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Abstract: It is well-known that γ-Al2O3 possesses large, specific areas and high thermal, chemical,
and mechanical resistance. Due to this, it is the most-used support for catalysts, in this case TiO2,
as it enables it to achieve better dispersion and improves the activity in catalytic photodegradation
reactions. In a previous work, it was observed that the optimal content of TiO2 in γ-Al2O3 was around
15% since the degradation of phenol results were maximized and a synergistic effect was generated
by the interaction of both oxides. In addition, an increase in acidity crystal size and the generation of
localized, oxygen-vacant, electronic states in the forbidden band of γ-Al2O3, were observed. This
study focuses on the effect of the calcination temperature on a γ-Al2O3-TiO2 catalyst (15% w/w of
TiO2) and its impact on photocatalytic activity. The catalysts prepared here were characterized by
X-ray diffraction, N2 adsorption–desorption, FTIR-pyridine adsorption, MAS-NMR, HRTEM-FFT,
UV-vis, and fluorescence spectroscopy.

Keywords: γ-Al2O3-TiO2; acidity; phenol; photodegradation

1. Introduction

The extensive use of water reservoirs has provoked serious shortages in many parts
of the world [1]. Nowadays, there are several industries that generate large volumes of
effluents that are refractory in nature, such as phenols, phenol derivatives, and other toxic
compounds [2,3]. Phenolic compounds are classified as persistent organic pollutants (POPs)
and are widely found in effluents from industries such as textiles, paper, oil refining, phar-
maceuticals, polymers, pesticides, petrochemicals, etc. [4]. The US EPA has listed phenolic
compounds as priority pollutants while in most countries, the maximum allowable con-
centration of phenols in effluent streams is under 1 ppm [5]. The most common treatment
applied worldwide to remove aqueous phenols is biological treatment, but high concen-
trations of phenols can inhibit performance or can even be toxic to the microorganisms
employed to remove such contaminants [6]. When using adsorption processes instead, the
cost of production increases significantly due to the low adsorption capacity exhibited for
these kinds of pollutants (in addition to being limited by the range of the pH of industrial
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effluents) [7–9] and low reusability, as the cost of the treatment of used sludge represents
from 25 to 65% of the total cost [10].

In the last decades, advanced oxidation processes (AOPs) have become relevant due
to the multiple advantages they offer. Among these are the following: with the appropriate
catalyst, a series of free radicals including hydroxyl radicals (•OH), ozone (O3), and
superoxide radicals (O2−•) [7,10,11] can be generated, which are able to mineralize a wide
range of toxic and recalcitrant organic compounds towards CO2 and H2O, avoiding the
generation of toxic by-products and reducing the photodegradation time [10]. In addition,
low operating costs (since the main source of energy required comes from the sun) and
the use of environmentally friendly catalysts make it an advantageous alternative [8,10].
Furthermore, AOPs have proven to be efficient in degrading and mineralizing up to
100% of such molecules [12]. In recent years, some researchers have studied a variety of
practical strategies to develop photocatalysts by attempting to mineralize these compounds
into water and CO2 [13]. The efficiency of a photocatalyst (defined as the ratio of the
percentage of removal of the concentration after time to the initial concentration of the
organic contaminant in a solution) depends mainly on its chemical nature. Some of the
important parameters are the band gap (between the valence band and the conduction band)
and the amount of surface exposed to incident light [14], which in turn depend not only on
the macroscopic architecture but also on the specific surface area, structure, and selectivity
(key factors for the adsorption process) [15–19]. Nowadays, adsorbent nanomaterials are
available to be used as photocatalysts [20,21]. Nanoscale γ-Al2O3 can be used in this
fashion, but its large band gap energy of about 9 eV [19] makes it difficult for it to behave
as a good photocatalyst, so it is necessary to combine it with an adequate solid and use
them as mixed oxides [21]. γ-Al2O3 offers many advantages, such as a high surface area,
great thermal resistance, a good cost-effectiveness ratio, and easy processing for various
morphologies. For the purpose of this work, the most significant property is the following:
γ-Al2O3 possesses many hydroxyl groups distributed all over its surface, making AlO(OH)
prone to interact with a wide range of foreign molecules. In this manner, various functional
composite materials can be prepared [22,23]. Among the many different materials used
as photocatalysts, titanium dioxide (TiO2) is one of the most promising photocatalysts for
several applications, such as organic pollutant degradation [23]. Contrary to γ-Al2O3, TiO2
has low specific area, does not have good thermal resistance, and exhibits a short time lap
for the formation of the electron–hole pair. These disadvantages cause lower photocatalytic
activity [6,12–20]. Photocatalysis is one of the most advanced oxidation processes (AOPs),
where highly reactive hydroxyl radicals (•OH) are formed and contacted to contaminants
in order to degrade them into species such as CO2, H2O, or harmless inorganic anions [19].
Photocatalysis has gained more attention for the decomposition of recalcitrant organic
pollutants in the environment [24–27]. A good photocatalyst can be activated by any
light higher in energy than its band gap energy. When photocatalysts are irradiated with
ultraviolet (UV) light in the presence of H2O and O2, different reactive oxygen species are
generated through reactions of electron (e−)–hole (h+) pairs. γ-Al2O3-TiO2 mixed oxides
have proved to be excellent photocatalysts [24]. It has been reported that γ-Al2O3-TiO2 has
effectively increased photocatalytic activity [19–25,28–32]. In this work, a γ-Al2O3-TiO2
mixed oxide was synthesized with the peptization of a boehmite method in an effort to
improve the photocatalytic performance for the degradation and mineralization of phenols.
It is important to highlight that the treatment temperature for a catalyst plays a key role
in its activity since it defines its physicochemical properties. The present work focuses on
the effect of the calcination temperature of the AT15 catalyst in a range from 400 to 800 ◦C,
which is part of a series of catalysts studied in a previous work [17]. The aim is to find an
optimal treatment temperature, as well as to understand the physicochemical properties
that it provides to the catalyst.
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2. Materials and Methods

The γ-Al2O3-TiO2 mixed oxide was prepared through hydrolysis using the boehmite
method with titanium alkoxide (modified sol-gel method) [17,26]. The necessary amount of
boehmite was placed in a flask, and nitric acid was added until an ideal pH was obtained.
Subsequently, isopropanol was added, and it was brought to a temperature of 60 ◦C,
maintaining constant stirring for 24 h. Then, the system was brought to room temperature
and the amount of titanium IV isopropoxide necessary to obtain material at 15% the weight
of TiO2 was added to the peptized boehmite. The materials were dried and placed in an
oven at 120 ◦C for 12 h. Finally, the materials were calcined under airflow (60 mL min−1) at
different temperatures (400, 500, 600, 700, and 800 ◦C) for 6 h [26].

2.1. Nitrogen Adsorption

A Quantachrome NOVA 4200e instrument was used to determine the specific sur-
face area from N2 adsorption–desorption isotherms at 77 K. BET and BJH methods were
employed to calculate the specific surface area and mean pore diameter, respectively.

2.2. X-ray Powder Diffraction

A Bruker D-8 Advance DRX (CuKα radiation, graphite secondary-beam monochroma-
tor, scintillation detector) was utilized to obtain X-ray diffraction patterns between 10 and
80◦ with a 2θ step of 0.02◦ (counting time of 9 s). The identification of crystalline phases
was performed using the JCPDS database.

The Scherrer equation (L = Kλ/(B(θ)cosθ)) was used to calculate the average crystallite
sizes. Interplanar spacing d(hkl) was calculated using Bragg’s law: nλ = 2d(hkl)sinθ. Due to
both anatase and rutile crystallizing in a tetragonal lattice cell, the cell parameters were
calculated using 1

d2
(hkl)

= h2

a2 + h2

a2 + l2
c2 and by choosing reflections at ~37.79 and 48.04◦

(2θ) for the anatase phase and 27.43 and 62.75◦ (2θ) for the rutile phase. Since γ-Al2O3
crystallizes in cubic lattices, the cell parameter a was obtained from a = 4d(400) using the
reflection found at 45.90◦ (2 θ).

2.3. Band Gap Determination

Band gap energies for the series AT-X were calculated using a UV-vis Agilent Cary
100 spectrophotometer equipped with a diffuse reflectance integrated sphere.

2.4. FTIR Spectroscopy for the Adsorption of Pyridine

The pyridine adsorption analysis was performed with a Nicolet 170-SX FTIR spec-
trophotometer. Thin wafers were prepared from the powdered samples and placed in a
vacuum-lined Pyrex glass cell provided with CaF2 windows. The samples were evacuated
(10−3 Torr) at 673 K for 30 min. Then, pyridine was introduced into the system when it
reached room temperature. After 30 min, excess pyridine was vacuum-extracted so that
the FTIR spectra could be obtained at various temperatures. The acid sites were mea-
sured from the integrated absorbance bands using an extinction coefficient, as previously
reported in [26].

2.5. Fluorescence Technique

The fluorescence detection of •OH radicals was performed using a 0.5 mM terephthalic
acid solution, which was added to 2 mM NaOH and 0.20 g of each catalyst. After stirring
for 1 h in the absence of UV light to reach adsorption–desorption equilibrium between
the photocatalysts and the terephthalic acid, UV irradiation started (UV mercury lamp
Pen-Ray, 254 nm, 4400 mW/cm2). Aliquots of 3 mL were taken every 15 min during 1 h
using membrane filters of 0.45 mm. The samples were then analyzed with a Perkin-Elmer
LS-50B Luminescence Spectrometer. 2-hydroxyterephthalic acid was formed as the product
of the hydroxylation reaction, showing a characteristic fluorescence spectrum (lambda e
lambda = 315 nm, lambda em = 425 nm).
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2.6. High-Resolution Transmission Electron Microscopy

Micrographs were obtained using a JEOL HRTEM 2010F with a field emission source
and an acceleration voltage of 200 kV. The powdered samples were dispersed ultrasonically
in butanol and then placed on a copper grid and coated with a thin layer of amorphous
carbon. In order to measure the crystallographic planes, a digital micrograph program
from Gatan Software Team was used.

2.7. Photocatalytic Evaluation

The photocatalytic evaluation of the calcined materials was carried out in a glass
reactor with a cooling jacket using 200 mL of a solution of phenols with a concentration
of 40 ppm and 100 mg of catalyst. A UV Pen-Ray lamp (254 nm and 4400 µW/cm2)
protected with a quartz tube was immersed in the solution as the source of irradiation. The
degradation of phenol was measured by taking aliquots of the solution using a syringe
with a nylon membrane in order to remove the suspended solid particles. The evolution
of the photodegradation was followed using the phenol adsorption band at 269 nm with
a Cary 100 UV-vis spectrophotometer. The mineralization of phenol was measured with
TOC determination using Shimadzu LSN equipment.

3. Results and Discussion

Figure 1 shows the XRD powder patterns of the catalyst thermally treated at temper-
atures from 400–800 ◦C using a methodology called boehmite peptization. It was noted
that the diffraction peaks at 2θ = 37.6, 45.8, and 67 were assigned to the (311), (400), and
(440) planes corresponding to the γ-Al2O3 phase, which were seen in all the samples in
accordance with JCPDS No. 50-0741. Moreover, it was observed that the materials treated
in the range from 500 to 800 ◦C exhibited diffraction peaks at 2θ = 25.3, 37, 48.6, and 53.5◦,
which were assigned to the (101), (004), and (200) planes corresponding to the anatase
phase (JCPDS No. 21-1272). Here, it was observed that the calcination temperature played
an important role since, as it increased, the nucleation of TiO2 also increased, giving way to
the formation of a more defined structure, as reported by Ismail et al. [27,33–35]. For this
reason, the crystal size was also affected by the treatment since the crystal size of γ-Al2O3
in the 311 plane presented a crystallite size that ranged from 4.88 to 4.79 nm for materials
treated from 400 to 700 ◦C, showing a decrement as the temperature increased. In another
case, when the material was treated at 800 ◦C, the crystallite size increased from 4.79 to
4.83 nm. It should be noted that all the materials exhibited the anatase phase except AT800,
which already presented a rutile phase peak. This suggests that both alumina and anatase
presented an interaction that allowed them to stabilize the crystalline phase. The crystallite
size was observed in a previous work [26]. However, this interaction was no longer possible
at 800 ◦C because the rutile phase of TiO2 appeared, as can be seen in the diffractograms
in Figure 1. On the other hand, the crystallite size of the anatase phase in the 101 plane
was also affected because the size of the crystal decreased with the effect of the treatment
temperature, presenting a crystallite size for plane 101 that varied from 3.93 to 3.96 nm.
These values are presented in Table 1.

Figure 2a shows the isotherms for materials synthesized and calcined at tempera-
tures of 400, 500, 600, 700, and 800 ◦C. Type V isotherms were observed in all the cases.
This type of isotherm corresponded to type III due to the weak interactions between
adsorbate–adsorbent and the materials present conformed by micro and mesopores. This
type of hysteresis was of the H2b type that is associated with materials with blocked pores
and with wide pore diameter distributions [36]. The materials calcined from 400 to 600 ◦C
showed the highest values of specific surface area, while materials calcined above 600 ◦C
had a considerable decrease in specific area: 232 m2/g for the sample calcined at 700 ◦C
and 179 m2/g for the sample calcined at 800 ◦C (Table 1). We observed that the specific
area decreased as the calcination temperature increased. This is because the materials had
a certain thermal resistance. However, once it was exceeded, the walls that made up the
structure tended to collapse. On the other hand, as shown in Figure 2b, we observed a
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change in pore diameter as the calcination temperature increased. This could be due to
aluminum being partially covered and substituted by titanium ions, inducing a lattice
expansion due to the smaller Al3+ ionic radii [27,29,31,32]. However, it is important to note
that the samples calcined at 600 and 700 ◦C showed smaller pore diameters, especially
AT600, unlike the other samples since it was clearly observed that these samples had
diameters in the range of 30 to 60 Å, and the other samples had pore diameters in the range
of 40 to 120 Å, as can be seen in Figure 2b. The values are reported in Table 1. The effect
of this behavior could be due to the displacement of Ti atoms by Al due to the synthesis
method, and since the atomic radius of Al is smaller than that of Ti, they were obtained at
these temperatures. However, the material calcined at 600 ◦C presented a greater decrease
in pore diameter because aluminum interacted more with Ti. This behavior was assessed in
the NMR analysis, and perhaps there was a greater number of displacements of Al atoms
by Ti atoms [17]. Regarding pore volume, we observed that, as the treatment temperature
increased, this decreased, perhaps because γ-Al2O3 pores were obstructed by Ti, and the
treatment temperature allowed a greater dispersion on the surface of the alumina.
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Figure 1. Powder X-ray diffraction data of the γ-Al2O3-TiO2 catalyst thermally treated in the
400–800 ◦C range.

Table 1. Superficial analysis of the samples.

Catalysts
Surface

Area
m2/g

Total
Acidity

(µmol/gcat)

γ-Al2O3 *
Crystallite

Size
nm

Anatase +
Crystallite

Size
nm

Dp

(Å)
Vp

(cm3/g)

AT400 308 140 4.88 3.95 50–65 0.51
AT500 266 172 4.84 3.93 60 0.46
AT600 262 314 4.82 3.95 45 0.41
AT700 232 270 4.79 3.96 50 0.40
AT800 179 260 4.83 3.97 65 0.39

* calculated based of the 311 plane of γ-Al2O3. + calculated based of the 101 plane of anatase phase of TiO2.
Dp: pore diameter; Vp: pore volume.

Figure 3a shows the UV-vis spectra for the AT series at different temperatures, while
a Kubelka–Munk (KM) absorption plot of the same materials is shown in Figure 3b. The
KM absorption was obtained from the corresponding reflectance spectra of AT600 with the
following relation:

R =
(1 − R)

2R

2
(1)

where R is the reflectance. Two main signals of absorption at around 320 nm (3.4 eV) and
around 400 nm (2.4 eV) were observed. The first one was the result of the charge transfer
from O2− to Ti4+ corresponding to the excitation of the electrons from the valence band
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(O 2p) to the conduction band (Ti 3d), which is characteristic for TiO2 in the anatase phase.
This band may also be associated with the morphology of the particles of titanium oxide
formed on the surface of the alumina. It has been reported that the shift of the absorption
band towards the visible range may be due to the introduction of structural defects into
the system, resulting in the formation of intermediate energy states in the band gap of
TiO2. Other studies have also reported that this absorption can be associated with the
presence of Ti3+ ions that, in turn, respond to oxygen vacancies or oxygen-related defects
in the range of 2–2.75 eV. Thus, the second band at 400 nm could be assigned to oxygen-
related defects caused by a reduction in TiO2 after heat treatment [37–40]. The values are
reported in Table 2.
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The 27Al MAS-NMR spectra for the samples treated at different temperatures are
shown in Figure 4a. It can be seen that the coordination of the aluminum atom in the
AT series was affected by the calcination temperature. It was observed that, for the peak
relative to tetracoordinate aluminum (around 70 ppm), it shifted to low field values,
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especially for the material calcined at 600 ◦C (Figure 4b). The changes in the relative
abundance of Al(IV) and Al(VI) were also relevant since it has been noticed in previous
works that Al(IV) is able to create electronic deficiencies in alumina (as well as increasing
acidity), which suggests a synergistic effect between TiO2 and Al2O3. This behavior is
significant since it has been claimed to be responsible for the delay in the recombination of
hollow-electron pairs [37,39–41].

Table 2. Band gap energy (Eg), half time, and apparent first-order reaction constant for the AT series.

Catalysts

Band Gap
Eg

(eV)
kapp
×10−3

t1/2
(min)

a b

AT400 3.3 2.30 2.1 270
AT500 3.5 2.35 2.2 255
AT600 3.4 2.40 2.5 217
AT700 3.4 2.50 2.1 270
AT800 3.35 2.40 1.8 325
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Figure 4. (a). 27Al MAS-NMR spectra for the AT calcined at different temperatures, (b). attenuation
of AlIV.

An FTIR spectroscopy analysis of the adsorbed pyridine was performed to determine
the acidity of the materials calcined at the given temperatures. Figure 5 shows the spectra
that were obtained. Here, two peaks were easily distinguished at 1450 and 1490 cm−1.
The first, at 1450 cm−1, was characteristic of Lewis acidity, and the second, at 1490 cm−1,
corresponded to the total acidity (no Brønsted acidity, which is located around 1550 cm−1).
Interestingly, AT600 resulted in a material with an enhanced amount of Lewis acidity
(314 µm/g) unlike the others, which exhibited acidities from 140 to 270 µm/g. These values
are listed in Table 1. According to the reviewed literature, acidity sites in TiO2 depend on
the migration of “bulk” -OHs to the surface since the determination of the Lewis acidity of
TiO2 is made by measuring only the hydroxyl groups on the surface. Ti4+ ions are potential
electron-charge acceptors, i.e., acids, which favor the activity of a material with a greater
number of acid sites [33,37,42–48]. For its part, tetracoordinated Al provides strong acid
sites, depending on the treatment temperature, since it has been observed that stronger
acid sites are obtained as it increases [48,49]. This suggests efficient activity in catalytic
photodegradation reactions since the catalytic properties are directly related to the number
of acidic (and basic) surface sites.
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Figure 5. DR-FTIR spectra for adsorption of pyridine for the AT series in the spectral region
of 1700–1400 cm−1.

In Figure 6, HRTEM microscopy is presented for the AT600 catalyst with its respective
fast Fourier transform (FFT) patterns for the scanned areas. The assignment of different
spacing diffraction patterns for TiO2 in the anatase phase (JCPDS 21-1272 PDF Quality: Star
(*)) and γ-Al2O3 (JCPDS 56-0457 Quality PDF) was used. The spacings found in the FFT
for the corresponding phase and crystallographic planes with distances of 3.52, 1.66, 2.37,
and 2.33 Å, respectively corresponding to the planes (1,0,1) (2,1,1), (0, 0.4), and (1,1,2) for
crystalline TiO2 in the anatase phase, can be seen in the FFT (a–d). The distances of 2.28 Å
(b,c) and 1.97 Å (c,d) in the FFT corresponded to the crystallographic planes (2,2,2) and
(4,0,0) of the γ-Al2O3, crystalline phase [49–51].
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The absorption of an adequate photon by an electron (e−) of the valence band in a
photocatalyst excitates it to the conduction band, creating an electron vacancy or hole
(h+), generating electron–hole pairs [15,19,20]. The results presented here indicate that the
introduction of alumina acted as a charge transfer catalyst [15,36], so excited electrons from
TiO2 could be transferred to alumina, delaying the electron–hole pair recombination. Thus,
the electrons generated were rapidly adsorbed on the structural defects of the alumina.
Then, the photoinduced holes could oxidize −OH ions or H2O adsorbed on the surface,
producing highly oxidizing •OH species. The rate of this process is a competition between
the oxidation of surface water by the holes and the limiting electron–hole recombination
time [52]. The •OH radicals are assumed as the main species responsible for the pho-
tocatalytic oxidation of chemicals [37,52,53]. In order to detect •OH radicals formed on
the AT600 material, it was irradiated under UV light with a fluorescence technique using
terephthalic acid. In Figure 7, it can be seen that the emission spectra of the terephthalic
acid solution were obtained every 15 min. The spectra obtained showed a gradual increase
in fluorescence at around 425 nm for both the AT600 material and the reaction system
without the catalyst. The intensity of the peak was related to the amount of •OH radicals
formed [46]. The same procedure was also carried out without the catalyst to corroborate
the generation of •OH radicals in the reaction by the AT600 catalyst.
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4. Photocatalytic Evaluation

The photocatalytic activity of AT series was evaluated under the mineralization of
40 ppm phenol. Figure 8a shows the results after one hour in darkness to allow an
adsorption–desorption equilibrium of phenol molecules on the catalyst surface. Photolysis
of the phenol molecules was carried out during 360 min in the same way that the catalytic
photodegradation reactions transpired with the catalysts. During this reaction, it was
possible to observe that there was no mineralization of phenol due to the effect of the UV
lamp. Furthermore, the molecules were not adsorbed during the first 60 min of the reaction.
In addition to this reaction, the photodegradation reactions were observed with the AT
catalysts calcined at different temperatures (400 to 800 ◦C). We observed that the catalyst
thermally treated at 600 ◦C showed the highest activity (Figure 8a), and this behavior
was corroborated with the TOC analysis. It was clearly observed that AT600 catalyst
showed the greatest activity since it presented the highest degradation of the molecule, as
seen in Figure 8b.
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Figure 8. (a) C/Co vs. time plots for phenol photodegradation after irradiation with UV-vis light,
and (b) percentage of degradation on TOC.

When following the photodegradation of phenol with a UV-vis spectrophotometer,
the following behavior was observed: the most active photocatalyst was the one that
was treated at 600 ◦C, followed by the catalysts treated at 500 > 700 > 400 > 800 ◦C. This
was corroborated by the TOC analysis, where the activity of AT600 resulted as the most
active. However, the activity levels of the other materials varied in the following order:
AT600 > AT700 > AT500 > AT400 > AT800. This demonstrated that the treatment tempera-
ture during the oxidation of material is crucial for the performance of the photocatalyst
since it defines its physicochemical properties. Furthermore, the apparent kinetics (Kapp) for
the photodegradation of phenol were obtained by the Langmuir–Hinshelwood formalism,
which applies for pseudo-first-order in the photodegradation of phenol. As shown in the
graph of ln C/Co versus time (Figure 9) [54,55], the kapp values and half-life time for the
reactions were also obtained, as reported in Table 2.
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In order to better understand this mechanism of catalytic degradation, a band diagram
for the γ-Al2O3TiO2 catalysts is presented in Figure 10. As can be seen in Figure 7, the
mechanism of this catalysts was *OH radicals, which were formed as soon as the catalyst
entered into contact with the reaction system and the energy of the lamp [17]. This was
possible since the synthesis methodology allowed the formation of a staggered-gap-type
heterojunction between TiO2 and γ-Al2O3, facilitating electronic transfers from TiO2 to
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alumina and delaying h+–e− recombination time [56,57]. This does not rule out another
type of reaction, but this can be verified in future work.
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Figure 10. Band diagram for γ-Al2O3 with TiO2 catalysts.

In Figure 11a a study of catalyst reuse is shown. It was observed that, after three
cycles of 360 min each, the catalyst only lost 13% of its photoactivity, which confirmed that,
when γ-Al2O3 interacted with TiO2, a synergistic effect was generated that allowed the
catalyst to stabilize, obtaining a material with superior physicochemical stability. This was
corroborated by the TOC analysis Figure 11b.
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5. Operating Cost

Along with the investigation of the mass and energy balances, a study was carried
out on the cost benefit of the phase contemplated. Qualified pretreatment is crucial before
applying it in a pilot plant. Discrete costs, such as the cost of the removal of sludge
biosolids, operating costs (including the costs of chemicals and energy), and the cost of the
removal of reduced sludge biosolids after treatment, were considered for the evaluation
of the feasibility of the adopted pretreatment method. In view of this, the energy cost
(biomethane) and the cost of the depletion of biosolids were conceived as cost-effective
(gain), while the chemical cost and the cost of surplus biosolids after treatment were
recognized as a loss of benefits.

The cost distribution of different AOPs in different mineralization targets in Europe and
the USA range from 0.031 to 0.040 USD/m3. Following an analysis of the entire process, the
main expense was chemicals, followed by electricity for fluid recirculation, regardless of the
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mineralization performance. Overall, for a target of 99% mineralization, chemicals accounted
for 90% of the overall cost, while the contribution of electricity accounted for 10%.

Despite this, it is important to point out that the generated sludge volume would
represent around 10% of the wastewater treated in photocatalytic processes, generating
non-negligible management costs. However, it could be said that the main advantage
of heterogeneous processes is the impact of a reduction in chemical costs by avoiding
adjusting the pH to 3.

Further pilot plant and industrial-scale studies on real wastewater matrices are re-
quired to validate the suitability of the photocatalytic criterion and to compare them with
traditional plants.

6. Technical Feasibility and Applicability

Most γ-Al2O3-based catalysts exhibit excellent reuse, stability, and biocompatibility
for the degradation of organic pollutants. Despite the progress made so far, there are still
many challenges for alumina-based catalysts in the degradation of organic pollutants in
water. Some points are listed below:

• Photocatalytic rates and the stability of γ-Al2O3-based catalysts can be further im-
proved. In spite of the high degradation rates achieved so far, the percentage of
mineralization can be increased. Furthermore, the stability levels of some catalysts
based on γ-Al2O3 are still unsatisfactory due to the loss of active sites and the leaching
of metal dopants. Therefore, it is important to optimize catalyst synthesis methods and
to develop new types of catalysts based on γ-Al2O3 that are more active and stable.

• The mechanism involved in the degradation of organic pollutants and the toxicity
of the reaction intermediates should be thoroughly investigated. A theoretical study
based on DFT could reveal the most preferential sites to be attacked (and the possible
reaction intermediates) for target contaminants. In addition, it is necessary to evaluate
the ecotoxicity and human toxicity of such intermediates since they can result in even
more toxicity than the original moieties.

• The performances of photocatalysts must be evaluated using actual wastewater. There
are important differences between simulated and actual wastewater that make results
obtained for simulated wastewater less accurate.

• Experiments should be conducted on a major scale. Until now, most research on
γ-Al2O3-based catalysts for the degradation of organic pollutants has been performed
at lab-scale reactors. More attention should be paid to the reactor design, as well as to
scaling Figure 12.
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7. Conclusions

The methodology of synthesis presented here allowed the formation of staggered-gap
heterojunctions, making it easy to transfer electrons from TiO2 to alumina and delaying
h+–e− recombination time. This synthesis method was fast, efficient, and simple, and due
to this, we could call it a green synthesis.

The increase in specific area obtained using γ-Al2O3 favored the activity of the TiO2
photocatalyst since the adsorption of the contaminant molecules on the surface was en-
hanced, leading to superior photodegradation.

The catalysts treated below 700 ◦C showed only the characteristic peaks for the gamma
phase of alumina and the anatase phase for TiO2. However, the material treated at 800 ◦C
also presented a low-intensity peak of the rutile phase in its 110 plane, which indicated
that the γ-Al2O3 stabilized the anatase phase of TiO2 below 800 ◦C. On the other hand, a
decrease in the specific area values was also observed when the temperature increased,
as well as changes in pore diameter distribution, showing pore diameters of 30–60 Å
for the catalyst treated at 600 ◦C and pore diameters ranging from 30 to 120 Å for the
rest of the materials. In the account of band gap values, two signals were observed: the
first was the typical signal of the interaction of Ti with oxygen, and the second indicated
that Ti3+ ions were present that were related to oxygen deficiencies. On the other hand,
NMR data showed a low field shift for tetracoordinate aluminum, especially for the AT600
catalyst. Al(IV) is related to a deficiency of electrons in the alumina, so it acted as an
electron trap in the reaction, agreeing with the results obtained when determining acidity
with pyridine sorption since the AT600 material had the largest number of acid sites
(314 mmol py/gcat), followed by the AT700 catalyst (270 mmol py/gcat). This parameter
was important since acidity is related to oxygen vacancies. Regarding the photocatalytic
activity, the AT600 catalyst showed the highest activity since it degraded about 95% of the
phenol in 217 min compared to the other catalysts that degraded only about 70% in a range
from 255 to 325 min. The same tendency was corroborated with the total organic carbon
analysis. It was concluded that treatment temperature largely defined the physicochemical
characteristics of the material and, therefore, its activity. Thus, even though all the catalysts
started from the same material, differences were observed in the characterizations carried
out, as seen in the catalyst treated at 600 ◦C, which presented the greatest differences in
terms of its physicochemical properties and activity.
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