 is enabled by the following technologies (Figure 2).

(a) Big Data

In Industry 4.0, information from production is evaluated and processed to propose
data-driven solutions to current problems. This necessitates a well-defined, complicated
structure of the manufacturing facility, as well as many Industrial Internet of Things (IIoT)
sensors capable of monitoring operations in real time and sending data for processing. A
large amount of data is created when several sensors are used to examine any given stage of
a manufacturing process. These data must then be saved to comprehend the performance
evaluation of the manufacturing process and to modify the process as needed. As a result,
big data management is required for effective data management and storage.

Leite M et al. [5] described the need for big data in Industry 4.0. As more sensors are
used, and where these sensors can communicate with one another, a complex network
of data is created. These data must be mined, evaluated, and preserved since it is the
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property of the supplied organization. The authors also mentioned the properties of these
data that must be dealt with, which are volume, variety, velocity, value, and veracity. The
authors then used a case study to examine the differences between the data collected using
processing procedures and data received from social media.
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(b) Real-Time Optimization

Leite et al. [5] described the real-time optimization of the supply chain in the era of
Industry 4.0. The authors attempted to achieve supply-chain process solutions that are in-
ternationally optimal and adaptable in the manufacturing business. The authors attempted
to concentrate on the supply-chain market’s planning and scheduling phases. Planners can
deal with market uncertainty by improving the planning and scheduling processes.

The authors also emphasized the sustainable process as a new need that may be met
by real-time process optimization. This will allow for eco-friendly operation while also
lowering costs. To discover the best answer to the challenges presented during the planning
and scheduling phases, the authors adopted a meta-heuristic method.

(c) Cloud Computing

Yen et al. [6] focused on improving the speed of production performance. The au-
thors underlined the need of increasing productivity to offer the product to the organiza-
tion. The fourth industrial revolution places a strong emphasis on cyber-physical systems.
Yen et al. [6] classified cyber-physical systems into three broad categories: cloud services,
sensor infrastructure, and embedded systems. The authors also emphasized the significance
of cloud services, which enable data storage and security while also allowing employees to
access services or data regardless of their physical presence in a specific geographic region.
The cloud storage service offloads server maintenance to a third party while ensuring the
data’s security and availability for the consumer. This allows a manufacturing organization
to simply expand and descale their infrastructure based on their needs without incurring
infrastructure costs. The second advantage of cloud services is to provide services to the
customer without the physical installation of any specific software. Finally, cloud services
allow for a more seamless transformation and transfer of data both within and outside the
cloud architecture. These contribute to increased manufacturing process productivity.
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(d) Cyber-Physical System

Jazdi et al. [7] described the importance of cyber-physical systems to lead in the new
industrial revolution, namely, the data-centric Industry 4.0. The authors also compared the
cyber-physical system to a typical embedded system, with the main distinction being the
intercommunication capability provided by the cyber-physical system. Jazdi et al. [7] also
showed that a cyber-physical system with the help of the Internet of Things presents the
capability of smart networking, mobility, and flexibility.

(e) Additive Manufacturing

Ugur M Dilberoglu et al. [8] emphasized the need for additive manufacturing and
its importance in Industry 4.0. According to the authors, as mass customization becomes
possible in smart factories, the need of meeting customers’ demands for minute detail
has been stressed. This is possible by using additive manufacturing methods. As a
result, additive manufacturing has gained widespread acceptance in the fields of aerospace
manufacturing, automobile manufacturing, pharmaceutical manufacturing, and so on.

(f) Cobots

Rinat Galin et al. [9] suggested how robots can collaborate with humans to complete a
given task efficiently. One of the most visible aspects of Industry 4.0 is the usage of robots in
manufacturing. Robots are more efficient and precise than humans in performing repetitive
tasks in the industry. The authors divided industrial robots into three categories: industrial
robotics, collaborative robots, and mobile/semi-autonomous robots. An industrial robot is
reprogrammable and inflexible to a position. Collaborative robots aid people in completing
tasks while being near the operator. The third type of robot is a semi-autonomous mobile
robot that follows the operator’s instructions.

(g) Machine Learning

Machine Learning is the process of evaluating previous data and solving current
issues. Machine learning has been a prominent topic in the implementation of Industry 4.0,
with a focus on data-centric solutions. Machine learning is divided into three categories:
machine learning, deep learning, and artificial intelligence. Machine Learning takes a
shallow learning approach to the data to provide a given output, while deep learning itself
tries to find the correlation before providing any given output. To make repetitious tasks
autonomous, artificial intelligence uses machine learning or a deep learning technique.

(h) Augmented Reality

Volker Paelke et al. [10] suggested the use of augmented reality in a smart factory
environment. Augmented reality may simulate the real environment, allowing workers to
receive more hands-on training. Workers will be able to work more efficiently as a result
of this. A shift from a command line interface to a graphical user interface, to augment
reality, is also suggested by the authors. The graphical user interface was able to offer a
visual depiction of the task, whereas augmented reality can assist in fully visualizing the
environment in which the work is to be completed. The authors also discussed how to
employ video see-through, optical see-through, and projection for a more effective training
experience for workers.

(i) Internet of Things

In Industry 4.0, data collection and data sharing play a vital role in providing data
solutions to smart factories. As a result, cyber-physical systems are used to create smart
sensors that gather and interact with one another. The Industrial Internet of Things (IIOT)
infrastructure is utilized for communication among these sensors and data collection.
Wan et al. [11] defined IIoT as the ability to collect data from various sensors in the network
securely and forward the given data to the cloud services for analysis of the data. As a
result, the IIoT bridges the gap in collecting and transferring sensitive data from sensors to
cloud infrastructure.
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3. Anomaly Detection

In data science, the process of identifying events and observations that deviate
from the usual pattern in the dataset is called anomaly detection. Outliers are different
from anomalies. In a given dataset, the data are closed together based on any given
standard deviation of the mean or median. There can be some extreme data points that
can be distributed evenly or unevenly in a fixed range. These extremes can be very
large or very small, depending on the orientation of the entire dataset. These extremes
present in the data are called outliers. An anomaly is a term that can be used instead of
outliers interchangeably.

There can be multiple reasons why an outlier is present in a dataset. The most common
reason is human error, which is produced while collecting the data. For example: take the
value “999” instead of “666”. Such type inconsistencies greatly affect the dataset negatively.
However, the magnitude to which the outlier affects the data is still unknown, but it can
completely change the perception of the data. So, the elimination of such a dataset becomes
necessary. For example, for 10 observations (1, 2, 3, 4, 5, 6, 7, 8, 9, 100). Here, N = 10, and the
sum of the number = 145. The mean of the 10 observations is 14.5, but on closer inspection,
we observe that of all the data in the observation area in the 1-unit incremental order, only
the last one is supposed to be “10”, but instead it is “100”. This “100” can be considered
an outlier. Now, if we consider “10” at the 10th position of the observation, then the mean
would be 5.5. This clearly shows that an outlier in the dataset had pulled the mean towards
itself. Thus, giving the wrong perception of the dataset. In the case of the median, there
would be no change as it solely focuses on the central tendency.

To need to detect an outlier in our dataset is very important. This can be achieved by
identifying the data points whose difference between the mean and median is very high. For
this, the help of data visualization can be considered, such as scatterplots and boxplots or
violin plots. Through these data visualization techniques, we can easily detect the presence
of any outliers in the dataset. Taken from Osama Abdelrahman et al. [12], outlier data are
shown in Figures 3 and 4. Anomaly data can be grouped into three main categories:
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(a) Point Anomaly

In a point anomaly, there are single independent data instances that show deviation in
their behaviour compared to other data instances in the dataset. In Figure 5, samples of
point anomalies are shown in 2D (two-dimensional space).
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(b) Context Anomaly

A context anomaly, also called contextual anomaly and condition anomaly, is where
data instances can be considered as an anomaly in a given situation only; i.e., the data
points are normal in another context. Contextual anomaly is commonly seen in time-series
data streams.
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(c) Collective Anomaly

A collective anomaly can be considered as a collection of various data instances that
appear to be normal when considered individually, but show irregularity when considered
in a group or a bigger picture. The whole group of data will show deviation from the
normal data instances. To prevent or eliminate the outlier, we must first detect an outlier in
the dataset. It might happen that the data are not scaled and are exponentially increasing
and decreasing; this pattern is viewed as an outlier in the dataset. So, before eliminating the
outlier, we need to first scale the data in the dataset. Depending on the number of outliers
present in the data, we can take the measures. If the anomaly is minute, then eliminating
the anomaly points will not affect the dataset. If the outliers are more than the sampling,
the data is more meaningful; also, using the median instead of the mean will work, as
the median calculates the central tendency to reduce the effect of an outlier in the dataset.
Finally, it is advised to take suggestions from a domain expert for a proper understanding
of the data.

Features of Assembly Line

For assembly lines, precise configuration and essential management strategies are
employed to increase efficiency and effectiveness. For effective management, factors
such as scheduling, industrial environment, and assembly line balancing are taken into
consideration. Since the inception of the assembly line at the Highland Park Ford Plant
in Michigan, which may be recognized as the “Industrial Revolution” of the modern era,
significant progress has indeed been made in manufacturing. Today, an assembly line is
integrated with intelligent sensors, the Industrial Internet of Things (IIOT), sophisticated
machinery, scientific management planning, etc. Bortolini et al. [13] describe the various
dimensions that are considered in assembly system design, as shown in Figure 6, which are
discussed as follows:
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(a) Balancing

Balancing is the most researched topic in the field of assembly-line design. In this
context, academic scholars and experts have established models and means for optimizing
production-line tasks at the workstation. For this, the objective function is taken into
consideration and a set of constraints is made to satisfy the objective function. This results
in the optimization of various attributes that are associated with the assembly system, such
as time and cost.

(b) Sequencing

The sequencing metric is the brief-stretch counterpart of the balancing dimension. In
diverse-model assembly lines, numerous product models from the shared product family
fulfil the requirements of mass customization. So, to minimize the workstation load and to
fulfilling the customer’s demand, sequencing is done on the assembly line product model.

(c) Material feeding

In an assembly line, several products are employed. These models work independently
but in sync with other product models. So, each product models require an independent
material requirement, which is required to be fed into the assembly line at different time
intervals. So, the need to feed the right materials at the right locations can be solved using
the material feeding process.

(d) Equipment selection

To reduce the operational cost of the assembly line up to date, machines and sensors
are required to be installed at the assembly station. As a result, a necessity for equipment
system configuration is to pick which apparatus to purchase and install at the workplace to
minimize operational costs.

(e) Learning effect

The learning effect predicts an inverse link between an employee’s number of job
duplications and work length. In today’s manufacturing environment, an assembly line
is massively customized, and the product’s life expectancy cycle is quite short. So, the
introduction of new products in the assembly system causes reduced productivity due to
the training of the workers. To decrease this time consumption, an analysis of the learning
effect on the assembly system is done.

(f) Ergonomic risk

Ergonomic risk is the physical stress that the worker induces while working for a
prolonged period. Often, the workers in the assembly system suffer from musculoskeletal
disorders, due to repeated operations and the high frequency thereof. So, the workstations
must be ergonomically friendly to the workforce working in the workstation. With the
advent of the 4th industrial revolution, data-driven approaches are encouraged, and the
decisions taken regarding the assembly line systems are done using data-driven decision-
making. These gave rise to various skills, such as cyber-physical systems (CPS), the
Internet of Things (IoT), cloud computing, machine learning, collaborative robots (co-bots),
augmented reality, and additive manufacturing.

4. Machine Learning Algorithms in Manufacturing

With the advancement in data-collection approaches, concepts such as a Smart Plant
and Internet-of-Things (IoT) have become widespread, as described by Ziqui Kang [14].
The use of IoT has exponentially increased in the manufacturing sector in the last decade.
The sensors used in Industry 4.0 and IoT can collect data in real time and on-site from the
production lines. Machine learning has been used in Industry 4.0 to effectively accomplish
complex tasks, such as forecasting, analysis, strategy, and predictive modelling, using past
information. Therefore, the industry nowadays is focusing mostly on data-dependent
approaches. It has also been discovered that superior-quality data and massive data
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collections may vastly enhance the accuracy of the model deployed in machine learning
algorithms. When working with such a machine learning algorithm, it is critical to use a
suitable algorithm to address a specific problem. Machine learning can be broadly classified
as follows (Figure 7).
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(a) Supervised Learning

A machine learning algorithm in supervised machine learning constructs a function
from the relevant input or multiple inputs and provides output as a set of labelled trained
data. This function is based on the pattern that can be observed between the given input
and output of the machine learning algorithms. Supervised machine learning expects data
to be cleaned in terms of feature variety and assumes parameter optimization by using a
given machine learning algorithm.

(b) Unsupervised Learning

The unsupervised machine learning method does not need labelled training data for
its usage and implementation. Since there is no understanding of the connections between
the input and output of the information, unsupervised machine learning techniques are
often deployed. Unsupervised machine learning algorithms are often employed when the
correlations between the data input and output are unknown to the user.

(c) Semi-supervised Learning

The supervised and unsupervised methods deal with labelled data and unlabelled
data completely, but some datasets are such that only a minor portion is labelled, but
which cannot be neglected. Such data cannot be analysed by supervised and unsupervised
machine learning algorithms. To deal with such algorithms, semi-supervised machine
algorithms are used.

(d) Reinforcement Learning

Reinforcement learning majorly deals with real-time analysis of the data. Here, the
agent observes the environment in which it is placed. All the actions that the agent performs
will result in some reward to the agent. The reward can be positive or negative, depending
on whether the action by the agent is fruitful in achieving the stated goal.

Different techniques that are used in machine learning to solve the given problems are
as follows:

i. Regression: In regression, input features are mapped to a continuous numerical value.
The output value can be a number or a floating value.
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ii. Classification: Similar to regression, in classification, the inputs are mapped to one of
the output values, but here in the case of classification, the output values are discrete.
In the case of binary classification, the values can be zero or one, while in the case of
continuous values, the output consists of several classes.

iii. Clustering: In the case of clustering, the data are classified into several groups. These
groups are created based on similarities in the behaviour or characteristics of the data
present in the same group.

iv. Data Reduction: Data reduction is done on the dataset to reduce the number of
features or records present in the dataset. We can enhance the precision of the machine
learning algorithms by lowering the number of rows that have some missing data or
irrelevant data. By eliminating features that are irrelevant to the problem at hand, we
could enhance the accuracy of the machine learning algorithm, which is also called
the feature-extraction process.

v. Anomaly Detection: In a given dataset, there can be some data that are misrepre-
sented in the dataset taken into the consideration. Adding those data to the algorithm
will reduce the accuracy of the algorithm, so the removal of those anomalous data
becomes necessary from the data.

Some of the widely used machine learning algorithms in Industry 4.0 are discussed below:

i. Isolation Forest:

The isolation Forest approach, initially suggested by Fei Tony Liu et al. [15], is one of
the most successful in anomaly identification. The isolation forest is a tree-based anomaly
identification system based on decision tree methodology.

The isolation forest divides the data into different branches, depending on a randomly
chosen threshold value. This branching procedure is repeated until each data point in the
provided dataset is isolated. Once the data have been isolated, the isolation seeks to locate
the data points that required the fewest iterations when compared to other elements in
the dataset during the isolation process. Thus, as compared to other isolation-detection
methods, this approach to finding outliers offers the Isolation Forest approach a distinct
edge in detecting outliers explicitly. The unsupervised machine learning approach is used
to classify the Isolation Forest.

In industry 4.0, Isolation Forest algorithms have been extensively used in the detection
of anomaly behaviours in manufacturing operations. So, the possibility of detecting some
unusual characteristics has been widely used in the manufacturing of automobiles and
electrical appliances such as plugs and sockets.

ii. Decision Tree:

Decision Tree was originally enhanced by Ross J Quinlan et al. [16], who proposed the
ID3 decision tree method, which used Entropy Information Gain. In the present period,
Ross J Quinlan’s ID3 and Classification and Regression Tree (CART) contributions are
frequently employed in offering data-related solutions.

A Decision Tree is a type of supervised machine learning that predicts based on the
Gini Index value and the Entropy Information Gain. Decision Trees are commonly utilized
in classification issues. The decision tree’s base is referred to as the root, and a number of
nodes branch from these nodes, which are referred to as leaf nodes. The decision nodes
branch based on the Gini index value. Finally, a leaf node emerges from the decision nodes
and is in charge of the data’s final classification.

Being one of the oldest machine learning algorithms, the Decision Tree still finds its
relevance in the data-driven manufacturing era of Industry 4.0. A decision tree has been
widely used in predicting the number of defective engines that do not comply with global
performance standards.

iii. K-Nearest Neighbour:

K-Nearest Neighbour, proposed by Evelyn Fix et al. [17], is one of the most ancient
and successful machine learning algorithms. This algorithm is commonly used to provide
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current solutions to industrial difficulties. The K-Nearest Neighbour machine learning clas-
sification method is non-parametric and supervised. The K-Nearest Neighbour algorithm’s
basic criterion is that it assigns the provided data point to the group of data that is closest
to the data point. The distance between a data point and a data cluster is calculated using
Euclidean distance or Manhattan distance.

One of the crucial machine learning algorithms for supervised learning of the data,
K-Nearest Neighbour is used in smart factories for detecting inconsistencies in the man-
ufacturing of hard disks. In the manufacturing of electronic appliances of switches and
sockets, K-Nearest Neighbour is used in the detection of anomaly data and finding the root
cause and reasons for its occurrence.

iv. Naive Bayes:

Naive Bias is a probabilistic learning approach that is being employed in many data-
driven solutions. Thomas Bayes was the first to invent the term “Nave Bayes” in 1702.

The word naive refers to the primary premise on which the algorithm is built, which
is that each attribute in the provided data is completely independent and has no link
between them. This implies that changing any variable in one feature does not influence the
variable connected with the other feature. The Bayes rule, commonly known as conditional
probability, is followed by Nave Bayes. In today’s era of data-driven solutions, Naive
Bayes has been particularly used in detecting anomaly behaviour in the log files of hard-
disk manufacturing.

v. Support Vector Machines:

Cai et al. [18] describe the support vector machine (SVM) algorithm. SVM is a super-
vised machine learning approach in which the classified data are projections in a hyperplane,
which is an n-dimensional Euclidean space with an n-1 dimensional subset dividing the
space into two disconnected halves. The data will be separated into multiple clusters by
the decision boundary along either side. These decision boundaries are based on a variety
of mathematical kernels, including the radial bias function, sigmoid, polynomial, nonlinear,
linear, and so on.

The application of Support Vector Machine (SVM) has been extensive in finding
irregular behaviour in hard-disk manufacturing, detecting defects on steel surfaces, visual
industrial defect detections, and also finding the root cause of the given problem. This
suggests that the Support Vector Machine is one of the most important machine learning
algorithms in Industry 4.0.

vi. Random Forest:

The author Leo Breiman et al. [19] proposed a bagging-based technique for solving
classification and non-classification issues without the need for any specific algorithm. This
Random Forest algorithm employs supervised machine learning methods.

The input is initially segmented and fed to numerous decision trees concurrently in
the Random Forest method. For classification issues, the majority output from all trees is
evaluated, whereas the aggregate value is utilized for non-classification problems. This
approach addresses the low bias and high variance issue noticed in decision tree algorithms
since it is not dependent on any specific algorithm.

Random Forest is one such machine learning algorithm that has seen a wide variety
of applications in various fields, ranging from healthcare to finance, housing, tourism, etc.
Random Forest has also shown promising results in the field of manufacturing. In Random
Forest, as no single tree dominates the output, its results are unbiased. In production
plants, Random Forest has been utilized to analyse Internet of Things (IoT)-based sensors
to monitor and control various manufacturing processes.

vii. Logistic Regression:

David Cox et al. [20] described Logistic Regression, which resulted in the solution of
a classification issue. Logistic Regression (LR) applies supervised machine learning to a
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classification issue. The most significant advantage of LR is that it converts continuous
data into a categorized output. This is accomplished by employing a sigmoid mathematical
function, which determines a fixed threshold value between 0 and 1. All incoming variables
are then identified depending on whether they are in the above or below cluster based on
the threshold value.

Logistic Regression has been used in data-driven factories for observing the data from
the sensors and predicting the machine’s operational life. This enables the operator to
schedule systematic maintenance of the machines associated with the production process
and prevent bottleneck time in production processes.

The following Table 1 represents various algorithms that are used in the produc-
tion processes.

Table 1. Various algorithms are used in production processes regarding machine learning.

Authors Key Contributions Algorithms

Van Stein et al. [21] Anomaly detection in car manufacturing
was done

Global Local Outlier in Sub-Space
(GLOSS)

David Muhr et al. [22] Predict the anomaly detection has been
used to predict defective engines.

Isolation Forest (I-Forest),
Partitioning Local Outlier Factor (PLOF),

One-Class SVM (OCSVM),
Local Outlier Factor (LOF)

Thanatarn Pattarakavin et al. [23]
An inconsistency in the log data files

from the hard disc manufacturing
conditions was determined.

Decision Tree,
K-Nearest Neighbour (k-NN),

Naïve Bayes,
Support Vector Machine (SVM)

Dorian Moldovan et al. [24]
Machine learning based on sensor control

in the manufacturing process
was detected

Gradient Boosted Trees (GBT),
Random Forest (RF),

Logistic Regression (LR)

Weizhong Yan et al. [25]
Reducing operation and maintenance

costs of gas turbine engines using
anomaly detection was done

One-class ELM (OCELM),
Isolation Forest (IForest),

One-class SVM (OCSVM),
Non-kernel based One-class ELM

Lehr et al. [26] Anomaly detection on the core failures of
Die-Casting was detected

Local Outlier Factor (LOF),
One-class SVM (OCSVM)

Kun Liu et al. [27] Defects on Steel surface were detected
One-class SVM,

Generative Adversarial
Networks (GANs)

Benjamin Staar et al. [28] Abnormalities on ImageNet data for
surface inspection were detected Convolutional Neural Network (CNN)

Tamas Czimmermann er al [29] Visual defect detection for Industrial
applications was detected

Support Vector Machine (SVM),
k-Nearest Neighbour (k-NN)

Benjamin Staar et al. [30] CNN-based surface inspection in
industrial applications was done Convolutional Neural Network (CNN)

Osama Abdelrahman et al. [12]
Anomaly detection and root cause

analysis on assembly line manufacturing
was done

Histogram-based Outlier Score (HBOS),
One-class SVM (OCSVM),
Isolation Forest (IForest),

k-Nearest Neighbour (k-NN),
Clustering-Based Approaches for Outlier

Detection (CBLOF),
Local Outlier Factor (LOF),

Angle-based Outlier detection (ABOD)

5. Research Challenges

As the manufacturing industry moves from four industrial revolutionary stages, rapid
changes took place in the manufacturing sector. Concepts such as productivity were
introduced, as well as where to optimize the manufacturing operations, how to reduce
the cost of manufacturing and thus increase profit as much as possible. Emphasizing
collaborative work was given more attention, and this gave rise to the Total Quality
Management (TQM) process for better optimization of manufacturing operations. With
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the rising of Industry 4.0, the demand for making data-driven decisions has increased
tremendously. By making data-driven decisions we can satisfy the modular needs of the
customers. The amount of wastage can also be reduced by producing the product on the
given parameters that provide the optimal output. This can be achieved by analysing past
trends in the changes of the parameters that govern the production process. Further, with
historical data, we can predict the requirement of raw materials that will be required at any
time of a given production process. However, the conventional method for designing and
implementing the manufacturing processes requires to be updated with the modern means
of approaches that rely heavily on data analysis of historical data.

6. Computing Paradigm

Machine learning is a computational method that can be used effectively in various
domains. Machine learning can be used to predict the need for maintenance in the machine.
Conventionally, the machines are serviced based on fixed parameters; but, with time,
the degradation in the performance of the machines takes place. So, the effectiveness of
servicing the machines reduces with time. The normal statistical method fails to predict the
time interval for the maintenance of the machine. So, machine learning algorithms can be
used to predict the accurate time interval for machine maintenance.

Time-series data analysis, Gaussian mixture models, and multivariate linear regression
were the three machine learning algorithms utilized by Gauri Shah et al. [31] to detect
anomalies in engine-based machines. In linear regression, a linear relationship between a
dependent and an independent variable is used to predict the values of the dependent vari-
ables. The multivariate linear regression model is used as the number of input parameters
is more than one. For deciding the threshold, a Gaussian mixture model was used. The
data used in the paper [31] were not continuous so time series data analysis was used. Once
outliers are discovered using machine learning models and the parameter limits are known,
we can detect anomalies in machine performance in real-time and alert maintenance crews
to execute precautionary maintenance and maximize machine uptime; this will enable to
increase in the machine’s operational lifespan.

Bas van Stein et al. [21] mainly focussed on finding an anomaly detection algorithm
for their BMW dataset. The database includes information regarding steel coils used
to manufacture various automotive body components, including side edges, roofs, and
structural components, including B-pillars. To create the various components of cars,
different types of materials are used, requiring different machine settings. The creation of
a final product is highly complex as the process of material selection and corresponding
machine setting is highly dimensional. Data-mining algorithms are used at the start of
the production chain to estimate the places where problems may arise. Though most of
the characteristics are still unknown at this moment in the production process, the outlier
detection approach is very essential at this early stage. However, using anomaly detection
techniques at this early stage is a big challenge.

Conventional mathematical models, such as Optimal Operational Control and Real-
Time Optimization, are used, but these mathematical models fail to detect external distur-
bances and noise. Another crucial disadvantage produced by adopting the mathematical
formula is that it cannot entirely optimize the manufacturing process. Due to these lim-
itations, a data-determined method is required to monitor and optimize the production
process. The advantage of using a data-driven approach is that it requires minimum knowl-
edge and understanding of the domain area. The data-driven approach also incorporates
noise in the data and these noises can be reduced. In [21], the authors propose the use
of Global Local Outlier Probabilities (GLOSS) for outlier detection. It was observed that
GLOSS works well in detecting outliers in high-dimensional data compared to Local Outlier
Factor (LOF) and Local Correlation Integral (LOCI).

Finally, in [21], unsupervised machine learning techniques, such as intrusion detection
systems, were used for measurement to find areas of incoming blanks and rapid deviations.
Following the detection of outliers or anomalies in the data, forecasting data-driven models,
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including such Random Forest, were used to validate the algorithm on historical data,
containing the properties of the materials, specifications of the product, and a quality
pointer towards the inability to forecast the expected outcome of the inbound steel blank
before stamp. The machine settings may be set depending upon those machine learning
models to obtain the appropriate material qualities for the steel blank.

The objective of the study by David Muhr et al. [22] was to divide the data according
to the relevant domain information and determine if the effectiveness of outlier detection
algorithms is enhanced for a malfunctioning internal combustion engine. To see if the
effect of data partitioning on high-dimensional vibration data is taken from the internal
combustion assembly line. A divide and conquer technique, which is based on data
portioning, is taken into consideration for anomaly detection where abundant unlabelled
data are available. After the engine has been put together, the data from the assembly
line is gathered and sent for a cold test. During this test, an electric motor is linked to
the engine and different indicators for torque, force, temperatures, mechanical vibrations,
and sound discharge are monitored. The study of the vibration in the internal combustion
engine is very complicated as the internal combustion engine is very complex in terms of
design. So, usually, the gathered vibration based on the above parameters is measured
and the anomaly is manually detected by a graphical representation of the above data
by the technician. In [22], by using machine learning methods, the threshold value was
determined for deciding if the engine has failed the test. As defined by Chandola et al. [32],
an anomaly is “the problem of finding the patterns in the data that do not conform to the
expected behaviour”.

The detection of anomalies in the data can be classified into three classifications:
(1) supervised anomaly detection, where ground-truth labels are available for both normal
and anomalous instances; (2) semi-supervised outlier detection, where the trained data
consists of solely normal cases, and abnormalities differ from the learned model; and
(3) unsupervised outlier detection, where no labels are required and abnormalities are
assumed to reside in the minimum concentration region of the data. Generally, the data
are available in supervised form; however, there might be inconsistencies in the previous
labelling. So, in this paper, unsupervised anomaly detection methods were used. To detect
the algorithm, three algorithms were used. The 1st algorithm with the Local Outlier Factor
(LOF) was used where local outliers were detected based on how isolated the data is
from its surrounding neighbourhood data points. The 2nd algorithm used was One-Class
Support Vector Machine (OCSVM), which is principled on Support Vector Machine, where
only positive examples are considered while outliers are considered as negative examples.
In the 3rd algorithm, Isolation Forest (I Forest) was used for anomaly detection, where
anomalies are isolated without profiling the normal instances. Further, the data used were
partitioned and compared with the results of non-partitioned data, to see the effect, as
shown in Figure 8.

The Area Under Receiver Operating Characteristics (AUROC) score was utilized
to compare the outcomes of various abnormality-detection algorithms, where a perfect
ranking would provide an AUROC value of 1 and the lowest score would yield a value of 0.
The result showed that data partitioning increased the AUROC score in each algorithm
and further averaging and maximizing all three algorithms also increases the AUROC
score. Thanatarn Pattarakavin et al. [23] worked on the production line of a hard-disk
manufacturing firm in Thailand. Hard drives are produced using a highly sophisticated
procedure that includes hundreds of automated equipment that operate continuously to
produce the given product. If an abnormality occurs, the entire production line is halted,
and the diagnostic crew inspects each machine to determine the origin of the anomaly.
This process is time-consuming as it stops the production line till the diagnostic team finds
the root cause of the error. In an autonomous manufacturing line, all of the equipment
is tracked using different types of sensors, and the logs from such sensors are utilized to
determine the reason for the issue. So, by using the machine learning method on these log
files, the prediction of anomalies can be done, which will help the diagnostic engineers to
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solve the issue in less time and more effectively. The machines used in manufacturing the
hard disk are tightly synchronized and collaborate and communicate to keep the production
running smoothly.
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When any anomaly is detected, the production line is stopped, and the cause of the
disruption is identified and solved quickly. Log files from all the machines are diagnosed.
These log files contain information; some of them can be useless to the diagnostic team,
and some information needs to be removed. This process of removal of the unimportant
message is very complicated and requires a human expert. A considerable amount of
the error is caused by operators, called human errors, but which are easy to detect by the
operator. In turn, a large amount of error is caused by the software part of the production
line. So, to detect anomalies caused by the software part of the production, machine
learning algorithms are used on log files obtained from the machines involved in the
manufacturing process.

The dataset used in [23] is a head stack assembly (HAS) used in hard-disk manu-
facturing, as shown in Figure 9. Note that the process sequence is the same as given in
Figure 10. In [23], for data visualization and data analysis, the authors use orange canvas
software. To extract the critical information before data visualization, pre-processing of the
data from the log files is done to remove unnecessary data present in the log files. All the
transactions present in the log file are separated and placed into the individual transaction.
In the log file, each operation is described as a process. Using machine learning methods,
the author can correctly extract eleven parameters that may be utilized to anticipate the
abnormality. Here, the three machine learning algorithms are Naive Bayes, Support Vector-
ing Machine (SVM), and k-Nearest Neighbour (k-NN), with Decision Tree also taken into
consideration for predicting anomalies in the data. Classification performance (CA), F1
Score, Precision, and Recall are among the outcomes, with F1 being the harmonics average
of Precision and Recall. To evaluate the different machine learning models, Recall and
Precision were employed.
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The dataset was split into 10 sections, nine of which were utilized for learning the pa-
rameters and one for testing. All the machine learning methods performed well, according
to the results. To detect anomalies in the dataset, SVM and Decision Tree performed well, as
the dataset was highly unbiased due to the implementation of six sigma in manufacturing.
In six sigma, only 3.4 defects are allowed per million opportunities. The overall best per-
formance was achieved using Support Vector Machine (SVM). Dorin Moldovan et al. [24]
aimed to study and analyse machine learning techniques that are applied to the SECOM
dataset, which is a dataset based on the semiconductor manufacturing process. The dataset
consists of noisy data, high-dimensional feature space, and imbalanced data. Here, feature
selection was based on three techniques: Principal Component Analysis (PCA), Boruta
Algorithm, and Multivariate Adaptive Regression Spline (MARS). The papers used Logistic
Regression (LR), Gradient Boosted Trees (GB), and Random Forest (RF) to validate the
feature selection.
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For the industry to cope with the rapidly changing needs of customers, suppliers,
and logistics providers, and for material procurement, it has to implement a data-driven
approach for correcting, updating, optimizing, and controlling the production process by
taking into account external and internal stimuli, including parameters outside the factory
as well as inside the factory during the manufacturing process. To achieve the goal of
obtaining data-driven decision-making in the manufacturing process, the stakeholders
focus on collecting the data from all the components that directly or indirectly participate in
the manufacturing process. The industry largely relies on cutting-edge embedded control
structures, sophisticated controller machine learning algorithms, and enhanced sensing
instruments for the collection and analysis of this data. In the field of production process
management, the use of large amounts of data and various advanced machine learning
algorithms leads to several benefits, including early detection of quality problems, better
decision-making on defects and quality enhancement, and prediction of new product
failures. In this regard, analysis of sensor data has greatly contributed to avoiding costly
human interventions and reducing manufacturing waste.

In Dorin Moldovan et al. [24], the SECOM dataset was cleaned as shown in Figure 11;
then, the features were extracted, and sampling of the data was done before applying
machine learning algorithms. The need for going through all these processes is because the
data were highly imbalanced and consisted of various missing values in it. Data cleaning is
to prepare the data, as part of preprocessing. Here, all the missing values in the dataset
(which is represented by “NaN”) need to be removed, filled using the mean of the feature,
and finally the data are normalized between the interval of [0,1]. The objective of feature
selection is the process of eliminating those features that do not contribute to classification.
These three techniques are discussed in [24]. The first is the Bourta algorithm, in which the
algorithm identifies the variables that are associated with the Random Forest Classification
algorithm. By considering the Residual Sum of Squares (RSS), the Multivariate Adaptive
Regression Spline (MARS) decides which features are important. Furthermore, Principal
Component Analysis (PCA) is used to turn a set of statistically independent attributes into
a set of associated ones, known as the principal components. The result of all these feature
selections is shown in Table 2.
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Table 2. Comparing various selection techniques used for feature extraction.

Feature Selection Algorithm Number of Features Selected Understandings

Bourta algorithm 22 Uses Random Forest (RF) as default
MARS 10 Used for Regression Analysis
PCA 111 Utilizes the use of orthogonal linear transformation
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Further, in [24], the authors discussed cross-validation to validate the machine algo-
rithm. This 5-fold approach was used where 4-fold became a training dataset and 1-fold
was the testing dataset for the algorithm. Two approaches were used to reduce overfitting.
The first is Under Sampling of Majority Class (where the amount of majority class examples
is equal to the amount of minority class examples) using WEKA software, and the second is
Synthetic Minority Oversampling Technique (SMOTE), which oversamples minority class
data using the k-Nearest Neighbour algorithm among the nearest minority class values.
In [24], machine learning algorithms such as Gradient Boost (GB), Random Forest (RF), and
Logistic Regression (LR) were applied to all the changes to the dataset. The metrics used
for comparison are as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F − measure = 2 ∗ Precision ∗ Recall
Precision + Recall

(3)

Accuracy =
TP + TN

(TP + TN + FP + FN)
(4)

In the components of the confusion matrix, Equations (1)–(4), TP denotes True Positive,
FP denotes False Positive, FN denotes False Negative, and TN is True Negative. It was
then discovered that when the data was unsampled, for precision, the best value (0.8944)
was obtained when choosing Logistic Regression and using the Bourta algorithm. Using
the Random Forest algorithm and the Bourta feature selection, the Precision was modified
and improved when the majority class was under-sampled (0.9154). For oversampling
of the minority class (0.9050), precision was obtained using Logistic Regression and the
MARS algorithm. The False Positive rate for the unsampled value was 0.7559 when all
the features and Logistic Regression were used. The Bourta algorithm was used to select
features, and Random Forest (RF) was used to classify using the False Positive rate (0.2547)
for the majority class. A False Positive rate of 0.4374 was obtained when the minority class
was oversampled and a Logistic Regression algorithm was used for the classification.

In Weizhong Yan et al. [25], a condition-based critical maintenance method was used
to minimize the power plant functional and maintenance (O&M) costs, particularly in
industrial gas turbine power plants. For this approach, the author used the Extreme
Learning Machine Learning (ELM) algorithm. Yan et al. [25] described an anomaly that
occurs very rarely compared to the normal instances in the data. As a result, the authors
gathered Thermal Couples (TC) facts, which have been implemented in the turbine stages,
in the dataset. Within the combustion chamber, fuel and pressurized air are combined and
combusted; this hot gas then flows through numerous turbine stages, where thrust/power
is created. Monitoring the exhaust gas temperatures in the exhaust of the gas turbine
section will help in getting combustor abnormalities using a Thermal Couple (TC). In the
dataset collected, there is a 27-combustor chamber and the Thermal Couple (TC) collects
the exhaust temperature from this combustor. The data were collected for one year. In the
dataset collected, there are 10 events where abnormalities were observed. These 10 events
are spread over 30 samples, which have generated around 300 abnormal sample instances.
In turn, the normal instance included in the data consists of 47,575 instances. The general
architecture of the whole process is shown in Figure 12.

In the dataset, there are a total of 27 thermocouples features, so the author applied deep
learning stacked autoencoder (SDAE) on the raw sensor measurements. The autoencoder
gave 12 features that were responsible to generate abnormalities in the dataset. The machine
learning classifiers were based on these 12 characteristics. Extreme Learning Machines
(ELM) are a sort of feed-forward neural net developed by Huang et al. [33]. Just as with
traditional feed-forward neural networks, which employ weights and biases, ELM neuron
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connections are chosen at random and fixed; thus, they do not need to be trained. Thus,
ELM training is often limited to determining the relationship between the unseen and
output layers. The minimum squares of the unseen layer yield matrix can be used to do this.
Due to such relationships in the ELM network, they are fast and have a better-generalized
performance. Weizhong Yan et al. [25] used four types of machine learning algorithms:
Isolation Forest, one-class ELM with an RBF kernel and sigmoid activation function, one-
class ELM without any kernel, and one-class Support Vector Machine (one-class SVM).
Isolation Forest is an anomaly-identification approach proposed by Liu et al. [34], in which
it is assumed that the outlier is smaller and different from the regular data, and therefore
their binary tree has a shorter average route length than normal data trees. In the paper,
the author used three lengths and five levels of sub-samples. One class of SVM uses a
hyper-plane that separates the dataset from the origin so that the hyperplane is as close
to the datapoint as possible. Yan et al. [25] concluded their article by pointing out that
when 5-fold cross-validation was utilised, they found that kernel-one class ELM performed
best in terms of the ROC curve and area-under-curve (AUC), trailed by one-class ELM
(non-kernel), one-class SVM, and Isolation Forest.
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Jan Lehr et al. [26] have developed an alternative to visual inspection used for quality
control in the industry using machine learning approaches. Here, a dataset was created
using a two-step approach, which reduces the size of the data and complexity of the data.
For the dataset used in this article, the author tested two methods: convolutional neural
network (CNN) and convolutional autoencoder (CAE). It takes a lot of work to produce char-
acteristics that must be manually developed for optical examination. Krizhevsky et al. [35]
were the first to use a neural network for image processing. It uses Convolutional Neural
Network (CNN) with AlexNet. CNN was further developed by Jie Hu et al. [36]. Even
though neural networks were able to produce great results, the industry could not accept
their usage because of the lack of availability of the large dataset required to train the neural
networks. However, CNN showed promising results for computer vision applications.
Liu et al. [27] and Goodfellow et al. [37] implemented surface inspection using a Generative
Adversarial Network (GAN) and One Class Classifier (OCC). Here, 10,000 images were
taken for training purposes. Furthermore, CNN encoders are appropriate for texture-
quality inspection in a manufacturing setting, according to research by Grunwald et al. [38].
Staar et al. [28] also used CNN for industrial applications and Czimmermann et al. [29]
analysed various methods and AI approaches to visual defect detection of surfaces. In
all the above papers, the authors concluded that the use of neural networks yields good
results. However, Jan Lehr et al. [26] used a dataset that is not considered large enough
for the usage of neural networks. So, Jan Lehr et al. [26] used a dataset that was created by
Bergmann et al. [30]. Javaid et al. [39] used an unsupervised clustering method to detect
surface defects in the manufacturing process. For quality assurance, Jan Lehr et al. [26]
used the method by which
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(a) A multi-matrix camera system creates images of the objects, and various machine
learning techniques, such as CNNs and CAEs, are applied to the data. Here, the defect
is less, so it is treated as an anomaly; this will convert the machine learning algorithm
from multi-class classification to OCC.

(b) The next step will be the anomalies clustering using an unsupervised machine learning
technique, and these clusters are labelled by the employees and classified into critical
and uncritical defects.

The dataset created using the aforementioned methods can contain both basic and
complicated designs, with an edge length ranging from the line, with a minimum of 3 mm,
to a maximum of 500 mm. To get the images, a multimedia matrix camera is used, and to
obtain a high-quality image, the product is placed on the conveyor belt, and the illumination
is diffused to avoid light reflections. In the datasets, two non-symmetric complex shapes
are considered: one is defect-free and another one is defective. The materials used in the
product are made out of aluminium and their images were captured from different scenarios
at an angle of 30 degrees and 50 degrees. The dataset created in this manner consisted
of 102 defect-free images and 23 images containing defective products. Furthermore, the
product was placed on a turntable with four-degree steps in horizontal directions. Only
90 defect-free photos were used to train the classifier. The remaining images were used to
evaluate the levels of accuracy of the faulty and fault-free images. The aim was towards
generating embeddings that are low-dimensional representations of the images. Further,
Convolutional Autoencoder (CAE) and Convolutional Neural Network (CNN) were used.
It was discovered that the embedding of fault-free images was near to each other, but the
embedding of faulty images was far apart. So, using Euclidian distance, the author was able
to detect if the product is defective or not. For feature extraction, ResNet-18 was used. A
pre-trained ImageNet was considered. This approach is called “pre-trained”; also, modified
ResNet-18 was used with a learning rate of le-8. Another dataset was used to test the
model’s resilience, which would be the MVTec dataset published by Bergmann et al. [30].
In conclusion, CAE performed worst for defect-free images. Pre-trained CNN performed
well for non-defective images and performed well for defective images, while fine-tuned
CNN performed best with defective as well as defect-free images. Figure 13 shows an
example photo of a single item captured in a 4-degree increment.
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7. State-of-the-Art Sensors Used in Industry 4.0

Mohd Javaid et al. [39] described sensors as “the device which senses the input
stimulus from the physical environment, and produces a digital output is called sensors”.
This is shown in Figure 13. The physical parameters can be a quantity, property, or any
given condition. The intake stimulus can also be any other environmental phenomenon,
such as pressure, force, fluid flow, radiation, heat, motion, wetness (moisture), or other
environmental parameters. The output can be a signal such as voltage, amperage, capacitor,
resistance, frequency, and so on. This reaction output is either transformed into a legible
display or delivered via an electronic wave network for other functions. Any system that
wants to be automated and intelligent needs sensors. A variety of sensors are offered on
the market depending on their appropriateness and uses. These sensors are produced
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in mass or can be produced based on individual customers’ demands. According to a
report by Javaid et al. [39], sensors would form the core of any automation system in
Industry 4.0, to boost productivity through automation. With the help of sensors, tracking
of products and machines can be done in real time, and an automated control system will
minimize the plant’s maintenance cost. Through digitalization, production mobility can
be improved, which gives a competitive edge to the manufacturing firms in the market.
These are all features incorporated in Industry 4.0. So, sensors play a very important role in
smart industries.

Mohd Javaid et al. [39] described that sensors are linked with multiple devices and
systems present in a facility, as shown in Figure 14. This combination of sensors and the
Industrial Internet of Things (IIoT) has made ordinary sensors capable of measuring com-
bustion, making them “Intelligent Sensors”. These intelligent sensors can collect the data
and can perform some level of computation on hand. The architecture of such intelligent
sensors can be complex. The sensors need to be very compact and their main advantage is
that they can be installed to monitor places that are considered hazardous for human beings.
Andreas Schutze et al. [40], Mohd Javaid et al. [39], and Abid Haleem et al. [41] further
detail the improved capacity of the sensors that can now assess machine noise, signal
degradation, and the reaction of dynamics, in addition to other things that were before re-
stricted. Shan Wang et al. [42], Daniel Schmidt et al. [43], and Ali S et al. [44], in their papers,
explained how smart factories incorporated various principles across cross-disciplines,
such as emerging sensor technology, artificial intelligence, robotics, big data, smart valves,
cloud computing, and automation in control systems, to improve product quality, reduce
the production cost, and acquire new markets. All the above-mentioned technologies
communicate with each other efficiently under the same roof as the Industrial Internet of
Things (IIoT). The main aim of using sensors is to eliminate the risks involved with human
error caused by the operators operating the machines. Compared to humans, sensors are
reliable and can remotely detect and record feedback from changes in the parameter that
the sensor is monitoring using electrical signals. The advantages that the sensors give over
the conventional method are (a) effective decision-making; and (b) self-optimization for
automation of production lines. In Figure 15, the different sensors serving Industry 4.0
are shown.
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In the Industry 4.0 context, the data received from these sensors may be used
for a variety of tasks, including predictive maintenance, automation, asset condition
monitoring, asset condition analysis, and overall process flow automation. Using
sensors, the industry can achieve cost-effective and trustworthy knowledge of the
materials before procuring them. This can be very beneficial for the pharmaceuticals
and chemicals industry. Sensors along with robots are used for choosing the path
based on their perceived environment. Sensors in the robot help the robot to take
proper decisions in various dynamic situations. Thus, sensors combined with robotics
are at the forefront in terms of innovation and research. Using sensors, the void in
production can be eliminated in real-time using material and inventory knowledge
from the sensors, which continuously collect data from the production plant and
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material inventory stores. Once the data collected from the sensors are uploaded
to the cloud, then analysis of the data starts, which will predict the pattern for the
production facilities. From these patterns, the decision makers can make data-driven
decisions for material procurement, inventory management, machine maintenance,
product packaging, etc. The data further will also help in maximizing production,
forecasting loss, forecasting material scrape age, maintaining, planning, replenishing,
and lagging inventory automatically. Here, during all the above-mentioned decisions,
there is minimum to no involvement of the operator, thus reducing the burden on
the operators and workers in the production facilities. Advanced machine learning
methods are utilized for data analysis.
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The steps followed by sensors are shown in Figure 16. First, the flow of the environ-
ment parameters needed to be sensed goes through sensing the panel. Then, as the sensor
senses the parameters, it monitors the parameters. Then the sensed parameter is collected
and converted into the data. These data can further be used for either the decision-making
process or can be analysed by the sensors themselves. The final output from the sensor
can be viewed on the panel. All sensors utilized in Industry 4.0 constitute sophisticated
sensors, and all these sensors play an important part in building the Internet of Things (IoT)
systems that have altered the industry. The entire manufacturing ecosystem would crumble
until stability and consistency are maintained by these sensor-dependent systems. This
projects the dependency and reliability needed by today’s production systems regarding
the collection and sensing of data. In Figures 17 and 18, the capabilities of the sensors for
Industry 4.0 and the classification of the sensors instruments in Industry (Manufacturing)
4.0 are shown.
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8. Multi-Level Graph of Industry 4.0

The phrase “Industry 4.0” was coined in 2011 during the Hanover Conference. Blaz
Rodic et al. [45] explained that Industry 4.0 connects the business departments and en-
tire production chain to be integrated by means of digitalization. According to KPMG
(2016), during the product development cycle, all departments linked with the manufac-
turing ecosystem, such as R&D, sales, customers, equipment manufacturers, and so on,
are all consulted, as shown in Figure 19 (a multi-level graph approach to Industry 4.0).
Industry 4.0 allows for greater openness during the product-development process. In-
dustry 4.0 also attempts to transform the production approach from a centralized to a
decentralized manufacturing process, to meet the client’s mass customization requests.
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Small and medium-sized businesses benefit greatly from Industry 4.0’s decentralized
approach (SMEs). SMEs are important to the economy in terms of job creation. By utilizing
additive manufacturing, the SME gains a distinct edge in meeting the market’s need for
tiny tailored products.

Cyber-physical Systems (CPS) are critical to the success of the Fourth Industrial
Revolution. CPS draws together technologies that were previously functioning separately
to create an integrated complex network of sustainable manufacturing environments.
Because the working approach in Industry 4.0 is decentralized, precise monitoring and
control are essential. As a result, smart sensors with the capacity to connect and gather
data effectively were developed. These smart sensors might replace previous sensors that
were based on basic embedded systems.

As the application of these smart sensors expanded, so did the necessity to link them.
As a result, the present sensors have been digitized, allowing them to gather and send
data automatically without the need for human involvement via the Industrial Internet
of Things (IIoT). All data generated have to be preserved safely and without loss. The
cloud provided the necessary infrastructure for discrete and secure data storage. Finally,
statistical information may be gathered from the acquired data to propose solutions to a
particular problem utilizing machine learning techniques. As a result, Industry 4.0 was
able to integrate significant technologies to create a manufacturing environment that is safe,
dependable, modular, and scalable.

9. Conclusions

How Industry 4.0 is transforming the manufacturing sector is examined in this paper.
Every manufacturing process is connected to high-tech sensors. These sensors collect
data that indicate how the machines are behaving in a specific environment. To maximize
the production of a manufactured product, these data are further used as historical data
and fed into a machine learning algorithm. The output of the algorithm determines the
optimum parameters needed to maximize production. Furthermore, the inconsistencies
in the data can also be used to determine the factors that have degraded the quality of
the manufactured product, thus enabling data to be used to observe and stimulate the
parameters in manufacturing that allow maximum output. As a result, the quality of the
manufactured product can be improved by detecting and eliminating these inconsistencies.
The paper presents a review of quality assessment in various production processes. The
paper also provides a summary of the four industrial revolutions that have occurred in
manufacturing, highlighting the need to detect anomalies on assembly lines, the need to
detect the features of assembly lines, the various machine learning algorithms used by
manufacturers, the research challenges, as well as the computing paradigms and state-of-
the-art sensors used in Industry 4.0.

The paper discusses, in detail, the major factors that led to the contribution of the
industrial revolution and how each revolution has shaped the manufacturing industry.
Subsequently, the paper discusses the background of the various technologies that are
integrated under the umbrella of Industry 4.0. Further, a discussion on anomalies, their
types, and how they affect the manufacturing process, is done. The paper also discusses the
use of machine learning in manufacturing and how it can be used to detect and eliminate
anomalies in the manufacturing process. The paper also aims at discussing the challenges
of manufacturing regarding productivity and quality, which can be improved using the
modern manufacturing process. Further, a discussion on the literature survey of various
production processes, and how machine learning is used in real time, is conducted. In this
paper, we also introduce the sensors and their types used in the production processes. Using
a multi-level graph, emphasis is put on the complete integration of the manufacturing
environment. Towards the end of the paper, we conclude the paper with the aim to discuss
the use of machine learning and how the data are generated using sensors and an overview
of Industry 4.0. Finally, a discussion on the future work and the need for training of the
existing workforce in the manufacturing industry is completed.
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10. Future Work

Industry 4.0 has focused on the interplay between humans and machines. As a result,
new collaborative robots, also known as Cobots, are being created. The emphasis of
Industry 4.0 has been on integrating a man–machine environment, with much effort put
into making the machine efficient. However, the current difficulty is giving appropriate
training to the existing workforce to handle such a complex network of man–machine
ecosystems. As a result, personnel must get specialized training, and chatbots powered by
Natural Language Processing (NLP) can be quite useful.

Mario Casillo et al. [46] discussed using chatbots for effective training of the workforce.
Chatbots may also be used to assist employees by reminding them of any pending work
or training they have to complete. Personalization in chatbots can therefore aid to boost
worker efficiency. The author provides information on creating a chatbot that includes a
Topic Generator, Domain Generator, Dialogue Ontology Generator, Interaction Quality
Monitoring, Man–Machine Interaction Monitor, and Context-Awareness Assistant. The
smart factory chatbot should be able to help employees in real time, give efficient training,
and customize the teaching based on the worker’s learning capacity. Currently, work is
scarce in the field of chatbot support, which needs extensive investigation in the future.
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