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Abstract: Developing successful municipal waste management planning strategies is crucial for
implementing sustainable development. The research proposed the application of an optimized
artificial neural network (ANN) to forecast quantities of waste in Poland. The neural network coupled
with particle swarm optimization (PSO) algorithm is compared to the conventional neural network
using five assessment metrics. The metrics are coefficient of efficiency (CE), Pearson correlation
coefficient (R), Willmott’s index of agreement (WI), root mean squared error (RMSE), and mean bias
error (MBE). Selected explanatory factors are incorporated in the developed models to reflect the
influence of economic, demographic, and social aspects on the rate of waste generation. These factors
are population, employment to population ratio, revenue per capita, number of entities by type
of business activity, and number of entities enlisted in REGON per 10,000 population. According
to the findings, the ANN–PSO model (CE = 0.92, R = 0.96, WI = 0.98, RMSE = 11,342.74, and
MBE = 6548.55) significantly outperforms the traditional ANN model (CE = 0.11, R = 0.68, WI = 0.78,
RMSE = 38,571.68, and MBE = 30,652.04). The significant level of the reported outputs is evaluated
using the Wilcoxon–Mann–Whitney U-test, with a significance level of 0.05. The p-values of the
pairings (ANN, observed) and (ANN, ANN–PSO) are all less than 0.05, suggesting that the models
are statistically different. On the other hand, the P-value of (ANN–PSO, observed) is more than
0.05, suggesting that the difference between the models is statistically insignificant. Therefore, the
proposed ANN–PSO model proves its efficiency at estimating municipal solid waste quantities and
may be regarded as a cost-efficient method of developing integrated waste management systems.

Keywords: predictive modelling; trend analysis; municipal solid waste; particle swarm optimization;
hybrid neural network

1. Introduction

Municipal solid waste (MSW) has emerged as a new challenge to the United Nations’
global sustainability strategy [1–3]. MSW is defined as garbage generated in houses or other
sources that contains no hazardous chemicals [4]. The MSW accumulation problem has
been worrying both local and international policymakers and stakeholders, posing serious
health and environmental problems [5]. Nearly 2.01 billion tonnes of MSW are generated
annually all over the world, with a projected increase of 3.40 billion tonnes by 2050 [6].
Most of the countries in the Middle East/North Africa (MENA) region are known for high
MSW generation, with waste output exceeding 2 kg per capita per day on average [7]. In

Processes 2021, 9, 2045. https://doi.org/10.3390/pr9112045 https://www.mdpi.com/journal/processes

https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-1072-5895
https://doi.org/10.3390/pr9112045
https://doi.org/10.3390/pr9112045
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pr9112045
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr9112045?type=check_update&version=2


Processes 2021, 9, 2045 2 of 16

2019, the European Union (EU) generated a total of 502 kg of MSW per capita. Concerning
the per capita MSW generation, Denmark and Luxembourg produced the highest rates
of 844 and 791 kg per inhabitant, whilst Romania produced the lowest rate of 280 kg per
inhabitant in the EU [8]. The annual household waste output in Polish cities is reported
to range between 238 and 315 kg per inhabitant [9]. According to the Central Statistical
Office, the amount of waste increased from 10,040,108 Mg/year to 12,752,778.17 Mg/year
between 2010 and 2019 [10]. This implies that the amount of waste produced in Poland
is steadily increasing. The volumes of wastes are predicted to continue to rise owing to
expanding urbanization, rising standard of living, and changing social behavior and habits.
This issue is becoming of great importance in Poland, not only because of the growing
amount but also because of the lack of an effective waste management system and the
associated negative environmental impact of wastes [11].

An accurate prediction of the MSW generation rate is critical for sustainable and effi-
cient MSW management [1,12–14]. Forecasting is a decision-making method that captures
the trend of historical and current information to be used for future projections [15,16]. It
has been used by many stakeholders such as academics, policymakers, government organi-
zations, and municipalities to develop sustainable and effective MSW management [17–19].
Geographic location, seasonal fluctuations, increased industrialization and urbanization,
economic conditions, existing regulations, recovery and reuse restrictions, waste manage-
ment infrastructure (collection, recycling facilities, incinerators, or landfill), site procedures,
growing population, people habits, and lifestyle are all variables that influence the quantity
of generated wastes [20–22]. The availability of solid historical data will aid in anticipating
the generated quantity of MSW in the future and implementing the circular economy to
reuse waste materials [23–25]. This will aid in avoiding the exploitation of limited natural
resources, creating more jobs, enhancing the national economy, and minimizing negative
environmental repercussions [2].

As a result, building a reliable MSW forecasting model is crucial to anticipate the gener-
ated quantity of MSW, which can be used for developing waste management infrastructures
and optimizing waste management frameworks [26,27]. Examples of the forecasting tech-
niques are artificial intelligence methods, time series analysis, material flow analysis, and
statistical analysis [26,28]. Artificial intelligent techniques have been popular in implement-
ing waste management models. Meza et al. [29] examined three artificial intelligence-based
models for forecasting the generation rate of urban solid waste in the city of Bogota, Colom-
bia. A viable decision-making approach was investigated in this study to plan and develop
technologies for waste collection, transportation, and final disposal in cities. The decision
tree was the first applied machine learning algorithm to model data separation constraints
based on learning decision rules on the input features. The second approach used was
a support vector machine (SVM) that could deal with highly variable data and a limited
amount of training data. Finally, a recurrent neural network model was used whose archi-
tectural design made it possible to investigate temporal connections among the same. This
research took into account the population, socioeconomic stratification, quantity of solid
waste generated during a set period of time, and distribution of solid waste generated per
zone in the city. According to the findings, SVM was the best forecasting model with the
best local trend of the points and reliability in the recorded values.

Soni et al. [28] compared different artificial intelligence models, such as the adaptive
neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) as well as the
ANFIS and ANN coupled with discrete wavelet theory (DWT) and genetic algorithm
(GA) to assess their capacity to estimate the amount of generated waste in the city of
New Delhi, India. For each model, the root mean square error (RMSE), coefficient of
determination (R2), and index of agreement (WI) values were computed to compare the
models. The hybrid ANN–GA model was proved to be the most accurate among the
six models because it yielded the lowest RMSE (95.7) and the highest R2 (0.87) and WI
(0.864) values. Dissanayaka and Vasanthapriyan [30] developed a prediction model for
forecasting future MSW generation in Sri Lanka using nonlinear, linear, and machine
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learning approaches. The correlation among the relevant factors was evaluated using
principal component analysis and Pearson correlation. The employed machine learning
models included ANN, random forest, and regression analysis. The correlation coefficients
of R2 = 0.6973, R2 = 0.9608, and R2 = 0.9923 were reported for linear regression, random
forest, and ANN, respectively. Therefore, ANN outperformed linear regression and random
forest models in terms of accuracy.

Kulisz and Kujawska [9] applied neural network modeling to forecast MSW in Poland.
The MSW was divided into five categories: glass, biodegradable, paper and cardboard,
plastics and metals, and miscellaneous waste. Selected explanatory factors were incorpo-
rated in the suggested models to reflect the influence of economic, demographic, and social
aspects on the quantity of generated wastes. Different neural network models were applied
by changing the number of hidden neurons from 2 to 10. The prediction accuracy of the
developed models was measured using the Pearson correlation coefficient (R) and mean
squared error (MSE). The ANN model with six hidden neurons showed good prediction
accuracy by yielding a high R-value (i.e., 0.914) for categorized wastes. Using the statistical
data from 2013 to 2019, the model projected a 2% rise in future waste output in 2024. The
findings affirmed the suitability of the ANN model as a cost-efficient method for develop-
ing integrated waste management systems. Oguz-Ekim [31] modeled the MSW generation
rate in Turkey using support vector regression (SVR), backpropagation neural network
(BPNN), and general regression neural network. It can be concluded that SVR and BPNN
techniques can be used to predict MSW generation, with BPNN marginally outperforming
SVR. The developed models could be generalized in other countries across the world.

Daoud et al. [32] studied the rising problem of solid waste in the MENA area, with an
emphasis on construction and demolition waste in Egypt. The study analyzed the most
recent official reports, technical studies, and research papers on the subject. The key barriers
to effective and efficient solid waste management systems, as well as recommendations for
improvement, were compiled in this study. Policymakers, local and national governments,
construction industry practitioners, and academics dealing with the challenges of solid
wastes in the MENA area were likely to benefit from the findings of this study. ElSaid
and Aghezzaf [33] performed a system analysis of MSW management in Cairo, Egypt. To
describe an underlying model of the MSW management system, a restricted non-linear
mathematical model was developed for six waste material flows (glass, cardboard and
paper, metals, plastics, organic material, and others). Combinations of five treatment op-
tions were incorporated in the developed model, which included landfilling, incineration,
anaerobic digestion, composting, and mechanical biological treatment. The model deter-
mined the capability of treatment techniques, as well as feasible best design solutions and
recommendations. The environmental and economic effects of alternative scenarios were
studied and analyzed. The gap between the current status quo and the proposed improved
methods for diverting waste from landfills and reducing carbon dioxide emissions was
elaborated in this study.

Ayeleru et al. [34] used ANN and SVM techniques to estimate MSW generated in the
City of Johannesburg, South Africa. Furthermore, a projection was developed up to 2050
based on the gathered historical data. The research findings confirmed the effectiveness of
machine learning approaches for MSW forecasting. The ANN model with 10 neurons out-
performed other models, yielding an R2 value of 0.999, whereas the linear model performed
best in the SVM models, with an R2 value of 0.986. Based on the ANN10 model, the total
quantity of MSW in the City of Johannesburg was expected to reach 1.95 × 106 tonnes in
2050, with an average yearly waste of 1.78 × 106 tonnes. Coskuner et al. [35] used a multi-
layer perceptron ANN to forecast the yearly generated rates of commercial, household,
and construction and demolition wastes in Bahrain. The prediction models incorporated
several explanatory variables to account for the impact of economic, social, geographic,
demographical, and touristic aspects on waste generation rates. To assess the efficacy of
the generated models, the MSE and R2 performance metrics were employed. According to
the findings, the ANN model was associated with high R2 and low MSE values, indicating
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good prediction accuracy. This demonstrated the capability of the proposed ANN model
at predicting waste generation rates from a variety of sources and that it could be used to
construct integrated MSW management systems.

In summary, the ANN models could be applied for modeling MSW quantities given
limited data. The flexibility of neural network tools is a feature that allows for the consid-
eration of a variety of additional factors, including economic, demographic, geographic,
social, technological, legislative, and administrative, all of which may play a role in deter-
mining the final quantity of municipal wastes. Despite the excellent ability of standalone
ANN models, their training algorithms may trap in local optimums or may be slow to
convergence. Optimization algorithms are regarded as viable alternatives to standard train-
ing algorithms because they avoid trapping in local optimums [36,37]. However, limited
research was undertaken to examine the performance of hybrid ANN models to forecast
MSW generation quantities. Furthermore, it is necessary to assess the performances of pure
and hybrid ANN models using numerous evaluation indices. In this regard, this research
involves training and evaluating the performance of conventional and hybrid ANN models
in predicting MSW quantities. Because of its high prediction accuracy and consistency over
time, the ANN is coupled with the particle swarm optimization (PSO) algorithm in this
research study. The capacity to estimate MSW at a city level allows local waste management
organizations and government agencies to develop robust waste management strategies.
In addition, the developed prediction model may be incorporated into legal laws and
systems to reduce municipal waste generation rates, improve the efficiency of waste energy
recovery, and improve adherence to sustainable development principles.

The major contributions of this research could be summarized as follows:

1. Incorporating the influence of economic, demographic, and social aspects on the
quantity of generated wastes.

2. Estimating the waste quantities using traditional and hybrid neural network models
and comparing their performances using several evaluation metrics.

3. Enhancing the performance metrics of the developed prediction models in the literature.

2. Materials and Methods
2.1. Feed-Forward Artificial Neural Network

ANN is a machine learning algorithm that is inspired by the human brain’s anatomy [38].
This network is used to capture the non-linear relationship between the input and output
factors. It has been widely applied in waste management problems such as the type or
quantity of waste produced and its relationship to socioeconomic variables [39,40]. It has
gained increasing popularity because of its unique benefits over other approaches, such as the
clear network architecture, high-performance quality, and simple implementation [41–43].
Figure 1 depicts the structure of the neural network. It comprises input, hidden, and
output layers. Data are supplied into the network through the input layer, and it is then
processed utilizing hidden layers to get and report the desired output in the output layer.
The number of neurons in the input layer is developed based on the number of input
variables while the number of different outcomes determines the number of neurons in
the output layer [44]. The weights and biases are assigned to channels linking neurons in
subsequent layers. The activation state of the neuron is then determined by passing this
value through an activation function. The data are propagated forward through activated
neurons in the different layers until the result is delivered in the last layer. The network
is trained by comparing the anticipated output to the actual result. The weights are then
adjusted based on the computed prediction error in the back-propagation process. The
forward and backward propagation procedures are repeated iteratively until the network
can correctly predict the output [45].
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2.2. Particle Swarm Optimization Algorithm

One of the most well-known evolutionary algorithms is PSO that has been widely
employed in a wide range of scientific and industrial applications [46]. The flowchart of
the PSO algorithm is illustrated in Figure 2. This algorithm is based on how a school of fish
or flock of birds navigates and moves. It finds a global optimum solution by populating
the search space with particles where each particle has three vectors that store the present
position, the moving direction, and the optimal location in the entire swarm. The ideal
local position of a particle, as well as the experience of its neighbors, influence its migration.
The global best position in the solution space is updated as nearby particles discover better
places in the search space. This acts as a guide to assist the swarm in determining the
optimal solution. Finally, the optimum solution is determined by the current best particle
position in the swarm [47].

2.3. Neural Network Optimized Using Particle Swarm Optimization Algorithm

In this study, a neural network is used to forecast the MSW quantities in the different
Polish cities. Optimization algorithms allow neural networks to avoid overfitting and
local minima during training [48,49]. The PSO algorithm is utilized in this study to train
the ANN model to figure out what the best weights and biases are. This algorithm is
considered one of the most popular and effective ANN training methods [37,50]. Figure 3
depicts the flowchart of the improved ANN model. The optimization algorithm establishes
the weights and calculates the fitness function to train the network. The network fitness is
interpreted in this study by calculating the error as shown in Equations (1) and (2). When
the global best solution, which is associated with the least error function, is found, the
optimization process ends.

MSE(a, p) = ∑i(ai − pi)
2

n
(1)

NMSE(a, p) = MSE(a, p)/MSE(a, 0) = ‖a− p‖2
2/‖a‖2

2 (2)
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where NMSE represents the normalized mean squared error, n represents the total number
of data points, and ai and pi represent the actual and predicted values, respectively.
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2.4. Performance Assessment Metrics

The performance of the conventional and optimized neural network models is com-
pared using five performance assessment criteria; coefficient of efficiency (Equation (3)),
Pearson correlation coefficient (Equation (4)), Willmott’s index of agreement (Equation (5)),
root mean squared error (Equation (6)), and mean bias error (Equation (7)). These metrics
are used for assessing the robustness of the relationship between modeled and observed
data. It should be noted that higher values of the first three metrics, as well as lower
values of the last two metrics, imply that the anticipated and actual values are in excellent
agreement, and vice versa [51–53].

CE = 1−
[

∑n
i=1(pi − ai)

2

∑n
i=1(ai − a)2

]
(3)
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R =
∑n

i=1(ai − a)(pi − p)√
∑n

i=1(ai − a)2 ∑n
i=1(pi − p)2

(4)

WI = 1−
[

∑n
i=1(ai − pi)

2

∑n
i=1(|pi − a|+ |ai − a|)2

]
(5)

RMSE =

√
1
n

n

∑
i=1

(ai − pi)
2 (6)

MBE =
1
n

n

∑
i=1
|pi − ai| (7)

where p and a represent the average predicted and actual values.

3. Model Development

The flowchart of the proposed model is illustrated in Figure 4. The main objective
of this research study is to forecast the MSW quantities in Polish cities based on socio-
economic factors. For this purpose, the neural network models have been developed and
their prediction performance is evaluated using five assessment metrics. Furthermore,
the significance level of the outcomes delivered by the conventional and trained neural
network models is determined using the Wilcoxon–Mann–Whitney U-test. Finally, the best
forecasting model is suggested based on the reported results and findings.
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4. Case Study

The data used in this research is acquired from a previous research study in Poland [9].
The waste generation characteristics of many cities with varying social and economic
aspects in 2019 are provided in Table 1. The input factors comprise population (capita),
revenue per capita, employment to population ratio (%), number of entities enlisted in
the official national register of business entities (REGON) per 10,000 population, and
number of entities by type of business activity while the output factor refers to the total
MSW quantities. MSW volume is found to be positively and substantially correlated with
population and income level in research studies [54]. This can be attributed to the fact that
rapid population growth increases the amount of waste generated. Moreover, individuals
in the affluent class consume more than those in the lower-income class, leading to an
increased rate of waste generation for the former [55]. The unemployment rate impacts
the population’s purchasing power, which could have a direct impact on waste disposal
levels [56]. Finally, the number of entities and type of business activity (e.g., construction,
industrial) in each entity impact the quantity and composition of generated waste [4].

Table 1. Description of the dataset.

Cities Population
(Capita)

Revenue per
Capita

The
Employment-
to-Population

Ratio (%)

Number of Entities
Enlisted in REGON

per 10,000
Population

Number of
Entities by Type of
Business Activity

Total Waste
(Mg)

Białystok 297,554 7295.32 60.3 1212 6507 47,808.27
Gdańsk 470,907 7738.94 58 1696 14,911 72,380.3
Głubczyce 12,521 4449.91 59.5 1201 1381 1641.96
Jastrowie 8633 4906.28 59.1 902 208 465
Katowice 292,774 7437.27 58.6 1655 7186 36,130.85
Kraków 779,115 7630.02 59.1 1886 22,854 89,286.4
Krotoszyn 28,804 4691.94 60 1114 731 2948.04
Legnica 99,350 6310.35 58.9 1393 2511 10,115.84
Lublin 33,784 6941.85 58.6 1359 7546 88,045
Łódż 679,941 6600.84 56.4 1384 17,303 104,336.69
Małomice 3458 4864.37 62.4 856 92 173.33
Oles’nica 1839 5821.09 58.4 1164 890 167.35
Olsztynek 7514 5004.64 62.1 954 132 352.33
Poznań 534,813 7766.51 58.1 2158 18,365 80,565.32
Rzeszów 196,208 7533.14 60.1 1496 4340 26,543.42
Slupsk 90,681 6855.05 58 1405 2203 7670.48
Staszów 14,649 4622.92 59.8 969 657 1073.06
Suwałki 69,758 7502.33 62 1016 1399 3833.76
Szczecin 401,907 6563.2 58.3 1721 14,428 42,518.5
Toruń 201,447 6385.79 59 1313 4606 18,329.87
Warszawa 1,790,658 10,154.88 57.3 2548 60,948 129,111.64
Wrocław 642,869 7681.46 58.6 1909 19,714 111,090.3
Zakopane 27,010 6325.61 58 2280 785 3319.14
Zamość 63,437 7538.2 59.8 1190 1193 6516.2
Zielona
Góra 141,222 7644.04 58.3 1552 4197 13,440.96

The distribution of MSW quantities and waste per capita (total MSW quantities
divided by population) in Polish cities is visualized in Figure 5. It is worth noting that
Warszawa city is the most densely populated city (i.e., 1,790,658 persons) and it generates
the highest quantities of wastes (i.e., 129,111.64 Mg). On the contrary, Oles’nica city has the
lowest population density of 1839 persons and it is associated with the lowest quantities of
wastes (i.e., 167.35 Mg). Meanwhile, Lublin city is characterized by the highest waste per
capita of 2.61 Mg/person. Table 2 depicts the statistical data on MSW, which illustrates
that the wastes do not follow the normal distribution and are rather right-skewed due to
their positive skewness value.
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Figure 5. Distribution of municipal wastes in Polish cities.

Table 2. Statistical parameters of input and output parameters for MSW prediction.

Statistical
Parameters Population Revenue per

Capita

The
Employment-
to-Population

Ratio

Number of Entities
Enlisted in REGON

per 10,000
Population

Number of
Entities by Type of
Business Activity

Total MSW
(Mg)

Median 99,350.0 6855.1 58.9 1384.0 4197.0 13,441.0
Standard
deviation 395,943.5 1352.4 1.4 443.5 13,022.0 41,816.4

Mean 275,634.1 6650.6 59.1 1453.3 8603.5 35,914.6
Min 1839.0 4449.9 56.4 856.0 92.0 167.4
Max 1,790,658.0 10,154.9 62.4 2548.0 60,948.0 129,111.6
Skewness 2.6 0.2 0.8 0.8 3.0 1.0
Kurtosis 8.4 0.4 0.6 0.2 10.8 −0.5

Figure 6 shows the correlation between all of the factors used to forecast municipal
wastes. Variables having correlation coefficients between 0.5 and 0.7 can be classified as
moderately correlated. This is true for the following pairs: revenue per capita and wastes,
and number of entities enlisted in REGON per 10,000 population and wastes. In addition,
variables with correlation coefficients of 0.7 to 0.9 have a strong correlation. This is true
for the variables of population and revenue per capita, population and number of entities
enlisted in REGON per 10,000 population, population and total wastes, revenue per capita
and number of entities enlisted in REGON per 10,000 population, revenue per capita and
number of entities by type of business activity, number of entities enlisted in REGON
per 10,000 population and number of entities by type of business activity, and number
of entities by type of business activity and total wastes. Furthermore, the population
and employment to population ratio, revenue per capita and employment to population
ratio, employment to population ratio and number of entities enlisted in REGON per
10,000 population, employment to population ratio and number of entities by type of
business activity, and employment to population ratio and waste quantities variables have
an inversely proportionate relationship. Finally, the population is correlated to the largest
extent with the number of entities by type of business activity.
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5. Results

The ANN parameters have to be specified such that the number of hidden neurons is
estimated to be 10. The same number of hidden neurons is assumed for the ANN–PSO
model in order to provide a fair evaluation of the models. For PSO, the maximum number
of iterations and population size are assumed to be 200 and 50, respectively. Furthermore,
the inertia weight, inertia weight damping ratio, personal learning coefficient, and global
learning coefficient are determined to be 1, 0.99, 2, and 2, respectively. Finally, the MATLAB
R2019a software is used to develop the neural network models.

Figure 7 shows a comparison between anticipated and actual MSW quantities in
Poland. As shown in Table 3, there are five different metrics used to evaluate the perfor-
mance of neural network models, namely CE, R, WI, RMSE, and MBE. The greatest CE,
R, and WI are indicative of a model’s best performance. In addition, the best models are
associated with the least values of RMSE and MBE values. The CE values of ANN and
ANN–PSO models are 0.11 and 0.92, respectively. ANN and ANN–PSO models have R
values of 0.68 and 0.96, respectively. ANN–PSO performs better in terms of WI, similar
to CE and R findings. For example, ANN and ANN–PSO models have WI values of
0.78 and 0.98, respectively. With respect to the error metrics, ANN–PSO is associated
with RMSE of 11,342.74 and MBE of 6548.55, significantly lower than that of the ANN
model (RMSE = 38,571.68 and MBE = 30,652.04). This demonstrates that the ANN model
trained using the PSO algorithm outperforms the traditional ANN model. As a result, the
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ANN–PSO model may be recognized as a reliable model for forecasting MSW quantities in
Poland based on social and economic aspects.
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Table 3. Assessment performance metrics of the neural network models.

Performance Measure
Neural Network Model

ANN ANN–PSO

CE 0.11 0.92
R 0.68 0.96

WI 0.78 0.98
RMSE 38,571.68 11,342.74
MBE 30,652.04 6548.55

The significant level of the neural network models’ output is evaluated using the
Wilcoxon–Mann–Whitney U-test, with a significance level of 0.05. The test validates the
null hypothesis, which asserts that the two rankings are equal. The alternative hypothesis,
on the other hand, indicates that the two models are ranked differently. The null hypothesis
is rejected in favor of the alternative hypothesis if the p-value is less than the significance
level. The null hypothesis is accepted if the p-value is larger than the degree of significance.
The p-value of (ANN–PSO, observed) is more than 0.05, suggesting that the difference
between the models is statistically insignificant (i.e., null hypothesis is true). The p-values
of the pairings (ANN, observed) and (ANN, ANN–PSO) are all less than 0.05, suggesting
that the models are statistically different (i.e., null hypothesis is false).

The outcomes of the proposed ANN–PSO model are compared to the results reported
in the literature, as summarized in Table 4. For the goal of making short-term weekly
predictions, Noori et al. [39] used ANN and principal component regression to estimate
MSW output in Tehran. The ANN had R and average absolute relative error (AARE) values
of 0.837 and 0.044, respectively. These metrics were considered better than that of the
principal component regression (R = 0.445 and AARE = 0.066). Furthermore, Kulisz and
Kujawska [9] forecasted the MSW (glass, biodegradable, plastics and metals, paper and
cardboard, and other waste) generation rate in Poland by developing an ANN model. The
model accounted for the influence of economic, demographic, and social parameters on
waste generation quantities. The model exhibited high prediction accuracy by acquiring a
high R-value (R = 0.914) and low MSE value.
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Table 4. Comparison of the outcomes of this research against the results reported in the literature.

Application Area Case Study Performance Metrics References

Predicting MSW (glass, biodegradable,
plastics and metals, paper and
cardboard, and other waste) generation
amounts using ANN

Different polish cities R = 0.914 [9]

Estimating weekly MSW output
using ANN Tehran R = 0.837 and AARE = 0.044 [39]

Long-term prediction of solid waste
generation using ANN Mashhad, Iran R = 0.86, MSE = 0.26,

and MAPE = 0.046 [57]

Forecasting organic, paper, plastics, and
textile waste using ANN Johannesburg, South Africa R-values = 0.916,0.862, 0.834,

and 0.826 for waste categories [58]

Forecasting MSW generation quantities
using ANN–PSO Different polish cities

CE = 0.92, R = 0.96, WI = 0.98,
RMSE = 11,342.74,
and MBE = 6548.55

Our research study

Ali Abdoli et al. [57] employed ANN for the long-term prediction of solid waste
generation in Mashhad city, Iran. Population size, household income, and maximum
temperature were determined to be important determinants in solid waste output. The
ANN model outperformed the multivariate regression model, with mean absolute percent-
age error (MAPE), MSE, and R values of 0.046, 0.26, and 0.86, respectively. Adeleke [58]
employed ANN to estimate the physical waste streams in the city of Johannesburg based
on meteorological factors. The input factors comprised humidity, wind speed, and maxi-
mum/minimum temperature. For forecasting organic, paper, plastics, and textile waste,
optimal topologies acquired R-values of 0.916, 0.862, 0.834, and 0.826, respectively. In this
study, the ANN–PSO model is associated with CE, R, WI, RMSE, and MBE metrics of 0.92,
0.96, 0.98, 11,342.74, and 6548.55, respectively. Therefore, the proposed model improves the
performance metrics reported in the literature.

6. Conclusions

An accurate prediction of the municipal solid waste (MSW) generation rate is critical
for sustainable and efficient MSW management. Neural network models have been recently
used and proved their efficiency for modeling MSW quantities. Though previous work
on waste generation prediction had been undertaken, this is the first time the optimized
artificial neural network (ANN) model using particle swarm optimization (PSO) had
been applied. This research applied an ANN model coupled with the PSO algorithm
and conventional ANN to forecast MSW quantities in Polish cities. The performance of
the models was compared using five assessment metrics, namely, coefficient of efficiency
(CE), Pearson correlation coefficient (R), Willmott’s index of agreement (WI), root mean
squared error (RMSE), and mean bias error (MBE). To represent the effect of economic,
demographic, and social factors on the rate of waste generation, selected explanatory
factors were integrated into the developed models. Population, employment-to-population
ratio, revenue per capita, number of entities by type of commercial activity, and number of
businesses enlisted in REGON per 10,000 people were the considered criteria.

The ANN–PSO model (CE = 0.92, R = 0.96, WI = 0.98, RMSE = 11,342.74, and
MBE = 6548.55) surpassed the standard ANN model (CE = 0.11, R = 0.68, WI = 0.78,
RMSE = 38,571.68, and MBE = 30,652.04), according to the findings. The Wilcoxon–Mann–
Whitney U-test was used to determine the significance level of the reported outputs, with a
significance level of 0.05. The p-values for (ANN, observed) and (ANN, ANN–PSO) were
all less than 0.05, indicating that the models were statistically distinct. On the contrary,
the p-value of (ANN–PSO, observed) was more than 0.05, indicating that the difference
between the models was statistically negligible. As a result, the suggested ANN–PSO
model had demonstrated its efficacy in estimating MSW volumes. Furthermore, it could
successfully offer the foundation for the development of modern waste management
systems when used in the evaluation and forecasting of waste management demands.
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As for the model limitations, each city is characterized by a different model that is
dependent on its associated collected data. In addition, there needed to be records for the
accumulated quantities of MSW in each city. Using statistical data in different cities, the
given approach may be generalized to any city across the world. However, depending
on the uniqueness of the studied country, adjusting this approach may demand matching
influencing parameters. This research could be extended in the future by examining
the performance of different optimization algorithms to train ANN for simulating MSW
quantities. In addition, the proposed model could be further improved by applying
dimensionality-reduction methods such as Principle Component Analysis (PCA) to select
the most important input factors in the dataset.
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AARE Average absolute relative error
ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial neural network
BPNN Backpropagation neural network
CE Coefficient of efficiency
DWT Discrete wavelet theory
EU European Union
GA Genetic algorithm
MAPE Mean absolute percentage error
MBE Mean bias error
MENA Middle East/North Africa
MSE Mean squared error
MSW Municipal solid waste
PCA Principle component analysis
PSO Particle swarm optimization
R Pearson correlation coefficient
R2 Coefficient of determination
RMSE Root mean squared error
SVM Support vector machine
SVR Support vector regression
WI Willmott’s index of agreement
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