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Abstract: Under the condition of variable rotating speed, it is difficult to extract the degradation
characteristics of the axial piston pump, which also reduces the accuracy of degradation recognition.
To address these problems, this paper proposes a degradation state recognition method for axial
piston pumps by combining spline-kernelled chirplet transform (SCT), adaptive chirp mode pursuit
(ACMP), and extreme gradient boosting (XGBoost). Firstly, SCT and ACMP are proposed to deal with
the vibration signal instability and high noise of the axial piston pump under variable rotating speed.
The instantaneous frequency (IF) of the axial piston pump can be extracted effectively by obtaining
the accurate time-frequency distribution of signal components. Then, stable angular domain vibration
signals are obtained by re-sampling, and multi-dimensional degradation characteristics are extracted
from the angular domain and order spectrum. Finally, XGBoost is used to classify the selected
characteristics to recognize the degradation state. In this paper, the vibration signals in four different
degradation states are collected and analyzed through the wear test of the valve plate of the axial
piston pump. Compared with different pattern recognition algorithms, it is verified that this method
can ensure high recognition accuracy.

Keywords: axial piston pump; variable rotating speed; degradation state recognition; SCT; ACMP;
XGBoost

1. Introduction

Axial piston pumps have been applied widely in aerospace, robots, construction
machinery, and other fields because of their advantages of high integration, diverse control
modes, and a wide regulating range of rotating speed and load [1]. As the power element of
the hydraulic system, the performance of the axial piston pump directly affects whether the
whole hydraulic system can work normally [2]. Therefore, identifying the degradation state
of the axial piston pump in time can not only bring great convenience to the maintenance of
the hydraulic system, but also improve the reliability and safety of the hydraulic system [3].

However, at present, research on the degradation state recognition of the piston
pump is mostly based on the assumption of constant rotating speed, while studies on the
degradation recognition of piston pumps under variable rotating speed are not in-depth.
Under the condition of variable rotating speed, the vibration signal is non-stationary and the
statistical characteristics change with time [4–6], so the common signal processing methods
such as Fourier transform [7] and band-pass filtering are no longer applicable. Therefore,
how to obtain accurate equipment-related state characteristics at variable rotating speeds
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has become a hot topic in the research of state recognition and fault diagnosis of rotating
machinery in recent years [8–11].

To reduce the impact of speed change on signal feature extraction, scholars have done
a lot of research and analysis. Liu et al. [12] obtained the frequency spectrum of the rolling
bearing sound signal by short-time Fourier transform (STFT) [13], and then automatically
extracted fault features by using sparse autoencoder techniques; Wang et al. [14] estimated
the instantaneous frequency of a variable speed planetary piston pump by nonlinear STFT,
and obtained the corresponding phase curve; Goharrizi et al. [15] determined the health
threshold by performing a discrete wavelet transform on the pressure signal of the hydraulic
actuator to extract the characteristic parameters of the health state of the hydraulic actuator;
Wu et al. [16] used continuous wavelet transform (CWT) and time-frequency analysis to
diagnose the fault of variable rotating speed piston pump; Khadem et al. [17] applied the
multi-wavelet transform to the fault diagnosis of the piston pump, and the test results show
that it could better fulfill the extraction of pulse characteristics.

The solutions proposed by the above scholars are health state feature extraction
methods based on time-frequency analysis, which is mainly represented by STFT and
wavelet transform (WT), and their core idea is to analyze the relationship between rotational
speed and signal through data. Due to its simplicity and robustness, STFT has been
widely applied. However, the efficiency of STFT depends largely on the size and type of
the window, so STFT can only be performed for simple signal time-frequency structure
analysis [18]; although the WT overcomes the shortcoming that the window of STFT does
not change with frequency, the wavelet basis function of WT has no clear benchmark for
selection, and different basis functions will lead to different signal analysis results, and
there is also energy leakage in the WT due to the filter and the signal frequency band [19].

In the aspect of mechanical fault diagnosis and state recognition, techniques such as
support vector machine (SVM) [20,21] and artificial neural network (ANN) [22,23] have
been widely accepted. Reference [24] established an incomplete wavelet packet analysis
model consisting of five-layer discrete wavelet transform and four-layer wavelet packet
analysis, and applied multilayer ANN for engine fault classification and recognition; in
reference [25], the state feature information and natural characteristics of signals were dug
from several aspects, and the SVM based on particle swarm optimization was used to
implement the multi-state recognition of rolling bearings. Meanwhile, it is to be noted that
the ANN needs to be trained iteratively, which requires a large amount of calculation, takes
a long time, and the results are difficult to explain; SVM needs to generate a kernel matrix,
which takes up a lot of space and takes a long time to calculate [26].

Aiming at the above problems, this paper proposes a degradation state recognition
method for axial piston pumps based on SCT, ACMP, and XGBoost. Firstly, ACMP is
used to complete the decomposition of the corresponding time-domain signal component,
and then the relevant instantaneous frequency is extracted by SCT, so that the signal
reconstruction in the angle domain and the order analysis of the reconstructed signal are
realized. Finally, the classification model is established by selecting the peak value, pulse,
kurtosis, and other indexes of the vibration signal of the piston pump degradation test as
the degradation characteristics, and then the pattern recognition of the piston pump in
different states is realized by XGBoost. By comparing different algorithms, it is verified
that this method can ensure high recognition accuracy while reducing computation time.

2. Theoretical Background
2.1. Spline-Kernelled Chirplet Transform (SCT)

To address the shortcomings of energy divergence and ridge line ambiguity in tra-
ditional time-frequency analysis methods, the linear chirplet transform (CT) [27] was
extended by replacing the linear chirp kernel with a spline function, which was optimized
from the perspective of the kernel function, and the correlation principle of SCT [28]
was introduced.
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SCT extends the performance of traditional CT. It can analyze continuous and non-
linear instantaneous frequency signals, iteratively calculate the best fitting spline, find the
most suitable frequency rotation operator and frequency shift operator, and accurately
complete time-frequency analysis. The SCT of the signal is defined as:

SCT(τ, ω, Q; σ) =

+∞∫
−∞

z(t)wσ(t− τ)e−jωtdt (1)

with 
z(t) = z(t)φR(t, Q)φS(t, τ, Q)

φR(t, Q) = exp(−j
n
∑

k=1

qi
k

k (t− ti)
k + γi)

φS(t, τ, Q) = exp(j
n
∑

k=1
qi

k(τ − ti)
k−1t)

(2)

where, φR(t, Q) is the frequency-rotate operator; φS(t, τ, Q) is the frequency-shift operator;
Q(i, k) = qi

k is the local polynomial coefficient matrix of the spline kernel. γi needs to
be met:

γi − γi+1 =
n

∑
k=1

qi+1
k
k

(ti − ti+1)
k (3)

when i = 1, γi = 0.
In particular, SCT consists of three sequential operations:

(1) The signal is rotated in the time-frequency plane by increasing the instantaneous
frequency of φR(t, Q);

(2) By increasing the frequency of φS(t, τ, Q) at τ, the signal is shifted in the time-
frequency plane;

(3) The signal is processed by short-time Fourier transform (STFT), and the window is wσ.

Through approximation and convergence of the spline kernel function and rotation
and displacement of the arithmetic operator in SCT, the time-frequency distribution with
high energy concentration can be generated, and then the accurate instantaneous frequency
and the corresponding relationship between instantaneous frequency and rotating speed
can be obtained.

2.2. Instantaneous Frequency Estimation Based on Analytic Signal Analysis Method

Traditional instantaneous frequency estimation of analytic signals mainly determines
the number of signal patterns in advance based on optimized technology, and then finds
all signal patterns. In fact, this method cannot accurately determine the number of patterns
of the test signal, and the bandwidth parameter of the traditional method is fixed, which
cannot solve the problem of frequency band overlap. The band overlap problem is shown
in Figure 1.

To solve the above-mentioned problems, this paper uses ACMP [29] to decompose the
signal modes and complete the extraction of instantaneous frequency. ACMP is composed
of three main parts: pattern recursion, extraction framework, and bandwidth parameter
adaptive adjustment algorithm. ACMP uses the matching pursuit method [30] to recur-
sively decompose and extract the signal patterns one by one. There is no need to input the
number of decomposed signals, and the bandwidth parameter can be adaptively updated
with the iteration of the algorithm. Moreover, the ACMP algorithm uses the sparse matrix
to decompose the signal, which can better shorten the decomposition time of the signal.

ACMP can decompose the following signal models:

s(t) =
k

∑
i=1

si(t) =
k

∑
i=1

Ai(t) cos(2π
∫ t

0
fi(τ)dτ + ϕi) (4)
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where, s(t) is the superposition of k frequency modulated signals si(t), i = 1, 2, 3 . . . , k;
Ai(t) is the instantaneous amplitude; fi(t) is the instantaneous frequency; ϕi is the initial
phase of the i-th component si(t).
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Figure 1. Frequency band overlap.

Due to the stability issues, it is difficult to estimate all modes of the signal simultane-
ously [31]. ACMP uses a greedy algorithm to estimate signal components and extracts the
signal patterns one by one without specifying the format of the patterns in advance. ACMP
solves the following problems in extracting the i-th signal pattern:

min
{ai(t),{βi(t)}, f̂i(t)}

{∥∥a′′i (t)
∥∥2

2 +
∥∥β
′′
i (t)

∥∥2
2 + γ‖s(t)− si(t)‖2

2

}
(5)

with

si(t) = ai(t) cos(2π
∫ t

0
f̂i(τ)dτ) + βi(t) sin(2π

∫ t

0
f̂i(τ)dτ) (6)

where γ is the weight coefficient and γ > 0; ai(t) and βi(t) are two demodulated signals.
f̂i(t) is a frequency function; the third term of Equation (5) represents the energy of the
residual signal, which is a form of a greedy algorithm that makes the residual tend to zero
by continuous iteration.

The constraint condition of Equation (6) is brought into Equation (5) and simplified to
obtain the following objective function:

Jγ(ui, fi) = ‖Φui‖2
2 + γ‖s−Giui‖2

2 (7)

with
ui = [aT

i
βT

i
]
T

fi = [ f̂i(t0) · · · f̂i(tN−1)]
T

Φ =

[
P 0
0 P

]
s = [s(t0) · · · s(tN−1)]

T ;
Gi = [Ci Di]

(8)

with
ai = [a(t0) · · · a(tN−1)]

T

βi = [β(t0) · · · β(tN−1)]
T

Ci = diag[cos φi(t0) · · · cos φi(tN−1)]
Di = diag[sin φi(t0) · · · sin φi(tN−1)]

(9)

where P is a second-order difference matrix; φi(t) = 2π
∫ t

0 f̂i(τ)dτ.
Since the objective function Jγ(ui, fi) is non-linearly related to the instantaneous fre-

quency, it is difficult to update the instantaneous frequency directly with the Jγ(ui, fi)
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gradient. The instantaneous frequency increment can be obtained by arctangent demodula-
tion as:

∆ f n
i (t) = −

1
2π

d
dt
(arctan(

βn
i (t)

an
i (t)

)) (10)

where n is the number of iterations.
In addition, to reduce the effect of noise, the instantaneous frequency increment needs

to meet the low-pass property. It is not difficult to obtain the display expression of the
increment as:

fn+1
i = fn

i + ∆fn
i (11)

Therefore, the instantaneous frequency can be updated by Equation (11).
Due to the convergence of the ACMP, how to accurately select the initial instantaneous

frequency is an important part of improving the signal decomposition and instantaneous
frequency extraction. In this paper, the wavelet ridge method is used to extract the ridge
with the strongest energy in the time-frequency distribution as the initial instantaneous
frequency for the iterative convergence of the ACMP algorithm.

2.3. Order Analysis Method Based on SCT and ACMP

The change in rotational speed will affect the stability of vibration signals, and spec-
trum ambiguity will appear when the Fourier transform is used directly. In order to solve
the spectrum ambiguity problem and avoid large errors in the subsequent analysis, this
paper proposes an order analysis method based on SCT and ACMP to complete the signal
reconstruction in the angle domain and the order analysis of the reconstructed signal.

The calculation process of this method is shown in Figure 2. Aiming at the vibration
signal under variable rotational speed, first, the multi-component signal is decomposed
into single-component signals by the ACMP method, so as to obtain the modal component
of the k-order signal. Secondly, the SCT method is used for the time-frequency analysis
of the k-order signal mode component, and the component ridgeline of the k-order sig-
nal is optimized to obtain the accurate time-frequency distribution of the k-order signal
component. Then, the accurate k-order instantaneous frequency is extracted from the
time-frequency distribution by using the wavelet ridge method. Finally, the reconstructed
angle domain stationary signal is obtained by the equal angle resampling method.
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2.4. Extreme Gradient Boosting (XGBoost)

To address the problem that traditional tree integration methods are difficult to train
data in parallel [32], this paper uses XGBoost for classification, which can intelligently
handle missing data and avoid overfitting while processing data in parallel [33]. The
XGBoost model is shown below:

ŷi =
K

∑
k=1

fk(xi), fk ∈ F (12)

where K is the number of decision trees; fk(xi) is a function of the k-th decision tree input
xi of t; ŷi is the predicted value; F is all possible regression trees sets. The objective function
of XGBoost is:

Xobj =
n

∑
i=1

l(yi, ŷi) +
K

∑
k=1

Ω( fk) (13)

with
Ω( fk) = γT +

1
2

λ‖w‖2 (14)

where
n
∑

i=1
l(yi, ŷi) is the loss function;

K
∑

k=1
Ω( fk) is a regularization term; T is the number of

leaf nodes; w is the score of leaf nodes; γ is the leaf penalty coefficient; λ ensures that the
score of the leave nodes is not too large.

The XGBoost builds a tree with feature parameters, every time a tree (a classified
feature node) is added, a new function fi(X, θi) is learned, and then the final predicted
residuals are fitted with the learning results, and finally k trees containing k classification
feature nodes are obtained. For the predicted score of each sample, it is necessary to find
all the corresponding leaf nodes according to the characteristics of the sample, and the sum
of the scores of all leaf nodes is the predicted value of the sample. The principle is shown
in Figure 3.

Processes 2022, 10, x FOR PEER REVIEW 7 of 18 
 

 

sum of the scores of all leaf nodes is the predicted value of the sample. The principle is 
shown in Figure 3. 

 
Figure 3. The principle of XGBoost. 

3. Piston Pump Degradation Test Verification at Variable Rotating Speed 
In this test, different health states of the piston pump are simulated by replacing the 

valve plate of the piston pump with different wear degrees, so that the vibration, motor 
speed, and other signals under variable rotating speed conditions can be collected for 
analysis. Then, the signals are processed using the method proposed in this paper. 

3.1. Design of Degradation Test 
In this test, the motor speed is indirectly adjusted by changing the frequency of the 

frequency converter, and the motor is controlled to complete the linear deceleration. The 
process is that the frequency is linearly reduced from 50 Hz to 30 Hz for 6 s. The rated 
speed of the motor is 1500 r/min. 

The axial piston pump is selected as the test object in this paper. By artificially man-
ufacturing the wear loss, four states with increasing wear degrees of the piston pump 
valve plates are simulated. The degrees are: zero wear, mild wear, moderate wear and 
severe wear. The specific test plan is shown in Table 1. 

Table 1. Test plan. 

Wear States Wear Loss Rotational Speed Variation Test Pressure (MPa) 
zero wear  0 mm deceleration 10 
mild wear 0.0432 mm deceleration 10 

moderate wear 0.1248 mm deceleration 10 
severe wear 0.4661 mm deceleration 10 

The valve plates for the test are shown in Figure 4. 

  

 

Residual ErrorResidual Error

……

),( 11 θXf

),( kk Xf θ

Nodes are split 
by objective function

Data Set X

…… ……

},{ kXTreek θ},{1 1θXTree

……

……

Residual Error

},{2 2θXTree

),( 22 θXf ),( 11 −− kk Xf θ ),( kk Xf θ

Figure 3. The principle of XGBoost.

3. Piston Pump Degradation Test Verification at Variable Rotating Speed

In this test, different health states of the piston pump are simulated by replacing the
valve plate of the piston pump with different wear degrees, so that the vibration, motor
speed, and other signals under variable rotating speed conditions can be collected for
analysis. Then, the signals are processed using the method proposed in this paper.
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3.1. Design of Degradation Test

In this test, the motor speed is indirectly adjusted by changing the frequency of the
frequency converter, and the motor is controlled to complete the linear deceleration. The
process is that the frequency is linearly reduced from 50 Hz to 30 Hz for 6 s. The rated
speed of the motor is 1500 r/min.

The axial piston pump is selected as the test object in this paper. By artificially
manufacturing the wear loss, four states with increasing wear degrees of the piston pump
valve plates are simulated. The degrees are: zero wear, mild wear, moderate wear and
severe wear. The specific test plan is shown in Table 1.

Table 1. Test plan.

Wear States Wear Loss Rotational Speed Variation Test Pressure (MPa)

zero wear 0 mm deceleration 10
mild wear 0.0432 mm deceleration 10

moderate wear 0.1248 mm deceleration 10
severe wear 0.4661 mm deceleration 10

The valve plates for the test are shown in Figure 4.

Processes 2022, 10, x FOR PEER REVIEW 8 of 18 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 4. Valve plates under different wear states: (a) Zero wear; (b) Mild wear; (c) Moderate wear; 
(d) Severe wear. 

3.2. Establishment of Degradation Test Bench 
Figure 5 is the on-site physical picture of the piston pump degradation test bench, 

and its system schematic diagram is shown in Figure 6. The swashplate axial piston pump 
is selected as the tested pump, and its detailed parameters are shown in Table 2. 

Table 2. Basic parameters of piston pump. 

Model Number Number of Pistons Theoretical Displacement Rated Pressure 
10MCY14-1B 7 10 mL/r 31.5 MPa 

 
Figure 5. Degradation test bench of axial piston pump. 

In this test, the frequency converter was used to adjust the motor speed. In order to 
stabilize the pressure of the hydraulic system when replacing the valve plate with differ-
ent degrees of wear, a vane pump was installed in the system as the charge pump to main-
tain the system’s pressure stability, and the pressure of the hydraulic system circuit was 
controlled by adjusting the opening size of the pilot relief valve. Meanwhile, to minimize 

Figure 4. Valve plates under different wear states: (a) Zero wear; (b) Mild wear; (c) Moderate wear;
(d) Severe wear.

3.2. Establishment of Degradation Test Bench

Figure 5 is the on-site physical picture of the piston pump degradation test bench, and
its system schematic diagram is shown in Figure 6. The swashplate axial piston pump is
selected as the tested pump, and its detailed parameters are shown in Table 2.
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Table 2. Basic parameters of piston pump.

Model Number Number of Pistons Theoretical
Displacement Rated Pressure

10MCY14-1B 7 10 mL/r 31.5 MPa

In this test, the frequency converter was used to adjust the motor speed. In order
to stabilize the pressure of the hydraulic system when replacing the valve plate with
different degrees of wear, a vane pump was installed in the system as the charge pump to
maintain the system’s pressure stability, and the pressure of the hydraulic system circuit was
controlled by adjusting the opening size of the pilot relief valve. Meanwhile, to minimize
the interference of background noise, we use the magnetic base to install a vibration sensor
on the tested piston pump shell parallel to the valve plate.

First of all, during the experiment, we installed a wear-free valve plate on the piston
pump under test, adjusted the pilot relief valve to stabilize the system pressure at 10 MPa,
and adjusted the potentiometer to change the parameters of the frequency converter, so
that the motor speed linearly decreased from 1500 r/min to 900 r/min, lasting for 6 s. At
the same time, we set the sampling frequency of the signal acquisition system to 20 khz and
the sampling time to 6 s. Finally, the LabVIEW control program was run to collect signals.
After collecting this set of signals, the valve plates in other worn states were replaced in
turn, the experiment was repeated, and the next set of signals was collected.

3.3. Data Analysis of Axial Piston Pump

The vibration signals of the piston pump under four different states are shown in
Figure 7. To reduce the test error and calculation time, the first four seconds of the signal
are selected for analysis. With the continuous increase of wear, the amplitude of each state
signal is also gradually increasing. In this test, the rotational speed is a decreasing process,
and the amplitude energy of the signal along the time axis is also gradually decreasing.
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Figure 7. Vibration signals of different wear states: (a) Zero wear; (b) Mild wear; (c) Moderate wear;
(d) Severe wear.

Taking the vibration signal of the variable rotating speed piston pump under severe
wear as an example, it is found that the frequency ambiguity is serious through Fourier
transform on the vibration signal, as shown in Figure 8. Therefore, the traditional spectrum
analysis methods cannot be directly used to find the degradation characteristics of the
piston pump. The fundamental frequency of the piston pump rotating speed is about 25 Hz,
as the selected axial piston pump is a 7-piston type, so its piston fundamental frequency
should be about 175 Hz.
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Figure 8. Signal spectrogram diagram under severe wear state.

The time-frequency diagram under severe wear condition is obtained by STFT. The
k-order signal component is obtained by ACMP, and the accurate instantaneous frequency
is obtained by SCT. The results are shown in Figure 9.
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Figure 9. (a) Time-frequency diagram based on STFT; (b) Instantaneous frequency based on SCT
and ACMP.

In this paper, the instantaneous frequency of the k-order harmonic is obtained by
obtaining the highest energy signal component, and then the angular domain vibration
signal is obtained according to the order algorithm; see Figure 10a below. Through the
order analysis of the obtained angular vibration signal, the order spectrum is obtained, as
shown in Figure 10b. It can be seen from Figure 10b that the order distribution is clear and
the frequency ambiguity caused by the speed change is solved. There are obvious peaks at
the integral multiple of order 7 and order 7, and the sideband near the natural frequency is
obvious, which is caused by local wear of the valve plate.
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Figure 10. (a) Angular domain vibration signal in severe wear state; (b) Order spectrogram in severe
wear state.
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The angular domain signal reconstruction and order analysis under different degra-
dation states are completed by the above method, and the results are shown in Figure 11.
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Figure 11. Angular domain vibration signal and order spectrogram under different wear states.
(a) Angular vibration signal in zero wear state; (b) Angular vibration signal in mild wear state;
(c) Angular vibration signal in moderate wear state; (d) Order spectrogram in zero state; (e) Order
spectrogram in mild state; (f) Order spectrogram in moderate state.

Observing the order spectrum of four different states, it can be seen that the amplitude
of the order spectrum gradually increases with the continuous increase of wear, and the
increase is more pronounced at order 7 and its integral multiples. In the entire order
spectrums, the amplitude in the zero-wear state is significantly smaller than that in the
worn states. As the wear of the piston pump valve plate increases, the energy of the order
band in the corresponding order spectrum also shows a trend of increasing gradually, the
more serious the wear degree is, the higher the amplitude of the order spectrum is, and the
energy is mainly concentrated in the middle and low order bands.

In the reciprocating process of the piston, with the increasing wear of the valve plate,
the force of the oil medium hitting the valve plate becomes larger and larger, and the
vibration feedback to the piston pump shell through the parts becomes larger, so the
amplitude of the order spectrum can reflect the different degradation states of the piston
pump. Through test verification, the order analysis method based on SCT and ACMP
can eliminate the influence of variable speed and obtain accurate order spectrums, which
conform to reality and have good representativeness.

4. Degradation State Recognition of Piston Pump
4.1. Extraction of Feature Parameters
4.1.1. Characteristic Parameters in Angular Domain

The dimensionless parameters of the signal characteristics are only related to the status
of the equipment itself, and they are not sensitive to changes in rotating speed and working
conditions. With the continuous increasing wear of the piston pump, the vibration impact
transmitted by the shaft to the pump shell will be greater, and the peak index, pulse index,
and kurtosis index can reflect the size of the impact energy, so this article selects them as
the degradation states’ features in the angle domain of the piston pump.
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For the angular domain vibration signal s(l) of the piston pump, the data length of
the equal angle-interval sampling is L, and the peak index C f , pulse index I f and kurtosis
index KV are defined as follows:

C f =
Srms∣∣S∣∣ , I f =

Smax∣∣S∣∣ , KV =
β

Srms
(15)

with

Srms =

√
1
L

L
∑

l=1
s2(l), Smax = max(|s(l)|)

∣∣S∣∣ = 1
L

L
∑

l=1
|s(l)|, β = 1

L

L
∑

l=1
s4(l)

(16)

where Srms is the root mean square value; Smax is the peak value;
∣∣S∣∣ is the absolute mean

amplitude; and β is the kurtosis.
Therefore, the degradation characteristic parameter in the angular domain under

variable rotational speed is X = [C f , I f , KV ].

4.1.2. Characteristic Parameters in Order Domain

At variable rotational speed, the vibration energy intensity of the angular domain
signal order spectrum of the axial piston pump has obvious differences in different wear
and damage conditions. Therefore, if the order spectrum of the angular domain vibration
signal s(l)(l = 1, 2, 3, . . . , L) is Sl(m), the mean square value of the order spectrum is
defined as:

Y1 =

√√√√ 1
Dmax

Dmax

∑
m=1

S2(m) (17)

where, m is the order data length variable, m = 1, 2, 3 . . . Dmax; Dmax is the maximum order;
and Y1 is used to weigh the vibrational energy intensity of the entire order spectrum.

In order to better represent the differences in characteristics under different degrees
of wear, this paper uses the amplitudes of the 7th, 14th, 21st, and 28th orders of the order
spectrum as the characteristic parameters for analysis. In the process of calculating the
order spectrum, each signal cannot appear at maximum amplitude exactly at the integer
order, so we select the average value of the corresponding order interval as the eigenvalue,
as shown in Equation (18). 

Y2 = ∑ S(7 ± 0.15)
n

Y3 = ∑ S(14 ± 0.15)
n

Y4 = ∑ S(21 ± 0.15)
n

Y5 = ∑ S(28 ± 0.15)
n

(18)

where n is the number of order spectral data in the interval.
Finally, the order domain degradation characteristic selection of the signal at variable

rotational speed is Y = [Y1, Y2, Y3, Y4, Y5].

4.2. Pattern Recognition of Degradation States
4.2.1. Parameters Optimization of Model

The vibration signals of the piston pump at variable rotating speeds under four
degraded states are collected, and the ACMP, SCT and order analysis are combined to elimi-
nate the spectral ambiguity caused by the change of speed, so as to obtain the reconstructed
signal in the angular domain and extract the degradation characteristic parameters of each
group of signals. The first five sets of characteristic parameters of the piston pump in the
four degraded states are listed, as shown in Table 3.
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Table 3. Test samples and corresponding target feature parameters.

Degradation
States

Degradation Feature Parameters of The Samples
Label

Cf If KV Y1 Y2 Y3 Y4 Y5

zero state

17.5143 254.8358 34.3117 0.2943 0.0847 0.0500 0.0298 0.0212 1
17.0268 259.6160 30.4657 0.3278 0.0865 0.0769 0.0265 0.0208 1
17.6276 241.1742 37.9160 0.2407 0.0698 0.0532 0.0367 0.0174 1
17.2683 261.2015 32.2628 0.3097 0.0975 0.0671 0.0111 0.0367 1
17.4314 259.1114 33.1784 0.2991 0.0967 0.0954 0.0104 0.0079 1

mild wear

12.9107 195.3979 24.4784 0.3316 0.0877 0.0667 0.0374 0.0172 2
12.5098 211.0776 22.1202 0.3580 0.0876 0.0643 0.0486 0.0123 2
13.0235 189.0926 26.0609 0.3297 0.0799 0.0793 0.0376 0.0109 2
12.7630 193.2093 24.5660 0.3436 0.0707 0.0621 0.0291 0.0215 2
12.8913 194.7280 24.4312 0.3371 0.0782 0.0598 0.0359 0.0188 2

moderate wear

11.1787 228.7917 14.0893 0.6974 0.1482 0.1591 0.0298 0.0635 3
10.7528 249.2090 12.2644 0.8239 0.1276 0.1689 0.1055 0.0987 3
11.5477 210.8446 15.8551 0.6122 0.2690 0.1542 0.0965 0.0543 3
11.0072 241.7709 13.0180 0.7909 0.1098 0.1778 0.1478 0.1214 3
11.1132 228.4637 14.0665 0.7023 0.1725 0.1161 0.0571 0.0513 3

severe wear

7.5224 247.6851 6.5347 1.0712 0.3681 0.2663 0.1156 0.1074 4
7.2278 271.0355 6.2371 1.7685 0.2861 0.3791 0.7120 0.1899 4
7.7621 229.8977 6.6778 0.9976 0.5876 0.2003 0.1485 0.2358 4
7.3447 258.1544 6.3316 1.2907 0.4760 0.3123 0.3760 0.1010 4
7.4752 247.9941 6.4727 1.1439 0.5523 0.1796 0.1147 0.2259 4

In this table, C f , I f , KV , Y1, Y2, Y3, Y4, Y5 are the input features of the XGBoost model,
and the function of label is to distinguish the characteristic parameters of different states
more intuitively. It can be seen from the table that there are obvious differences in the same
features between different states. For example, the peak index gradually decreases with
the increase of wear, and the features related to the order domain gradually become larger
with the increase of wear. Similarly, there are also obvious differences between different
features of the same state. It can also be seen from the table that there is little difference in
the same characteristics of the same state.

In order to improve the performance of the model, the parameters of XGBoost need
to be adjusted. In this paper, three parameters are mainly discussed and analyzed: the
number of trees, the max depth of tree and the min child weight. Based on fixing other
parameters, we change the number of trees, the max depth of the tree and the min child
weight to find the optimal parameters, so the overfitting of the model can be avoided and
the accuracy of the model can be improved. Since the max depth of the tree and the number
of trees affect each other, if the parameters are optimized in turn, it will only fall into the
disadvantages of low efficiency and local optimization, and the amount of data in this
paper is small, so the grid algorithm can be used to select the optimal parameters for the
max depth of the tree and the min child weight at the same time. The results are shown in
Figure 12.

As can be seen from the above figure, when the max depth of the tree is 3 and the
min child weight is 1, the accuracy of state recognition is the highest. Then, these two
parameters are fixed, and the number of decision trees is selected by the logarithmic loss
algorithm [34], and then the probability output of the XGBoost classifier is evaluated. The
logarithmic loss function is defined as:

σ = − 1
N

N

∑
i=1

M

∑
j=1

yij log(pij) (19)

where N is the input sample size; M is the number of categories; yij is the true category
of the input data points; and pij is the probability that the i-th data point predicted by the
XGBoost classifier belongs to the j-th class. The result is shown in Figure 13.
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Figure 13. Number selection of trees.

The closer the logarithmic loss value is to zero, the more accurate the XGBoost classifier
is. From Figure 13, when the number of trees is 54, the logarithmic loss value is −0.0061,
which is the largest value, so it is determined that the number of trees is 54. Through the
selection calculation, the optimal parameters of the XGBoost model are shown in Table 4,
and the remaining parameters are set to default values.

Table 4. Parameters for XGBoost.

Parameters Numerical Value

max depth 3
min child weight 1
number of trees 54

learning rate 0.1
objective multi: softmax

number of categories 4
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4.2.2. Recognition Results and Analysis

In order to better verify the efficiency and correctness of this method, K-fold cross
validation [35] is used to calculate the recognition accuracy of the XGBoost model, and the
average of the multiple test accuracy rates is used as the final test accuracy.

Moreover, the method adopted in this paper is also compared with ANN, SVM, and
gradient boosting decision Tree (GBDT) shown in Table 5. It is found that, when the number
of hidden layer neurons of ANN is 12, the effect is better; while the kernel function of
SVM is RBF, the penalty coefficient is 4, and gamma is 0.1. By adjusting and optimizing
the parameters of GBDT, n estimators = 20, max depth = 3, and min samples split (the
minimum number of samples needed when the internal nodes are divided again) = 10.

Table 5. Comparison of degradation state recognition results.

Classification Method Average Recognition Accuracy Mean Decision Time (s)

ANN 0.963 0.094
SVM 0.989 0.029

GBDT 0.986 0.021
XGBoost 0.991 0.013

The above table shows the average accuracy and mean decision time of multiple
state recognition verifications. As can be seen from the table, compared with the other
three algorithms, XGBoost has the highest prediction accuracy of 0.991, SVM is next with
0.989, GBDT is 0.986, while ANN has the worst prediction accuracy at 0.963. When the
performance of the computer is the same, the mean decision time of XGBoost is less than
that of SVM, which is 0.016 s. Compared with the traditional GBDT model, XGBoost adds
the control of model complexity and pruning processing, which makes the trained model
difficult to overfit, and the calculation time is relatively less. The average recognition rate
of GBDT is 0.986, but the mean decision time is lower than that of SVM. ANN needs to
iterate repeatedly to get the ideal classification effect, so it has a higher mean decision time
than the three other algorithms. In the complex working environment, the vibration data
of the piston pump is complex and changeable, so it is necessary to extract a variety of
characteristics from the data to carry out an effective diagnosis. Compared with ANN, the
parameter optimization calculation of XGBoost is not tedious, and in this experiment, the
correct recognition rate of this method can be improved by 2.8%. In the evaluation of the
degradation state of the axial piston pump, the XGBoost algorithm can not only ensure
high diagnosis accuracy but also reduce calculation time. Therefore, XGBoost has practical
application value in the recognition of piston pump degradation patterns.

5. Conclusions

In this paper, the valve plate in different wear states is replaced to simulate the
different health states of the piston pump, and by building a degradation testbed, the
vibration signals under variable rotating speed are collected to study the degradation state
recognition of the axial piston pump. The main conclusions have been drawn:

1. The combined method of ACMP and SCT has obvious advantages in dealing with
unstable and high-noise vibration signals at variable rotating speeds. Meanwhile, this
method also solves the issue of frequency ambiguity, improves the decomposition
efficiency, accurately decomposes the signal mode, and extracts the instantaneous
frequency of the axial piston pump.

2. With the increase of the wear degree of the valve plate, the order spectrum amplitude
and the order domain energy of the axial piston pump show a clear increasing trend,
which proves that the signals processed based on ACMP and SCT conform to the
actual situation and have high accuracy.

3. The average recognition accuracy of the valve plate wear state of the axial piston pump
based on ACMP, SCT, and XGBoost is 99.1%. Compared with ANN, GBDT, and SVM
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algorithms, XGBoost identifies four different wear states better and saves computing
time, which highlights the advantages of XGBoost after parameter optimization in
pattern recognition.
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