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Abstract: Thin superconducting films have been a significant part of superconductivity research
for more than six decades. They have had a significant impact on the existing consensus on the
microscopic and macroscopic nature of the superconducting state. Thin-film superconductors have
properties that are very different and superior to bulk material. Amongst the various classification
criteria, thin-film superconductors can be classified into Fe based thin-film superconductors, layered
titanium compound thin-film superconductors, intercalation compounds of layered and cage-like
structures, and other thin-film superconductors that do not fall into these groups. There are various
techniques of manufacturing thin films, which include atomic layer deposition (ALD), chemical
vapour deposition (CVD), physical vapour deposition (PVD), molecular beam epitaxy (MBE), sput-
tering, electron beam evaporation, laser ablation, cathodic arc, and pulsed laser deposition (PLD).
Thin film technology offers a lucrative scheme of creating engineered surfaces and opens a wide
exploration of prospects to modify material properties for specific applications, such as those that
depend on surfaces. This review paper reports on the different types and groups of superconductors,
fabrication of thin-film superconductors by MBE, PLD, and ALD, their applications, and various chal-
lenges faced by superconductor technologies. Amongst all the thin film manufacturing techniques,
more focus is put on the fabrication of thin film superconductors by atomic layer deposition because
of the growing popularity the process has gained in the past decade.

Keywords: thin film superconductors; Meissner effect; atomic layer deposition; thin-film technology;
pulsed laser deposition

1. Introduction

Superconductors have a great potential to bring radical transformation of electrical
power transmission, enabling high-capacity loss-less power distribution, and eliminating
the Joule effect. Studies of superconductors over the recent years have aimed at finding a
material that becomes superconductive above the liquid nitrogen boiling point. The study
of superconductivity aims at perfecting and improving the current superconductors so
that superconductivity can be achieved at a lesser cost. This will enable the generation of
large magnetic fields for superconductivity magnets application in medicine and maglev
trains at a lower cost. The purpose of this review is to discuss the various types of thin-film
superconductors, their manufacturing techniques, their microstructure, and how supercon-
ductivity is brought about. The understanding of different types of superconductors and
their nature of superconductivity will lay a foundation in the pursuit of high temperature
superconductors for commercial applications.

At the superconductivity state, the electrical current flows from one point of the
material to the next without any resistance at all (or with very little resistance in the
magnitude of micro-ohms) [1–4]. No energy (sound, heat, light, etc.) is released from the
material during superconduction [5]. This happens when the material’s temperature is at or
below its critical superconducting temperature (Tc), and when the magnetic field is below
the material’s critical magnetic field The superconductivity phenomenon was first reported
in 1911 by Professor H.K Onnes and his associates C. Dorsman, G.J Flim, and G. Holst [1].
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The team was investigating the behavior of materials near the absolute zero temperature.
They discovered that mercury at 4.2 K had zero electrical resistance [6]. Various theories of
superconductivity, such as the BCS (Bardeen, Cooper, and Schrieffer) theory [7], London
theory [8,9], and the Ginzburg–Landau theory [10,11], have been proposed to explain
the phenomenon of superconductivity. Several metals and alloys show electron-phonon
coupling [12] driven superconductivity [13].

There are two types of superconductors (when classified according to their supercon-
ductivity property loss and retention when placed in a critical magnetic field); Type I and
II superconductors. Type I superconductors (also called soft superconductors) [14] lose
their superconductivity properties and become general conductors when put in a magnetic
field that is higher than the critical magnetic field (Hc) of the material. They also conform
entirely to the Meissner effect, which states that a superconductor at critical or below critical
temperature expels all the magnetic field when placed in a magnetic field, provided that
the field in question is less than the critical magnetic field of the material. Type I supercon-
ductors include basic conductive parts that are used in electrical cables and microchips of
computers. Good examples are Zinc and Aluminium. Type I superconductors are good
conductors at room temperature. They are normally used as general conductors at room
temperature. Also identified as hard superconductors [15–17], Type II superconductors
lose their superconductivity properties slowly but not simply when they are placed in a
critical magnetic field. Their superconductivity loss begins on the less important magnetic
field and then completely drops on the higher, more important critical magnetic field. The
phase occurring amid the less critical magnetic field (Hc1) and the important higher critical
magnetic field (Hc2) is termed an intermediate state or sometimes the vortex state [14].
Type II superconductors partially obey the Meissner effect. The reason they are called hard
superconductors is that they lose their superconductivity slowly but not simply. Niobium
Nitride (NbN) [18] and BaBi3 are examples of these.

Conventional superconductors can either be Type I or Type II superconductors.
They show superconductivity as defined by the BCS theory and its subsidiaries. Non-
conventional superconductors do not conform to the BCS and Nikolay Bogolyubov theories.
Superconductivity in conventional superconductors is due to electron–phonon-coupled
superconducting electron pairs as defined by the BCS theory, but in unconventional super-
conductors, the Cooper pairs are bound by the exchange of some different type, for example,
spin fluctuations in a superconductor with magnetic order either coexistent or nearby in
the phase diagram [19,20]. Masahito et al. [21] define high temperature superconductors
as those having a transition temperature (Tc) greater than 20 K. Strongly underdoped
YBCO (Y1Ba2Cu3O7−δ) is an example of high critical temperature superconductors (HTS).
Other low and high critical temperatures will be discussed in this review. Throughout this
review, high temperature superconductors will be regarded as those having a transition
temperature greater than 20 K.

The Meissner effect explains that when a superconductive material is subjected to a
magnetic field beneath the critical magnetic field magnitude of the material, during the
change to the superconducting phase (meaning that the temperature will also be less than
the Tc the material), the magnetic field is ejected from the superconducting material and
disappears in its interior [22,23], as illustrated by Figure 1.

If the magnetic field strength is increased to a value above the critical magnetic value,
the superconductor becomes a normal conductor. The magnetic field exclusion is achieved
by means of electric currents, which flow without any losses on the exterior around the
superconductor and, by doing so, armour the superconductor interior from the magnetic
field [22]. Figure 2 shows the flow of current in a superconductor without losses.

The Meissner effect shows that at the superconducting phase, the material exhibits
perfect diamagnetism [24–26]. A diamagnetic material opposes an externally applied mag-
netic field. Figure 3 illustrates the limits of superconductivity. Even when the temperature
is below Tc of the material, when the material is exposed to a magnetic field exceeding the
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material’s critical magnetic field, the superconductive characteristics disappear, and the
material becomes a normal conductor.

Figure 1. Behaviour of superconductive material experiencing a magnetic field (a) above and (b) less
than the material’s critical magnetic field. Magnetic flux can go through the material if the applied
magnetic field is above the material’s critical magnetic field as shown by (a), but will be expelled if
the applied external magnetic field is less than the material’s critical magnetic field as shown in (b).

Figure 2. Flow of current in a superconductor. The flow of current on the material’s surface shields
the magnetic field and prevents it from reaching the interior of the material.

Gorter and Casimir [27] showed that the Meissner effect validity could be used to
calculate the energy gap between the non-conducting and superconducting phases. They
did this by considering the Gibbs free energy in the normal (Gn) and superconducting (Gs)
phases. If the magnetic field is H, then:

Gs(T, H) = Gs(T, 0)−
H∫

0

M(H) dH, (1)

where M(H) is magnetisation. In perfect diamagnetism instances (e.g., in superconductors),
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Figure 3. Limits of superconducting states. Superconductivity is only valid when the temperature
and magnetic field density are below the critical temperature and critical magnetic field density of
the material, respectively.

M(H) = − 1
4π

H. (2)

The integral part of Equation (1) is the work done when the magnetic field is expelled.
Factoring Equation (2) into (1), we get:

Gs(T, H) = Gs(T, 0) +
1

8π
H2. (3)

Under equilibrium conditions at H is equal to Hc, Gn (T,Hc) is equal to Gs (T,Hc) and
Gn (T,Hc) is equal to Gn (T,0). The energy gap between the normal and superconducting
state is stated as:

Gn(T, 0)− Gs(T, 0) =
1

8π
H2

c (T). (4)

The shielding currents require a specific thickness layer close to the surface called
magnetic penetration depth. This enables the magnetic field of the superconducting
shielding current to neutralise the externally applied magnetic field. The shielding current
density is defined by the equation,

Js =
Hc

λm
, (5)

where:

Js—density of the shielding current;
Hc—critical magnetic field;
Λm—thickness of the layer.

Studies have shown that the properties of thin-film superconducting materials are
far different and superior to those of the bulk material [28–32]. Thin films have improved
electronic properties compared to the bulk material. The electronic properties are used to
describe the behaviour and state of electrons in the material. These parameters include
momentum and the electronic band structure, which defines the state of electrons in terms
of their energy [33]. The electronic properties are strongly related to electric properties like
dielectric response and electrical conductivity, and optical properties such as absorbance,
damping constant, and refractive index. The atoms at the surface in a thin film have
increased energy due to a smaller number of bonds with surrounding atoms. The more
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energetic atoms at the grain boundaries of thin films makes them more chemically reactive
than their bulk counterparts since they contain more exposed grains and grain bound-
aries [34,35]. Thin films have relatively lower costs of manufacturing, since they use much
less material than their bulk counterparts. Since we have access to the deposition param-
eters, their properties can be tailored to suit our needs. The superconducting transition
temperature of thin films changes with the film thickness and composition; hence it can
affect the overall superconducting behaviour of the deposited material. The growth of thin
films is an extremely active process where the kinetics that takes place during nucleation
and the microscopic level growth are the crucial defining aspects for the resultant structure,
morphology, and characteristics of the thin film. When one alters the deposition conditions
or parameters, certain properties of the resulting films are also changed. Precise control of
deposition temperature, thickness, and precursor concentration is therefore of paramount
importance. In the nanometre scale range of film thickness, electron movements of the
surface and boundary are confined and can lead to the formation of isolated electronic
states called quantum well states [36]. When this happens, the overall electronic structure
of the film changes due to the quantum size effect [37]. However, this does not happen each
time the nanoscale is reached, but depends on the transport parameters of the used material.
The physical properties of thin films vary significantly at small thicknesses. The variations
of these properties of deposited films have been demonstrated in the electronic density of
states [36,38], electron phono coupling [39,40], surface energy, and thermal stability [41,42].

Although the field of superconductors has received improved research interest among
researchers, it still faces a number of challenges. Superconductors produce strong elec-
tromagnetic fields in the magnets, requiring heavy mechanical structures to counter the
impact of Lorentz forces. The strong fields of the gantry magnets positioned close to the
patient can result in more prolonged and powerful stray fields. The superconducting state
is governed by a blend of three constraints: magnetic field (Hc), current density (Jc), and
temperature (Tc), and temperature is the most difficult parameter to regulate because of
the nearly 100% efficiency of the ultimate change of the magnetic and mechanical energy
stored in the magnet to heat energy. The servicing of superconductive magnets might
be difficult and require a devoted and highly skilled technical team responsible for the
maintenance of the equipment Power applications of superconductivity lack a “compelling
need” associated with either current or forthcoming energy societies since the present
technologies perform acceptably. A room-temperature superconductor at atmospheric
pressure is yet to be synthesised.

1.1. Theories of Superconductivity

Three superconductivity theories will be discussed in this review. These are the
London Theory, the Ginzburg–Landau Theory, and the BCS Theory.

1.1.1. London Theory

This theory assumes that there is a consistency or stiffness in the superconducting
state such that in the presence of the magnetic field the wave functions are not modified
very much [8]. The kind of approach proposed by F London is called a classical approach.
This theory models a superconductor as one in which charges are only influenced by the
Lorentz force from an external field and not by any dissipative means [27]. This leads to
the equation:

m
ne2

dJ
dt

= E, (6)

where:

m—mass of charge carrier;
e—charge;
n—density of the charge carriers;
J—current density.
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Combining the parameters for convenience, a new constant can be found, as in the
following equation

Λ =
m

ne2 . (7)

The London brothers started their theory by considering the effect of Equation (6),
called the acceleration equation. Faraday’s law implies that:

∇×
(

Λ
dJ
dt

)
= −dB

dt
. (8)

When displacement current is neglected, we have:

∇2(B− B0)
Λ
µ0

= B− B0. (9)

The solutions of the above equation, which behave regularly inside the superconductor,
decay exponentially to B0, as shown by the following equation:

B(x)− B0

Bext − B0
= e−

x
λL , (10)

where λL =
√

m
µ0ne2 .

λL is called the London penetration depth. Typical values of λL range between 50 nm
and 500 nm.

In their theory of superconductivity, the London brothers assumed that there are two
types of electrons; the normal electrons nn and the super electrons ns. The concentration
of normal electrons is large when T > Tc and the concentration of super electrons is large
when T < Tc. The concentration of super electrons is much greater than normal electrons in
superconductors. When an electric field is applied, the following formula applies:

F = m
dv
dt

= eE, (11)

where:

v—drift velocity of electrons;
E—electric field.

From the formula I = Anev, where I is the current, A is the area, n is the concentration
of electrons, e is the electron charge and v is the velocity; the current density is:

J = nev, (12)

where J is the current density. In superconductors, the concentration of super electrons is far
much greater than those of normal electrons, hence the concentration of normal electrons
can be neglected. The formula in superconductors becomes:

Js = nsev, (13)

where js is the superconducting current density. On taking derivatives with respect to time,
we have:

dJs

dt
= nse

dv
dt

. (14)

Substituting dv/dt in Equation (14) by that in Equation (11), we get:

dJs

dt
=

nse2E
m

. (15)
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Equation (15) is called London’s first equation. From this equation, if the applied
electric field is zero, then Js is a constant. This means that even when the electrical energy
source is removed, the current will continue to flow.

By taking curl on both sides of Equation (15),

∇× dJs

dt
=

nse2

m
(∇× E),

d
dt
(∇× Js) =

nse2

m
(∇× E). (16)

Maxwell’s third equation, which is written as

∇× B = −∂B
∂t

, (17)

can be substituted into Equation (16) to get:

d
dt
(∇× Js) =

nse2

m

(
−∂B

∂t

)
. (18)

When the left and right sides of the equation are integrated with respect to time, we get:

∇× Js = −
nse2B

m
. (19)

Equation (19) is called London’s second equation. The equation implies that at B = 0,
Js is a constant.

Advantages of the London theory and equations:

i. It is the simplest theory of superconductivity;
ii. It captures the Meissner Effect and calculates the surface screening super currents;
iii. Receives only a single parameter, either λL or n;
iv. Numerical complexity comparable to that of Maxwell;
v. Linear equations, so there’s good convergence prospects.

Disadvantages of the London theory and equations:

i. Classical only, and has no quantum basis, therefore no treatment of secondary effects;
ii. Valid only in homogeneous materials;
iii. Cannot handle intermediate states, where different regions of the same material can

be in different states of superconductivity, and formation of domains;
iv. It is a local theory and does not capture non local effect.

1.1.2. Ginzburg–Landau Theory

This theory gives a quantitative description of superconductors near the transition
point [5,11]. The theory states that there is a thermodynamic parameter that takes zero
value in the symmetric phase occurring a high temperature and in the less symmetric
it becomes zero continuously. The Free Energy density parameter (r), which is used to
categorise superconductors, vanishes above critical temperature. The Ginzburg–Landau
theory also successfully describes non-uniform field superconductors, effects of surface,
quantisation of flux, and Type II superconductors.

This theory describes the superconductivity state with regards to a complex order
parameter ψ(r), where;

Ψ(r) = 0, for T > Tc and Ψ(r) 6= 0, for T < Tc. this means the parameter is only valid in
the superconducting state.

Ψ(r) approaches zero at T = Tc. the square of the modulus of this parameter gives the
density of superconducting electrons.
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Ψ(r) plays the same role as the wavefunction in the Schrodinger equation, describing all
the condensed super electrons as a single charged particle. Ginzburg and Landau assumed
that the force energy F of a superconductor close to the superconducting transition can be
expressed in terms of the complex order parameter ψ as

Fs = Fn + α|Ψ|2 + β

2
|Ψ|4 + (−i}∇− qA)2

2m
+
|B|2

2µ0
, (20)

where:

Fn—free energy in the normal phase;
α, β—phenomenological parameters;
q—2e for cooper pair;
A—electromagnetic vector potential;
B—the magnetic field strength;
µ0—magnetic permeability in a vacuum.

The first Ginzburg–Landau equation is derived by minimising the free energy with
respect to the order parameter:

Fs = Fn + α|Ψ|2 + β

2
|Ψ|4 + |(−ih∇− qA)ψ|2

2m
+
|B|2

2µ0

∂Fs

∂ψ
= 0 + 2αΨ +

4B|ψ|2Ψ
2

+
2

2m
(−i}∇− qA)2ψ + 0

αψ + B|ψ|2ψ +
1

2m
(−i}∇− qA)2ψ = 0. (21)

When compared to the time independent Schrodinger equation, one notices that the first
Ginzburg–Landau equation is similar to it, but is different from it due to the nonlinear term.

The time independent Schrodinger equation can be stated as follows:

− }2

2m
∂2ψ

∂x2 + V(x)ψ(x) = Eψ(x). (22)

The second Ginzburg–Landau equation is obtained by minimising the free energy
with respect to vector potential A

∂Fs

∂A
= 0

Js =
2e
m
{ψ∗(−i}∇− 2eA)ψ}, (23)

where:

Js—is the superconducting electrical current density.

The second Ginzburg–Landau theory gives the superconducting current.

1.1.3. BCS (Barden, Cooper, and Schrieffer) Theory

The BCS theory is based on the formation of a Cooper pairs. Electrical resistance
is a result of collision of conducting electrons (free electrons) with the vibrating ions
of the lattice in metals [7]. The force between the electrons is repulsive in the normal
state, but it changes to be attractive in the superconducting state due to the formation
of a Cooper pair. In their paper ‘Theory of Superconductivity’, Bardeen et al. [7] state
that, ‘the interaction between electrons resulting from virtual exchange of phonons is
attractive when the energy difference between the electrons states involved is less than the
phonon energy’. Two electrons that have opposite spin always combine with each other
during pair formation [22]. One electron creates a positive charge fluctuation, which then
attracts a second incoming electron behind it. This attraction continues creating a train of
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electrons. In the superconducting state, the two electrons interact via a phonon or lattice
distortion, forming a cooper pair. This means in a superconductor, electrons travel in a pair.
Two electrons interact with each other through lattice vibrations in a process known as
electron–lattice–electron interaction between the electrons via a phonon field [7]. A Cooper
pair is a bond pair of electrons with opposite momenta and spin formed because of the
interaction between the electrons in a phonon field. This electron pair do not transfer any
energy to the lattice, meaning the substance does not have any electrical resistance giving
infinite conductivity. The energy gap between these electrons is given by the equation:

∆ = 2}ωDexp
[
− 2

n(EF)V

]
, (24)

where:

∆—is the energy gap;
ωD—is the Deby frequency;
n—density of state of electrons at the fermi energy level EF;
V—electron phonon coupling constant.

The energy of the bond pair is lower than that of separated normal electrons, which
then favours the formation of Cooper pairs. The existence of this energy gap is supported
experimentally by techniques such as:

i. The electronic specific heat of a superconductor at very low temperatures (close to 0 K);
ii. Ultrasonic absorption below Tc;
iii. Microwave/far infrared transmission in superconducting thin films and by tunnelling

of electrons under I–V characteristics.

2. Thin Film Superconductors

Thin-film superconductors are frequently considered to be Type II superconductors
even when they are from Type I materials because of the strong effect of the stray magnetic
fields outside the superconductive sample [28]. Thin films can be defined as materials,
where one dimension is highly constrained relative to the other two dimensions or a system
whose properties are determined by the surface energy. Thin films consist of two main
components: the microstructure and the surface morphology. The microstructure refers
to the microscopic crystal structure of the thin film. Thin films fabrication has a virtually
unlimited ability to synthesise materials with new or improved properties. This means
new devices and applications can be realised. In this review, we grouped superconductors
into four groups: Fe-based, layered titanium compounds, intercalation compounds with
layered and cage-like structures, and other superconductors. The common methods of
fabricating thin film superconductors are molecular beam epitaxy (MBE), pulsed laser
deposition (PLD), atomic layer deposition (ALD), chemical vapour deposition (CVD),
physical vapour deposition (PVD), electron beam evaporation, laser ablation, cathodic arc,
sputtering, conventional solid-state reaction method, self-flux technique, high pressure
high temperature synthesis technique, and arc melting technique.

2.1. Fe-Based Thin-Film Superconductors

High-Tc (Tc > 20 K) superconductivity in Fe-based superconductors [21,43] was dis-
covered in 2008 by Watanabe et al. [44]. Epitaxial iron-based thin-film superconductors [45]
of very high quality are crucial in the manufacture of iron-based superconducting gad-
gets, like the Josephson junctions [46] and superconducting quantum interference de-
vices (SQUIDs) [18]. They are also utilised in emerging iron-based superconductive coated
conductors with high critical current density (Jc) under powerful magnetic fields. Thin
films are also needed for academic purposes to realise the intrinsic characteristics of iron-
based superconductors as substantial bulk solitary crystals are not easy to grow for some
iron-based superconductors. There are various families/groups in which iron-based super-
conductors can be put into. In this paper, we identify these families as, LnFeAs(O,F) (where
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the Ln is the lanthanide element), also called the 1111 group, doped AeFe2As2 (where Ae
is an alkaline-earth element) also the termed 122 group, FeCh (where Ch is a chalcogen)
also termed the 11 group, and the FeSe mono-layer film, also called the 11-mono layer
group. Molecular beam epitaxy and pulsed laser deposition are the most common Fe-based
thin film fabrication and growth mechanisms. Several thin-film synthesis and applications
articles [43,47–54] for iron-based thin-film superconductors have been published.

2.1.1. LnFeAs(O,F) Family

The first high-Tc iron-based superconductor to be discovered, with Tc 26 K, is LaFeAs(O,F).
It was discovered by Kamihara et al. [24,55]. They also discovered low-temperature iron-based
superconductors, including LaFePO, whose Tc is approximately 4K [56], LaNiPO whose Tc is
approximately 3 K [26] and LaNiAsO whose Tc = 2.4 K [24]. These discoveries were made
during the group’s investigation of transparent p-type oxychalcogenide semiconductors like
LaCuSO [26]. The group managed to increase Tc to 55 K by replacement of a lanthanoid
element (Ln) from Lanthanum to Neodymium [57]. The LnFeAs(O,F) family is called the
“1111” group. The following Figure 4 shows the LnFeAsO microstructure.

Figure 4. LnFeAsO structure.

The growth of LaFeAs(O,F) thin-films was first attempted by Hiramatsu et al. [47]. Sev-
eral processes such as reactive solid-phase epitaxy and simple pulsed laser deposition (PLD)
growth were attempted to deposit the thin superconducting films of LaFeAs(O,F). Solid-
phase epitaxy had been previously successful in growing LaZnOPn, but failed to produce
satisfactory growth of LaFeAs(O,F). The breakthrough of getting the epitaxial films of
LaFeAsO was brought by the simple pulsed laser deposition process (PLD). The Nagoya
group employed molecular beam epitaxy (MBE) [58,59] and advanced the thin film growth
of the 1111 compounds.

Backen et al. [60] reported on the synthesis of LaFeAsO1−xFx superconducting film of
polycrystalline by the ex-situ technique. They deposited the LaFeAsO1−xFx films on MgO
and LaAlO3 substrates by a pulsed layer deposition method. Annealing was then done at
elevated temperatures in an evacuated silica-glass tube to obtain the superconducting thin
films. The thin film transitioned into a superconducting state at approximately 11 K. The
superconducting thin films showing a zero resistivity around the critical temperature of
bulk samples were positively synthesised by reviewing the annealing state [61].

Naito and Ueda et al. [62] reported on the SmFeAsO (Sm1111) thin film on CaF2
substrate synthesised by molecular beam epitaxy. The film transitioned into a supercon-
ducting state at around 56 K. This was somewhat higher than Tc of SmFeAs(O,F) bulk
samples [59,62]. CaF2 was first used by Tsukada et al. [63] as a substrate in the deposition
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of FeSe1−xTex. CaF2 is effective in the manufacture of other iron-based superconductors, as
evidenced by the enhancement of Tc in Sm1111 film [62].

Haindl et al. [64] grew superconductive Sm1111 films on CaF2 substrates using pulsed
layer deposition. They noted that SmFeAs(O,F) films synthesised on BaFe2As2-buffered
MgO substrates by employing the SmFeAsO0.9F0.1 polycrystalline target had virtually
identical lattice parameters with those of SmFeAsO bulk samples. They, however, exhibited
a glitch, alleged to be a result of structural transition [65], near a temperature of 150 K and
no superconductivity in the temperature dependence of resistivity. These findings showed
the insufficiency of the F content in this film. The Sm1111 film on CaF2 substrate fabricated
from the identical target transitioned into a superconducting state at 40 K.

2.1.2. Doped AeFe2As2 family

In the second group (doped AeFe2As2 or (Ae,K)Fe2As2), usually termed “122” com-
pounds [66,67] the one with the highest Tc of ~38 K is Ba0.65K0.35Fe2As2. The compounds
in this group have the crystal structure of ThCr2Si2 type. There is an alternating stacking of
tetrahedron Fe2Pn2 layers and plain Ae layers in this family of compounds [21]. Pn is the
pnictogen atom, it can either be As or Sb. Figure 5 shows the AeFe2As2 structure.

Figure 5. AeFe2As2 structure. The alternating stack of tetrahedron Fe2Pn2 layers and plain Ae layers
can be seen in this structure.

Thin films of (Ae,K)Fe2As2 can be synthesised by using FeAs self-flux or Sn flux under
ambient pressure. (Ae,K)Fe2As2 films growth is more difficult than LnFeAs(O,F) films. A
group from Sungkyunkwan University synthesised superconductive (Ba,K)Fe2As2 films
by a post-annealing method [68,69]. The TAT (Tokyo University of Agriculture and Tech-
nology) group synthesised thin films of (Ba,K)Fe2As2 and (Sr,K)Fe2As2 by molecular beam
epitaxy [70–73]. Potassium is very volatile; therefore, it is not included in films grown at
Ts > 400 ◦C. The TAT group worked on finding new superconductors and improving the
Tc of Fe-based superconductors. Potassium-containing 122 films synthesis is performed at
Ts ≤ 400 ◦C. The Fe-based superconductor Ba1−xKxFe2As2 is used as a key material for high
magnetic field applications such as superconducting wires and bulk permanent magnets.

2.1.3. FeCh and FeSe Mono-Layer Film Family

In the family of FeCh, also called the 11 compounds, divalent chalcogen ions sur-
round the divalent Fe ions tetrahedrally. FeCh structure is a sequential stacking of neutral
tetrahedron Fe2Ch2 layer by van der Waals interaction. The Wu group [74] discovered the
superconductivity in FeSe (whose Tc is approximately 8.5 K) [55,75] and FeSe0.5Te0.5 (whose
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Tc is approximately 14 K) [75] after the report on the unearthing of superconductivity in
LaFeAs(O,F) by Hosono and his colleagues [53]. The critical temperature of FeSe can be
increased significantly when hydrostatic pressure is applied. It reaches 37 K at around
10 GPa [76,77]. Figure 6 shows the structure of FeSe.

Figure 6. FeSe structure. Reddish brown balls are Fe atoms, while yellowish balls represent Se atoms.

The synthesis of group “11” iron-based thin films has been slow due to their toxi-
city [21]. FeSe1−xTex thin films growth was first realised by Wu et al. [74] by a pulsed
laser deposition technique. Bellingeri et al. [78] reported that Tc in FeSe0.5Te0.5 thin films
could be increased up to 21 K from around 14 K by varying thickness. Figure 7 shows the
thickness dependence of Tc that they reported.

Figure 7. Tc thickness dependence of FeSe0.5Te0.5 films. In (a) the thickness is plotted vs. lattice
constant a [Å] while in (b) the thickness is plotted vs. Tc [K]. Structural analyses showed that
the cfilm (=5.84–5.89 Å) is less than the bulk values (cbulk = 5.995 Å) though independent of the
film thickness.
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Hanzawa and his colleagues [79] synthesised FeSe films, which were 100 Å thick
on SrTiO3 by molecular beam epitaxy. The highest Tc obtained was 35 K. Lei et al. [80]
conducted comparable experiments employing the flux method to grow FeSe single crystals.
Table 1 summarises some of the transition temperatures of superconduction of the FeSe and
Fe(Se,Te) thin films synthesised by molecular beam epitaxy and pulsed layer deposition.

Table 1. Transition temperatures of FeSe and Fe(Se,Te) thin-film superconductors manufactured by
molecular beam epitaxy and pulsed laser deposition techniques.

Materials Substrate Method Transition
Temp (K) References

FeSe

r-cut Al2O3 MBE Tc(onset) = 13 K [70]

CaF2 PLD Tc(onset)= 12.4 K,
Tc(end) = 11.9 K [81]

mono-layer
FeSe

SrTiO3

MBE

Tc = 42 K [82]

SrTiO3 Tc = 65 ± 5 K [83]

Nb-doped SrTiO3 Tc = 109 K [84]

FeSe1−xTex
x = 0.0~1.0 MgO PLD

Tc(onset)~14 K,
Tc(end) ~ 12 K at

x = 0.5
[74]

FeSe0.5Te0.5 SrTiO3 PLD Tc = 17 K [85]

FeSe0.5Te0.5 LaAlO3 PLD Tc = 21 K [85]

FeSe0.5Te0.5

CaF2

PLD Tc(onset) = 16.3 K,
Tc(end) = 15.3 K [63]

FeSe0.8Te0.2 PLD Tc = 23 K [86]

FeSe0.72Te0.18 PLD Tc(onset) = 22 K,
Tc(end) = 20.5 K [87]

FeSe0.5Te0.5 SrF2 PLD Tc = 15.7 K
[88]

FeSe0.5Te0.5 BaF2 PLD Tc = 12.8 K

FeSe0.5Te0.5 Fe-buffered MgO PLD Tc = 17.7 K [21,89]

FeSe0.5Te0.5
CeO2-buffered YSZ,

RABiTS PLD Tc(onset) = 20 K,
Tc(end) = 18 K [90]

FeSe0.5Te0.5 CeO2-buffered SrTiO3 PLD Tc(onset) = 18.5 K,
Tc(end) = 18 K [91]

FeSe0.5Te0.5 FeSe1−xTex-buffered MgO PLD Tc(onset) ≥ 17 K [92]

Wang and his group [82] detected large energy gaps that possessed superconducting
properties using scanning tunnelling spectroscopy (STS) at low temperatures in mono-layer
FeSe thin films on TiO2-terminated STO (perovskite SrTiO3) grown by molecular beam
epitaxy. The U-shaped gap was found to have a magnitude of 40.2 meV at 4.2 K.

2.2. Layered Titanium Compounds

Layered titanium oxypnictides parent compounds are metallic without carrier doping,
unlike cuprate superconductors [93–95]. Hosono et al. [48,49] prepared the BaTi2Sb2O
compound in 2012 and detected a bulk transition into superconductivity at a temperature
of 1 K [96]. Doan and his group [97] autonomously presented an improved Tc of 5.5K in
BaTi2Sb2O when it was doped with Na. BaTi2Sb2O was prepared via the solid-state reaction
technique using very pure BaO, Ti, and Sb according to their stoichiometric ratios [96]. This
involved wrapping the specimen in a tantalum foil, sealing in a quartz tube and heating for
a period of 40 h at an elevated temperature of 1000 ◦C. The sample was then cooled at a
rate of 50 ◦C per hour up until room temperature was reached. The resulting compound



Processes 2022, 10, 1184 14 of 40

had a tetragonal structure. X-ray diffraction and neutron diffraction data was used to
determine the crystal structure of BaTi2Sb2O. It showed that the crystal structure is the
same as that of BaTi2As2O [98]. Figure 8 shows the various crystal structures of layered
titanium compounds. The Tc of BaTi2Sb2O was found to be 1.36 K. Figure 9 shows the
synchrotron X-ray diffraction refinement results for BaTi2Sb2O and BaTi2Bi2O with the
P4/mmm space group.

Figure 8. Crystal structures of different layered titanium compounds (a) Na2Ti2Pn2O, (b) BaTi2Pn2O,
(c) (SrF)2Ti2Pn2O, and (d) (Ba2Fe2As2)Ti2As2O [54]. Pn is either Sb or As.
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Figure 9. Refined synchrotron x-ray patterns of (a) BaTi2Sb2O and (b) BaTi2Bi2O. The Bragg reflection
positions are shown by the green ticks [54].

The Ti pnictide oxides BaTi2Pn2O (where Pn is Sb or Bi) contain layers of superconduc-
tive Ti2Pn2O and Barium blocking layers [98]. Several titanium pnictide oxides have been
produced. These include Na2Ti2Pn2O (where Pn is As or Sb), (SrF)2Ti2Pn2O (where Pn is
As, Sb, or Bi), and BaTi2Pn2O (where Pn is As, Sb, or Bi). Amongst these compounds, only
BaTi2Pn2O (where Pn is Sb or Bi) shows superconductive characteristics [96,97,99–102].
BaTi2Sb2O and BaTi2Bi2O were manufactured using the conventional solid-state reac-
tion [96,98]. BaTi2Bi2O is unstable in air and some solvents, as it easily decomposes when
exposed to air forming Bi-based phases such as BaBi3 and Bi. Figure 10 shows the resistivity
and magnetic susceptibility of BaTi2As2O. The electronic structure of a compound is vital
in understanding its superconductivity. The BaTi2Sb2O electronic structure as reported by
Singh [103] from first principles calculation showed that three d orbitals dxy, dx

2−y
2, and

dz
2 have a substantial contribution at the Fermi level. This indicates that BaTi2Sb2O has a

multiband nature. The oxygen 2p and Antimony (Sb) 5p are filled, while the Antimony
5p are hybridised with Titanium 3d. No Ba-derived occupied valence bands are present.
The formal valence shown by the results is Ba2+Ti3+Sb3−O2−. The one 3d electron of Ti
is responsible for the transport and magnetic characteristics of the composite [95]. In the
BaTi2Bi2O electronic structure, as reported by Suetin and Ivanovskii [104], the three d
orbitals have a substantial contribution at the Fermi level as is the case with BaTi2Sb2O.

Figure 10. (a) The resistivity curve and (b) magnetic characteristics of BaTi2As2O. The low-
temperature enlarged scale magnetic field effect is shown by the inset in (a) [54].
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2.3. Intercalation Compounds with Layered and Cage-like Structures

Examples of high-temperature superconductors with layered or cage-like structures
are cuprates [105,106], iron pnictides [24,44,107], MgB2 [51,108,109] and alkali metal-doped
fullerides [54]. Their intercalated structures are made of charged (doped) layers attached
to charge basins in the interlayer/cage-like space. There are two sub-families of layered
polymorphs in metal nitride halides: the α-form and β-forms with stoichiometric formula
MNX (where M is Ti, Zr, or Hf, N is Nitrogen and X is Cl, Br, or I). The α-form is an
orthogonally MN layered network divided by halogen atoms, while the β-form contains
dual honeycomb-like MN layers squeezed in between compact halogen layers [110,111].
MNX compounds are prepared by reacting the metal or metal hydride with ammonium
halides at elevated temperatures [112]. The chemical reaction is:

M (or MH2) + NH4X → MNX + 2 (or 3)H2.

MNX compound was then ferried in a quartz glass tube with a little amount of NH4X
using a furnace whose temperature was between 750 and 850 ◦C. The resulting compounds
were of α-form. The β-form was obtained by subjecting the α-form to a pressure of between
3 and 5 GPa at a temperature of around 800 ◦C. These superconductors have no magnetic
ions, hence a magnetic pairing mechanism is not considered, but the possible candidates
for the pairing mechanism have been assumed to be charge and spin fluctuations [113–115].
Figure 11 shows the α- and β-form structures of the metal nitride halides.

Figure 11. Crystal structures of the α-form and the β-form of (where M is Ti, Zr, or Hf and X is Cl, Br,
or I). The red atoms represent the metal (M) atoms; the blue are the Nitrogen atoms, and the green
are halogen atoms (X).
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When β-HfNCl is doped by intercalation of alkali metals, a high-temperature su-
perconductor (Tc > 20 K) is obtained [54]. Yamanaka et al. [116] detected the highest Tc
value of 25.5 K in the lithium and tetrahydrofuran (THF) co-intercalated superconductor
Li0.48(THF)yHfNCl. Earlier, Yamanaka et al. [117] found Zr homologue LixZrNCl to exhibit
superconductive characteristics at Tc of approximately 14K. α-TiNCl required electron
doping with alkali metals and organic bases like pyridine and alkylene diamines to be
transformed into a superconductor [54]. Magnetic susceptibility was conducted on the
Lithium intercalated sample, Li0.56HfNBr, from the chemical reaction with n-BuLi in hexane.
The following Figure 12 shows the temperature dependence of the magnetic susceptibility
of Li0.56HfNBr.

Figure 12. Temperature dependence of the magnetic susceptibility of Li0.56HfNBr. χ = C/(T−θ) + χ0.
C is the curie constant and has the value of 0.0145(1) emu K mol−1, θ = 0.04(2) K and
χ0 = 0.00126(1) emu mol−1.

There are also silicon clathrates and related compounds that have cage-like struc-
tures. High pressure and high temperature (HPHT) conditions can be used to prepare
the Ba-containing silicon clathrate compound Ba8Si46. The compound displays super-
conductivity at Tc = 8.0 K [110]. HPHT application is favourable for synthesising binary
phases that are rich in Si such as LaSi5, LaSi10, BaSi6, Ba24Si100, Ba8Si46, NaSi6, Na8Si46, and
NaxSi136 [54,110,118–120]. Tanaka et al. [121] synthesised Ca2Al3Si4 using the HPHT
method. The compound showed superconductive transition at Tc = 6.4 K.

2.4. Other Superconductors

In this group, we discuss the superconducting compounds that fall outside the previ-
ous categories already mentioned. These compounds fall into the low-temperature and
high-temperature superconductors.

AM2X2-type (where M is not Fe) superconductors are an example of 122-type supercon-
ductors. Some non-Fe 122-superconductors have the ThCr2Si2-type structure and include
compounds such as SrNi2P2 [122], BaNi2P2 [107], BaRh2P2, BaIr2P2 [123], LaRu2P2 [124],
LiCu2P2 [125], SrNi2As2 [126], and BaNi2As2 [127]. An example of 122-type antimonides
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and associated compounds is SrPt2Sb2 [128]. Its measurements of electrical resistivity,
magnetisation, and specific heat indicated a transition into superconductivity at Tc = 2.1 K.
The compound was manufactured by Hosono et al. [54] in two steps; arc melting and
remelting of the specimen starting from Sr, Pt, and Sb. The superconductor is of Type II and
has a lower critical field (Hc1) and upper critical field (Hc2) of 6 Oe and 1 kOe, respectively,
at a temperature of 1.8 K [54].

Cobalt-based superconductor LaCo2B2 [129] was synthesised using the arc-melting
technique for Lanthanum, Cobalt, Boron, Yttrium, and Iron mixtures. It was found to be
superconductive after constituent cation isovalent or aliovalent substitution [54]. Density
Functional Theory (DFT) was used to investigate the electronic structure of LaCo2B2. From
these calculations, it was confirmed that La ions take +3 state. It was also confirmed that the
strong covalent CoB layer is responsible for metallic conduction. Pauli paramagnetic state
results due to the suppression of the spin moment of the Co ion by this strong covalency [54].
Figure 13 below shows the calculated Density of State (DOS) of the LaCo2B2 compound.

Figure 13. Calculated density of state (DOS) of LaCo2B2.

BaNi2As2 has a tetragonal ThCr2Si2 type crystal structure at room tempera-
ture [127,130,131] and undertakes a transition of its structure at approximately 130 K
to a triclinic structure where alternate Nickel-Nickel bonds are created in the Nickel
plane. This new phase shows conventional BCS type superconductive characteristics below
0.7 K [127,131–133]. The BCS type superconductivity is based on the formation of Cooper
pairs. The electron-electron interaction that results from virtual exchange of phonons is non-
repulsive when the energy difference between the electrons states concerned is below the
phonon energy. During pair formation, two electrons with opposite spin always combine
with each other [22]. One electron creates a positive charge fluctuation, which then attracts
a second incoming electron behind it. This attraction continues creating a train of electrons.
In the superconducting state, the two electrons interact via a phonon or lattice distortion
forming a cooper pair. BaNi2As2 superconductivity can be enhanced through phosphorus
doping, the transition temperature, which is lower than 0.7 K for the triclinic phase with x
less than 0.07, is increased to 3.33 K in the tetragonal phase with x = 0.077. Hosono et al. [54]
grew single crystals of BaNi2(As1−xPx)2 by a self-flux method using mixtures of Ba, NiAs,
Ni, and P. Figure 14 shows the temperature dependence of electrical resistivity parallel to
the ab plane. ρab was normalised by the value at 300 K for BaNi2(As1−xPx)2. Phosphorus
doping suppresses the triclinic phase, leading to the improvement of superconductivity.
Figure 15 shows the BaNi2(As1−xPx)2 system phase diagram.
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Figure 14. Temperature dependence of electrical resistivity parallel to the ab plane for
BaNi2(As1−xPx)2 crystal. The resistivity arnomally shown by thermal hysterisis in the figure shows
tetragonal to triclinic transition [134].

Figure 15. BaNi2(As1−xPx)2 system electronic phase diagram [134]. SC1 and SC2 shows the phases
of superconduction. Tetragonal-to-triclinic structural transition temperatures (Ts) upon cooling and
heating are shown by open and closed diamonds, respectively. Ni planes in the triclinic and tetragonal
phase are shown by the inserts.
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Transition metal dichalcogenides MX2 have two families; CdI2-type telluride family
and the pyrite (FeS2)-type chalcogenide family [54]. Self-flux technique was used to grow
crystals of IrTe2 [135]. This involved mixing powders of Ir and Te at a ratio of 18:82 and
placing it in a sealed alumina crucible and then placing it into a bigger quartz tube. After
evacuating and sealing, the contents of the tube were heated to a temperature of around
1223 K for a period of 10 h, then increased again to 1433 K. The next step was to cool to
1173 K at a rate of between 1 and 2 K per hour. The final step was to quench the quartz
tube in ice. At a temperature of around 250 K, IrTe2 undergoes a transformation to a low
temperature phase. The orbital degree of freedom is attributed to this transition since the Ir
atoms’ d-orbitals are partially filled. Limited replacement of Platinum for Iridium in IrTe2
overwhelms the creation of the low-temperature phase, ensuing the superconductivity
incidence [136,137]. Its superconductivity appears for approximately 0.04 < x < 0.14 in
Ir1−xPtxTe2. The highest Tc of approximately 3.2 K is obtained at the trigonal and triclinic
phase boundary when the x value is 0.04. When platinum is substituted, the Fermi level is
shifted upwards. This affects the density of state near the Fermi level. The density of state
is increased in the triclinic phase and decreased in the trigonal phase. The triclinic phase is
also suppressed through the breakdown of the Ir-Ir dimers. Figure 16 shows the crystal
structure of IrTe2 at different temperatures.

Figure 16. (a,b) The different views of the IrTe2 crystal structure at 300 K. The trigonal lattice unit cell
is shown by the black lines. (c,d) The IrTe2 crystal structure at a temperature of 20 K. The blue and
black lines show the triclinic lattice unit cell and the 5a × b × 5c supercell, respectively [135], where a,
b, and c are the high-temperature trigonal-cell parameters.
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Figure 17 shows the computed orbital-decomposed partial density of state for the high-
temperature trigonal phase and the low-temperature triclinic phase of IrTe2. Ir2 dimers
formation in the low-temperature phase yields strong bonding-antibonding splitting in the
dyz bands of the two Ir3 atoms. This makes the energy of the antibonding bands to increase
above the Fermi level and reduces the energy of the bonding bands by 1 eV [135].

Figure 17. The computed orbital-decomposed partial density of state for (a) the high-temperature
trigonal phase and the (b–d) low-temperature triclinic phase of IrTe2. The dotted line is the Fermi
level [135].

An example of the chalcogenide family of pyrite-type is Ir dichalcogenides IrxCh2
(where Ch is Se or Te). The unit cell comprises of four Ir and eight Ch sites. The Iridium
sites with haphazardly distributed vacancies make a simple fcc (face-centred-cubic) lattice
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structure. At times it assumes the pyrite-type structures when the Iridium site vacancies
are introduced [138]. High-pressure application effectively stabilises the pyrite-type form
against the Cd2I2- type one [139]. Qi et al. [140] employed high-pressure synthesis tech-
nique to synthesise pyrite-type IrxCh2 where the x value was near 1 and had transition
temperature values of 6.4K and 4.7K for the two compounds Ir0,91Se2 and Ir0,93Te2, re-
spectively. The density functional theory Qi et al. performed revealed that the compound
consists of antibonding σ orbitals of the Se-Se dimer and dz2 orbitals of the Ir. This meant
that the transition from nonmetal to metal and the transition from metal to superconductor
are driven by relaxation due to bond lengths which are alternating in the Se dimers array.
Figure 18 shows the pyrite structure of IrxSe2.

Figure 18. Crystal structure of pyrite IrxSe2. The reddish-brown atoms are Ir, while the cyan colour
represents Se atoms.

A noncentrosymmetric superconducting system [141–143] contains a mixture of singlet
and triplet states, called a mixed parity state. CePt3Si [144], CeCoGe3 [145], CeIrSi3, and
CeRhSi3 [146] are examples of this superconductor class. The last three superconductors
have a BaNiSn3-type structure.

Many silicide superconductors are noncentrosymmetric, and most of them crystallise
and show conventional s-wave superconductivity. The exclusions are the Cerium contain-
ing heavy-fermion compounds. Hosono et al. [54] reported on two noncentrosymmetric
silicide superconductors: SrAuSi3 [147] and Li2IrSi3 [148]. SrAuSi3 was the first noncen-
trosymmetric superconductor containing gold. Gold is a heavy element that causes strong
spin-orbit coupling. The stability of the SrAuSi3 superconductor was found only under
high pressure [147]. Figure 19 shows the crystal structure of SrAuSi3. The green atoms
are Sr, blue are Si atoms, and gold atoms represent Au. SrAuSi3 is a relatively powerful
coupling superconductor. Its Tc was approximated by the McMillan formula [149–151],
using the standard value of 0.13 for the Coulomb repulsion parameter µ*, resulting in a
value of ∼19 K. SrAuSi3 samples were synthesised using a high-pressure synthesis method
at 6 GPa. The reactant powders of SrSi2, Au, and Si were mixed in equal ratios in an agate
mortar and then pressed into a disc which measured 6.9 mm in diameter, 3 mm in thickness,
and weighed around 500 mg. The pellet was then placed in cell of high pressure (6 GPa),
heated, and the temperature was kept at 1500 ◦C (1773 K) for an hour. Quenching to room
temperature within a few seconds then followed.
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Figure 19. Crystal structure of SrAuSi3 [147]. The structure is closely related to the ThCr2Si2 type
and CaBe2Ge2 type structures.

Figure 20 illustrates the temperature reliance of resistivity quantified by fluctuating
the magnetic field. The Tc of SrAuSi3 at zero magnetic field is 1.6 K. As the magnetic field
increases, Tc decreases. It gives Hc2(0), which is approximately 2.2 kOe. This value is way
lower than the Pauli limit (Hp(0) of 30 kOe). Hosono et al. [54] explain that the orbital
pair breaking mechanism governs Hc2. There are several other non-Fe superconductors
that have been reported, such as NbSiAs (Tc = 8.2 K) [152], CeNi0.8Bi2 (Tc = 4 K) [153],
LaNiBN (Tc = 4.1 K), LaPtBN (Tc = 6.7 K), La3Ni2B2N3 (Tc = 15 K), La2Sb (Tc = 5.3 K) [153],
Ban+2Ir4nGe12n+4 (Tc = 6.1 K for n = 1; Tc = 3.2 K for n = 2) [154], Nb4NiSi (Tc = 7.7 K) [155],
Ti2O3 [156], and Ca2InN (Tc = 0.6 K) [157].

Figure 20. Illustration of the temperature reliance of resistivity quantified by fluctuating the magnetic
field. (a) The Tc of SrAuSi3 at zero magnetic field is 1.6 K. (b) As the magnetic field increases, Tc

decreases. (a) is taken over a wide temperature range while (b) is on a narrow temperature range [54].
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Cuprates are another group of other thin film superconductors that we will discuss
in this review. The cuprate superconductors can be fabricated by pulsed laser deposi-
tion (PLD), laser ablation and dc magnetron sputtering.

In 2017, Arpaia et al. [158] reported on the fabrication of ultrathinYBa2Cu3O7−δ (YBCO)
films on a magnesium oxide substrate using the PLD technique from thicknesses ranging
between 50 and 3 nm. Their deposition conditions were a temperature of 760 ◦C and an
oxygen pressure of 0.7 mbar. After the deposition process, the deposited material was
cooled at a rate of 5 ◦C/min. The group used atomic force microscopy (AFM) to perform
morphological and structural characterisation. Scanning electron microscopy (SEM) and
x-ray diffraction (XRD) were utilised to determine the film quality and structural proper-
ties, respectively. The team reported that the onset temperature of the superconducting
transition slightly changes with the thickness of the film, while the zero-resistance tempera-
ture significantly decreases when reducing the film thickness. The lower onset transition
temperature was attributed to both an increase and a decrease in oxygen doping in the film.
Figure 21 shows the temperature versus resistance curve of YBCO thin films where the
thickness values are 10, 20, and 50 nm.

Figure 21. Resistance vs. temperature curve of YBCO thin films where the thickness values are 10, 20,
and 50 nm. The insert table shows the values of the calculated onset transition temperature for the
three thicknesses. The insert on the right shows the temperature versus resistance measurement of an
optically doped 50 nm bare thin film whose onset transition temperature was 89.1 K [158].

Stepantsov et al. [159] reported on the growth of superconductive YBa2Cu3O7−x thin
films of b orientation on the surface of a SrLaGaO4 crystal using the Czochralski technique.
The team deposited a buffer layer of PrBa2Cu3O7−x of 60 nm thickness onto the substrate
surface using the rf sputtering technique. The chamber was filled with oxygen and argon
gas mixture in a ratio of 1 to 4 up to a pressure of 0.1 mbars. The temperature of the
substrate was raised to 600–750 ◦C while a 50 W rf discharge was applied between the
target and the substrate. The chamber was then filled with pure oxygen to a pressure
of 600 mbars and the substrate with the deposited film was annealed at 550 ◦C for an
hour, after that it was cooled to room temperature. The chamber was then evacuated and
replaced with a PLD chamber where the YBa2Cu3O7−x was grown. The team reported
that the film is free of any other domains of crystallographic orientations of the intrinsic
material, which includes the a-oriented component. Figure 22 shows the resistance vs.
temperature curve for YBa2Cu3O7−x.
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Figure 22. Resistance vs. temperature curve of a b-oriented YBa2Cu3O7−x film grown on a substrate
of SrLaGaO4.

Stepantsov et al. [160] reported on the fabrication of superconductive YBa2Cu3O7
thin-films with tilt CuO [100] planes to the surface on SrTiO3 substrate, using the pulsed
laser deposition technique. The SrTiO3 single crystals, which were prepared by the Verneuil
technique, were x-ray oriented, cut, and polished by a chemical-mechanical method to
obtain substrates with one of the [100]—type planes tilted to the surface by 0 to 70◦ in
5◦ increments. YBa2Cu3O7 was then grown on these substrates by PLD. The team used
the four circle Philips X’Pert Xray diffractometer to study the structure of the films. They
found that YBa2Cu3O7 (YBCO) grown on the SrTiO3 was a single crystal with the (014) face
oriented parallel to the surface. They also reported that YBa2Cu3O7 thin-films with CuO
planes tilted to the surface by up to 41◦ can be deposited on the SrTiO3 crystal surface [160].

Kislinskii et al. [161] reported on the production of direct current superconducting
quantum interference devices (dc SQUIDS) and Josephson junctions using YBa2Cu3O7
thin-films, which were deposited on ZrO2 bi-crystal substrates stabilised by yttrium, using
laser ablation and dc magnetron sputtering. The team used a strip with a width of 30 µm
to measure critical transition temperature and critical density of the films. The strip had
been patterned by chemical etching. The deposited thin films had a Tc of 90 K and critical
current density of approximately 2 × 106 A/cm2. The voltage modulation depth of this
SQUID was 6 µV. Figure 23 shows the voltage–current characteristic curves for the yttrium
stabilised ZrO2 and YBCO.
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Figure 23. (Left) I–V characteristics of the Josephson junction on the 28◦ misoriented yttrium sta-
bilised ZrO2 bi-crystal without (represented by solid line) and with microwave radiation of 23.4 GHz
(represented by broken line) at a temperature of 77 K. (Right) I–V curves for the 28◦ misoriented weak
link of YBCO at different levels of 23.4 GHz microwave power (dotted lines) and without radiation
(solid line) at 62 K.

Carillo et al. [162] reported on the resistance magneto-fluctuation measurements and
proximity-effect in Nd1.2Ba1.8Cu3Oz (NBCO) to analyse the coherent charge transport in the
non-superconducting state. The team discovered an unanticipated inhibition of Cooper pair
transport, and the disappearance of superconductivity when the temperature was lowered
from 6 K to 250 mK. Their magnetoconductance and conductance measurements pointed
to the mechanism of pair breaking at temperatures lower than 2 K. In their investigation,
the team showed a transition of an underdoped NBCO nanostructure from a temperature
above 2–3 K where Cooper pair transport is permitted, to a lower temperature where the
Cooper pairs are not permitted to flow.

Chaix et al. [163] reported on dispersive charge density wave excitations in
Bi2Sr2CaCu2O8+δ. The team A new charge density wave (CDW) modulation was un-
earthed in underdoped Bi2.2Sr1.8Ca0.8Dy0.2Cu2O8+δ using ultrahigh resolution resonant
inelastic X-ray scattering. Dispersive excitations were observed from an incommensurate
charge density wave at low temperatures, which the enhanced phonon intensity. The CDW
persisted near the pseudogap temperature, but other excitations drastically weakened,
signalling a charge density wavevector shift. The phonon anomaly, dispersive CDW ex-
citations and CDW wavevector analysis provided a momentum-space understanding of
complex CDW behaviour. Figure 24 shows the temperature dependence of the charge
density wave and the phonon anomaly.
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shown in (b,c) are defined by the white dashed line. (b) Averaged intensity of the quasi-elastic region
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density wave. (c) Mean phonon energy regions intensity as defined in (a), at 240 K and 20 K. The
black arrow highlights the intensity anomaly at 20 K. Error bars in (b,c) are estimated by the noise
level of the spectra. (d) Raw energy-loss spectra (markers) and the corresponding fits (solid lines) of
RIXS data taken at T = 240 K (at the top) and T = 20 K (at the bottom). Filled areas highlight elastic
peak fits. Red and blue boxes for T = 240 K and T = 20 K, respectively, represent the RIXS spectra
where the elastic peak intensity is maximal (that is, the CDW position).

3. Atomic Layer Deposition in the Synthesis of Thin Film Superconductors

Atomic layer deposition [164–173] is a growing deposition technique used to synthe-
sise thin-film superconductors due to its precise and uniform atomic thickness control [174].
The process is mainly applied to grow thin film oxides. Amongst the different thin film
fabrication processes, atomic layer deposition [164,165,175–180] has steadily grown in the
past decade to be the preferred thin-film manufacturing process. Atomic layer deposition
has several advantages over the other fabrication techniques, like precise deposited material
atomic thickness control, homogeneousness of thicknesses deposited even on complex
three-dimensional surfaces, relatively lower system temperatures, and improved electronic
properties of devices [174].

In the following few paragraphs, we look at selected publications where ALD has
been used to synthesise thin-film superconductors.

Sowa et al. [181,182] used plasma-enhanced atomic layer deposition to synthesise
superconducting niobium nitride. The niobium precursor the team used was (t-butylimido)
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tris(diethylamido) niobium(V), abbreviated as TBTDEN. This precursor was kept at a
temperature of 373 K and introduced into the reactor with a precursor Boost system. In
this system, a charge of argon gas is introduced into the cylinder of the precursor be-
fore the precursor is pulsed into the atomic layer deposition reactor. This enhances low
vapour material transfer to the surface of the substrate. The nitrogen precursor was the
H2/N2 plasma. The substrate used was prime silicon and silicon, which had a layer of
1 µm of silicon dioxide that was thermally grown. The substrate temperature was kept
between 373 K and 573 K. NbN thin films have several applications, which include hard
surface coatings, [183–185] gate electrode metal, [32,186–190] copper interconnect diffusion
barrier, [188–190], and other applications that exploit the material’s superconducting prop-
erties [30,191–200]. Superconductivity measurements were carried out using the standard
AC lock-in method. Room temperature resistivities as low as 173 µΩcm and Tc value of
13.7 K were observed. Figure 25 shows the resistance (R) and magnetisation moment plots
of NbN thin films. X-ray reflectivity (XRR) measurements showed that thin film NbN thin
films have a lower density of between 6.4 and 7.8 g/cm3 compared with the bulk density
of NbN whose value is 8.47 g/cm3. Figure 26 shows the various density measurements
under different conditions.

Figure 25. Resistance and magnetisation moment plots for NbN films. (a) R vs. T for the measurement
Tc and (b) magnetisation plot of Niobium Nitride film deposited at 573 K, 40 sccm H2, and 300 W of
power [181].

Tamm et al. [201] used ALD to deposit superconducting CuO thin films. They used
copper (II)-bis-(-dimethylamino-2-propoxide), a metal-organic precursor, and ozone as an
oxidiser. The pressure conditions employed were between 200 and 260 Pa. The copper
precursor vapourisation temperatures ranged between 81 and 87 ◦C (354 and 360 K).
The BMT Messtechnik 802 N generator was used to produce ozone from oxygen. The
substrate, Si (100) temperature was kept between 112 and 160 ◦C (385 and 433 K). CuO
was the resulting copper oxide phase in this temperature range. They employed two-probe
electrical resistivity measurements, which discovered a drop of resistivity below Tc of 4 K.
This indicated low-temperature Takeshi in the thin films of copper oxide. Nb/Cu thin
film cavities are still used in several superconducting radio frequency (SRF) accelerators.
Figure 27 shows the resistivity plots at various temperatures.

Klug et al. [194] employed ALD to deposit amorphous Niobium Carbide-based thin-
film superconductors. They used trimethylaluminum (TMA) [Al(CH3)3], Niobium pentaflu-
oride and Niobium pentachloride precursors. Klug et al. characterised the film thickness,
composition, structure, and morphology by scanning electron microscopy (SEM), X-ray
photoemission spectroscopy (XPS), Rutherford backscattering spectroscopy (RBS), X-ray
reflectivity (XRR), atomic force microscopy (AFM), X-ray diffraction (XRD), and transmis-
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sion electron microscopy (TEM). Superconducting quantum interference device (SQUID)
magnetometry measurements showed a transition into superconductivity at Tc = 1.8 K in a
75-nanometre thick film synthesised at a temperature of 350 ◦C. The team also noted that
superconducting Tc might be improved to 3.8 K when NH3 is used during atomic layer
deposition film growth. Figure 28 shows the X-ray photoemission spectroscopy analysis of
the Al 2p, C 1s, F 1s, and Nb 3d peaks at different temperatures.

Figure 26. Effects of (a) temperature, (b) H2 flow rate, and (c) power variations on the NbN thin film
density [181].

Figure 27. Resistivity against temperature plots from two-probe electrical resistivity measurements
for various temperatures. The onset of superconductivity started just before 4 K [201].
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Figure 28. Detailed X-ray photoemission spectroscopy analysis of the (a) aluminum 2p, (b) carbon 1s,
(c) fluorine 1s, and (d) niobium 3d peaks at different temperatures with TMA and NbF5 [194].

Shibalov et al. [170] reported on a multistep ALD technique for superconducting Nio-
bium Nitride ultrathin films [202] with high critical current density on the amorphous sub-
strate. They synthesised superconducting ultrathin NbN films using tris(diethylamido)(tert-
butylimido) niobium (V), NH3/Ar, and H2/Ar gas mixtures as reactants and amorphous
SiO2 as their substrate. The team conducted a broad analysis relating to the effect of op-
erating parameters, like the extent of plasma exposure to the H2/Ar reactant, duration of
plasma exposure, gas-flow proportion, and inductively coupled plasma source power for
the NH3/Ar reactant, on the obtained films’ parameters, which include Tc, critical current
density, and resistivity. They achieved a resistivity of 147 µΩ·cm for 8 nanometres thick
films. Cooling in the Gifford McMahon closed-cycle cryostat yielded a Tc value of 12.3 K
and Jc (critical current density) of 9 MA/cm2 at a liquid He temperature [170]. NbN thin
film are used in superconducting radio frequency (SRF) accelerators.

Yemane et al. [182] reported on superconducting NbTiN thin films synthesised by
plasma-enhanced ALD. NbTiN has several superconducting applications, such as RF cavi-
ties, single-photon detectors, superconductor–insulator–superconductor (SIS) mixers, and
hot-electron bolometers. Compared to NbN, NbTiN has a lower secondary emission
coefficient and sensitivity to radiation, which makes it preferable for generating higher
accelerating fields in superconducting radio frequency (SRF) applications. Yemane and col-
leagues explored the PEALD of NbxTi1−xN using organometallic precursors (t-butylimido)
tris(diethyamido) niobium (V) and tetrakis (dimethylamido) titanium together with a
remote H2/N2 plasma. The control of film composition permitted them to tune the elec-
trical and superconducting characteristics, like fluctuating Tc between the values of 6.9 K
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and 13.2 K. Thin films produced through the sputtering process were produced at 600 ◦C
and showed higher Tc values. Although this was the case, the much lower temperatures
(300 ◦C for the reactor and between 75 and 100 ◦C for the substrate) used in PEALD makes
it more preferable.

4. Current and Future Applications of Superconductors

Some applications of individual superconductors were mentioned in this review when
such superconductors were discussed. The following is a brief description of the uses and
applications of superconductors.

Large Hadron Collider particles are accelerated using superconducting magnets [203].
The Large Hadron Collider is the biggest particle accelerator located at the CERN laboratory
near Geneva in Switzerland. There are two particle beams of very high energy inside the
accelerator that travel at a speed close to that of light. Superconducting magnets (made
from NbTi superconductors) are used to keep the beams apart in separate beam pipes
before they are made to collide. The cooling medium for the large hadron collider is liquid
Helium. The operating temperature of the magnets is around 1.9 K. The Large Hadron
Collider was designed to help scientists and engineers understand the structure of matter
in the first few moments of the universe before the big bang. It re-models those extreme
conditions according to the big bang theory [204]. The Large Hadron Collider is credited
for the discovery of the Higgs boson, which gives mass to all other fundamental particles.

SQUIDs (superconducting quantum interference devices) are utilised in the synthesis of
extremely sensitive magnetometers, which are used to detect land mines [18,53,194,205,206].
They have also found applications in engineering, geological equipment, and medical in-
struments where extreme sensitivity is required. SQUIDs are used to measure low and
weak magnetic fields, as low as 5×10−14 T. It comprises two superconductors that are kept
apart by very thin insulating layers, forming two parallel Josephson junctions. The main
superconductors used in SQUIDs are either a lead alloy, which contains about 10% indium
or gold, or niobium superconductors. Yttrium barium copper oxide superconductors (YBCO)
(YBa2Cu3O7) can also be used [207].

Magnetic Resonance Imaging (MRI) machines use superconducting magnets [206].
This is a method to scan the whole body, as the solenoids can create large uniform magnetic
fields [208]. The strong magnetic field from the superconducting magnets force the photons
in the body to align to their magnetic field. Pulsing a radiofrequency current stimulates the
photons and causes them to spin out of equilibrium. Turning off this current causes the
photons to release energy as they realign with the magnetic field. The amount of energy
released by the photons is detected by the MRI sensors. This enables the physicists to
identify the type of tissue based on the magnetic properties. MRI scans are used to create
detailed images of tissues and body organs. Just like in the Large Hadron Collider, the MRI
uses niobium titanium superconductors [209].

Superconducting cables are yet to be commercially applied extensively to replace
ordinary cable lines to transport power over long distances without any power loss [210].
Superconductive cables would prevent much energy losses and carry large quantities of
currents compared with the same volumes of copper and aluminium cables [211].

Superconductors are also being utilised in advance of high-intensity Electro-Magnetic
Pulse (EMP) [212], which is employed for paralysing all the electronic equipment within
its range.

Maglev (magnetic levitation) trains [206] in Japan work on the superconducting mag-
netic levitation phenomenon. Niobium Titanium superconductors are used as the su-
perconducting magnets. Magnetic levitation is the phenomenon whereby two magnetic
materials are repelled from each other in a vertical direction, enabling one to be suspended
over another by powerful electromagnetic forces only. Maglev trains use superconducting
magnets onboard the train and levitation coils on the railway track and sidewalls of the
guide way. Magnetic levitation and propulsion are used to lift, propel, and guide the train
over its track.
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5. Superconductor Technology Challenges

Superconductivity becomes a qualifying technology when magnetic fields above 3T
need to cover huge apertures (for example, 10 cm in the final bend of the upstream scanning
gantry) [203]. In the following few paragraphs, we discuss the challenges faced by the thin
film superconductor technology.

Superconductors produce strong electromagnetic fields in the magnets; hence, very
heavy mechanical structures are needed to counter the impact of Lorentz forces in order to
bring about mechanical stability. The strong Lorentz forces have the potential to rapture
some machine components. The large mechanical structures required add to the total
weight of the machine [203].

The strong fields of the gantry magnets positioned close to the patient can result in
more prolonged and powerful stray fields; this inhibits the proper functioning of other
health equipment that can be affected by magnetic fields. The health safety guidelines for
magnetic resonance imaging equipment in clinical use states that at the patient location,
the field must be less than 0.5 mT. Shielding of the magnetic fields in the instruments is
required.

The superconducting state [28,115,144,213,214] is governed by a blend of three con-
straints: magnetic field (Hc), current density (Jc), and temperature (Tc). Temperature is the
most difficult parameter to regulate because of the nearly 100% efficiency of the ultimate
change of the magnetic and mechanical energy stored in the magnet to heat energy. When
one of these three critical parameters (Jc, Hc2, Tc) is exceeded, a quench in the magnet may
be produced. The outcome of this quench is reduced reliability.

The servicing of superconductive magnets might be difficult and require devoted
highly skilled technical team responsible for the maintenance of the equipment [203]. The
maintenance of helium tanks for cooling the magnets and their subsequent refilling also
come at a cost.

Power applications of superconductivity lack a “compelling need” associated with
either current or forthcoming energy societies, since the present technologies perform
acceptably. High-temperature superconductor (HTSC) technology now “sit on the shelf”,
anticipating use in case it proves economically viable to use it [215].

Room temperature superconductors that have been synthesised require very high
pressures for them to attain superconductivity at room temperature. This is a significant
cost that makes them economically unviable. A room-temperature superconductor at
atmospheric pressure is yet to be synthesised.

6. Conclusions

The discovery of superconductivity in 1911 drew wide interest and excitement from
engineering and materials science fields. Various superconductors have been manufactured
ever since. Superconductors are basically either of two types: Type I and Type II. Type
II superconductors can be further classified into high temperature and low temperature
superconductors, and conventional BCS superconductors and non-conventional BCS su-
perconductors. Methods of fabricating thin-film superconductors include molecular beam
epitaxy, pulsed layer deposition, and atomic layer deposition. Some bulk superconductor
manufacturing technologies include conventional solid-state reaction method, self-flux
technique, high pressure high temperature synthesis technique, and arc melting technique.
The superconducting transition temperature of thin films changes with the film thickness;
hence it can affect the overall superconducting behaviour of the deposited material. The
growth of thin films is an extremely active process where the kinetics that take place dur-
ing nucleation and the microscopic level growth are the crucial defining aspects for the
resultant structure, morphology, and characteristics of the thin film. Because of the need
for precise thickness control of thin films of superconductors, atomic layer deposition is
one of the widely used techniques in the manufacture of superconductors. This review
has deliberately put more emphasis on atomic layer deposition as a thin film fabrication
technique because of the recent interest it has gained amongst researchers in the past
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decade. There are various applications of thin film superconductors which include gate
electrode metal, copper interconnect diffusion barrier, MRI machines, SQUIDs, Maglev
trains, Electro-Magnetic Pulse, among others. The thin-film technology offers a lucrative
scheme of creating engineered surfaces and opens a wide exploration of prospects to mod-
ify material properties for specific applications, such as those which depend on surfaces.
Although superconductors are applied practically in various fields, their application is
hindered by the need to cool the material to very low temperatures; hence their applications
are growing slower than expected.
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