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Abstract: The growing interest in intensified process units that improve efficiency by combining
several phenomena into one unit, has led to a loss in degrees of freedom when addressing the control
scheme of these units. Previous work demonstrated that a novel module-based design approach to
membrane reactors could improve the operability index of membrane reactor systems. This approach
sought to decouple the phenomena to regain some degrees of freedom for the control system.
However, the computational time to determine such an optimal module design made this class of
design problems intractable to solve in a reasonable amount of time. This work proposes a set of
design heuristics for a new module-based design approach for membrane reactors. These heuristics
are used in combination with a genetic algorithm formulation to produce a novel, two-staged
algorithm for the design and control of membrane reactor systems. This algorithm is developed
in Python and uses rigorous membrane reactor models built in AVEVA Process Simulation. The
proposed algorithm solves the original non-polynomial (NP) complexity problem in polynomial
time (P), while still being able to find the optimal designs discovered in previous work through
exhaustive methods.

Keywords: process intensification; module-based design; membrane reactors

1. Introduction

In recent years, the chemical industry has been exploring a potential shift in its
traditional paradigm for process design. This shift is towards the design of intensified
process units that combine multiple unit operations that would traditionally happen
sequentially with the desire to dramatically reduce the size and increase the efficiency
of chemical processes. With intensified units, such as membrane reactors (which have
shown potential to replace some energy-intense separation processes [1–3]) where heat
transfer, reactions, and separations are occurring simultaneously, there is a tradeoff for this
increased efficiency. Although these intensified process designs can achieve significant
improvements in efficiency, they can be much more challenging to control. The specific
challenge addressed through this work is pertaining to the degrees of freedom (DOF)
problem in this area.

Traditionally, a unit operations-based approach is used for designing chemical pro-
cesses. Generally, a chemical process consists of six main areas: reactor feed preparation,
reactor, separator feed preparation, separator, recycle, and environmental control [4]. Each
of these areas would also have its own control scheme in place to ensure that disturbances
are rejected, and the proper operating conditions are maintained. This type of process
has the freedom to scale up and down, as well, because there is the freedom to adjust
the several control valves involved. Compare this, in contrast, to an intensified process,
such as a membrane reactor. There is a significant reduction in the number of control
valves available because there are physically less units and less streams to manipulate. This
problem is then compounded with the fact that the few control valves that are present must
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attempt to control reactions, separations, and heat exchange phenomena simultaneously.
This combination leads to a reduction in the degrees of freedom (DOF) available to a
potential control scheme when designing an intensified process.

This DOF challenge was identified in the literature as early as 2003 [5] and continued
to be researched to this day [6–12]. The main cause for the reduction in DOF has been
identified as the coupling of phenomena that would have been traditionally designed
in separate unit operations. However, the reason intensified processes are efficient is
because of this coupling of phenomena. Therefore, there is a tradeoff between efficiency
and controllability when switching from a traditional unit operation design paradigm to a
process intensification one. Some have argued an entirely different approach to process
synthesis is necessary where “process design, operation, and control should be considered
simultaneously” to address the challenge [9].

Often in chemical engineering, engineers first consider the design of the equipment
for a desired nominal operating point. Once the design has been optimized for that
operating point, the control scheme and tuning are considered. Similarly, the process
intensification research is now shifting to consider the control challenges of proposed
intensified designs. Modular technology research in the process systems engineering
community have identified solving the DOF challenge and other control challenges as
one of the major steps required for advancing this area of research [7,8]. The majority of
theoretical research on the specific DOF challenge has consisted primarily of empirical
arguments at this point. It was not until recently (2017) that a more rigorous justification
for the loss of DOF of intensified process units was provided [6]. Because of this, a
useful next step is to develop heuristics, procedures, and design algorithms that consider
this DOF challenge during the design phase of intensified modular systems. The term
“modular plant” in the chemical industry is defined as a unit where “the process equipment,
instrumentation, valves, piping components, and electrical wiring are mounted within a
structural steel framework” [13]. Simply stated, a modular plant is a unit that contains a
scaled-down version of a traditional process unit and is able to be transported on the back
of a flatbed truck. This philosophy goes against the concept of economies of scale, where
generally larger units are more profitable. Instead, modular plants aim to become profitable
through improved efficiencies and mass production, i.e., economies of numbers. However,
this concept of modular design differs from what “modularity” refers to in other industries.
In other industries, such as the electronics industry, modularity refers to products that are
highly customizable, not simply smaller [14–16]. This concept for the modularization of
equipment is also the one considered in this work.

Some of the literature [17] has focused on the inclusion of flexibility as a part of
economic optimization. This work is attempting to improve the design and control per-
formance in the context of the DOF challenge using operability instead as the objective
of the optimization. Operability is chosen because it considers the design and control
problem simultaneously which literature [9] emphasized is necessary for addressing the
DOF challenge. The operability of a given process unit can be quantified using a metric
called the operability index (OI). In previous work [18], it was demonstrated that a modular
design approach could significantly improve the operability index and, therefore, gave the
unit more freedom for control than it previously had. Although this was a great result, there
are two challenges for solving this type of problem. Even though the operability index is
very useful for studying the DOF challenge, it is computationally expensive to calculate (as
it will be shown in subsequent sections). In addition, the optimum design was determined
through exhaustive methods, i.e., by checking every possible design. This combination of
an exponentially growing problem and a computationally expensive objective makes it
essentially intractable to solve in reasonable time once the number of modules in series
exceeds four.

In this work, this challenge of computational time to find the optimal design is
addressed. This is done through the development of heuristics for solving this classification
of problems which are then applied to a novel design algorithm that drastically reduces the
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computational time for finding optimal modular designs that maximize the OI. To solve
these large combinatorics/mixed integer design problems, this novel design algorithm for
membrane reactor systems determines optimal designs for smaller versions of the larger
problem by using a genetic algorithm. These solutions are then combined with heuristics
that relate the smaller known optimal solutions with the larger, unknown optimal designs
(whose design spaces are too large to search using genetic algorithms alone). The proposed
approach results in drastic reductions in computational time with minimal reductions in
solution accuracy.

The rest of this paper is organized as follows: First, background is provided about the
module-based design approach developed in previous work for membrane reactor systems,
the method used for simulating these systems, process operability concepts, and the
operability performance optimization problem. The basis for the design heuristics is then
explained to provide an intuition for the novel design algorithm. Lastly, the results of the
algorithm and performance are compared to previous work before providing conclusions
with an outline of potential directions for future work.

2. Module-Based Design, Simulation, and Process Operability Background

The following subsections are provided to offer background into the modeling ap-
proaches being used, process operability analyses, and previous work done in this area
that will be useful to better understand the advancements made.

2.1. Modular Design Background

As the literature has shown, a significant contributor to the DOF problem is caused
by the coupling of design parameters and physical phenomena. One way to think of
it is that traditionally, one can design a control system for the reactor in the plant and
then send the outlet of the reactor to the separations section where a control system
could be designed separately for that unit. In the case of the membrane reactor, though,
reactions and separations occur simultaneously, meaning any proposed control approach
must simultaneously control the reaction and permeation rates of the unit, which are not
independent of each other. This can be imagined as a spectrum where, on one end, there is a
traditional approach with sequential unit operations that has more freedom for control but
lacks efficiency, and, on the other end, there are intensified processes, such as membrane
reactors, which are more efficient but lack the same freedom for control. Based on designs
proposed in literature, it appears one solution might be to use a design paradigm that lies
somewhere in the middle [17–19].

The compromise would be to propose a design that still performs membrane separa-
tion and reaction to get the benefits of the membrane reactor’s efficiency, but where the
unit’s phenomena are decoupled to allow for more freedom for the control scheme. In
previous work, the idea for modular design of membrane reactors was proposed as a po-
tential option for this design approach [18]. This approach to designing intensified reactive
distillation systems [17,20,21] and membrane reactor systems [22,23] using combinations
of modules is becoming more popular in the intensification community. For this work,
rather than designing one unit, the design can be thought of as the combination of multiple
modular units in series. For example, one of these modules could be made by combining a
reactor module, a membrane reactor module, and a membrane module, such as what is
shown in Figure 1.
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The benefit of designing in this way is that the designer now has the freedom to
choose the length in which each phenomenon occurs and where it occurs. Another benefit
of this design approach is in terms of economics of manufacturing. Mass producing a
single standard piece of equipment is almost always cheaper than manufacturing multiple,
unique custom units. Hence why there are standard pipe sizes, relief valves sizes, etc. An
exciting opportunity is that these individual reactor, membrane, and membrane reactor
modules can be mass produced with standard sizes (thus cheaper manufacturing costs),
but can be assembled differently to address the operational needs of a particular location
(such as different well sites).

2.2. Block-Based Phenomena Simulation

Previous work has focused on the modeling and simulation of these types of units [24],
for which a brief description is provided here. One of the major challenges to simulating
these kinds of units is the combination of trying to solve a boundary value problem (BVP)
with countercurrent flow while also making topological changes to the design. This partic-
ular problem is especially difficult when considering the multiple phenomena occurring
(heat transfer, reactions, and permeation) and their interdependence. For example, if an
engineer/user wanted to swap out a membrane reactor module for just a reactor module,
the final solution to that design problem could be dramatically different as this will affect
the reactions and permeation in other parts of the unit.

The easiest solution is to instead create a module that can represent all possible
operations simultaneously and recognize that the presence or absence of certain phenomena
will define the module. For example, a “reactor” module is a module where heat transfer
and reactions occur, but not permeation. This relationship between the different modules
and their respective phenomena are summarized in Figure 2.
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To swap modules, the user can switch a specific phenomenon on or off using a variable
that ensures homotopy between the two solutions. In other words, the “topological” change
is implemented as a smooth, continuous change rather than a discrete change making
the problem significantly easier to solve. A model developed using the model writing
environment in the AVEVA Process Simulation Platform [25] is employed to simulate this
module-swapping process. The developed membrane model is also now publicly available
in the Membrane library on the AVEVA Process Simulation Platform.

2.3. Process Operability Background

Steady-state, set-point operability is used in this research to assess the performance
of the modular equipment design, as defined in the operability analysis and concepts for
square systems [26]. In the operability framework, a set of inputs (u ∈ Rm) of a model (M)
are mapped to their respective outputs (y ∈ Rp) as follows:

M =


.
x = f (x, u)
y = g(x, u)

h1
( .

x, x, y,
.
u, u
)
= 0

h2
( .

x, x, y,
.
u, u
)
≥ 0

, (1)
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in which x ∈ Rn are the state variables, and h1 and h2 are equality and inequality process
constraints, respectively. In addition,

.
x and

.
u represent time derivatives associated with x

and u, respectively, and f and g are nonlinear process maps.
When performing an operability analysis, there are two spaces of concern: the input

and output space. The input space can be defined by both design parameters, as well as
operating parameters; however, only operating parameters are considered in this work.
The output space is defined by the objectives the system is attempting to achieve. Within
each of these spaces, there are three sets of points that are of interest and they are defined
as follows:

Available Input Set (AIS): The set of all operational inputs or manipulated variables
that are available to produce changes to the outputs of the process and is defined as:

AIS =
{

u
∣∣∣umin

i ≤ ui ≤ umax
i ; 1 ≤ i ≤ m

}
. (2)

Because the AIS would include the set of every combination of possible control moves
that an undetermined control structure could impose on the system, this analysis is indepen-
dent of the defined control structure. This feature makes operability especially appealing
for the design of modular membrane systems for addressing the DOF reduction challenge.

Desired Output Set (DOS): This set represents the region of operation that is desired
for a given process and is defined as:

DOS =
{

y
∣∣∣ymin

i ≤ yi ≤ ymax
i ; 1 ≤ i ≤ p

}
. (3)

Achievable Output Set (AOS): This set consists of all possible outputs that can be
achieved, given the available input set and is mathematically defined as:

AOSu = {y|M(u); ∀u ∈ AIS}. (4)

Any steady-state operating points that lie outside of the AOS for a given design are,
by definition, unachievable regardless of the control system that is ultimately selected.

Servo-OI: Without regulatory control, the servo operability index (s-OI) for this analy-
sis is given by:

s−OI =
µ(AOS∩DOS)

µ(DOS)
(5)

Here, µ represents a measure of the size of the space for instance length, area, volume,
and hypervolume for their respective dimensions. The servo-OI is a way of quantifying
what fraction of the DOS can be achieved by a given design. An OI of 1 would mean
the given design can achieve any steady-state operating point in the DOS, whereas an
OI of 0 would mean the given design can achieve no steady-state operating points in the
DOS. Figure 3 summarizes the operability concept with the green region representing the
region of the DOS that can be achieved by a given design considering a schematic for the
water-gas shift reaction example that will be addressed in this article [19,24].
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3. Module-Based Design Effect on Process Operability

The operability framework provides a great measure for determining the best modular
design for addressing the degrees of freedom challenge as an increase in the servo-OI
implies that a future control system will be able to achieve more points in the DOS. To
demonstrate that this modular design approach could lead to an improvement in the
servo-OI, a water-gas shift membrane reactor (WGS-MR) case study was explored in
previous work [18]. This membrane reactor consisted of a shell and tube arrangement with
a polybenzimidazole (PBI) membrane that is selective to hydrogen and highly selective to
water. Syngas was fed into the tube side of the WGS-MR where the water-gas shift reaction
would occur, producing hydrogen. This hydrogen would then permeate through the PBI
membrane and be captured by the sweep gas (steam) flowing countercurrently, allowing
for further reaction to occur. A schematic for the WGS-MR is shown in Figure 4.
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The reaction kinetics for this system were proposed by Choi and Stenger [27] and is
described by Equation (6):

rCO = k
(

PCOPH2O −
PCO2 PH2

KP

)
, (6)

where rCO is the rate of consumption of carbon monoxide, k is the reaction coefficient,
Pi is the partial pressure of component i, and KP is the equilibrium coefficient for the
water-gas shift reaction. The PBI polymer membrane’s permeation is modeled using a
Fickian diffusion model as shown in Equation (7).

Ji =
Qi,o

δ
(pi,t − pi,s), (7)

where Qi,o is the permeance of component i, δ is the membrane thickness, and pi,t and pi,s
are the component partial pressures on the tube and shell sides, respectively. For this work,
the values of permeance come from Reference [19] and are summarized in Table 1.

Table 1. Component permeance (Qi,o) values used reported in gas permeation units (GPU).

Component (i) Qi,o (GPU)

H2 250.0
CO2 8.9
H2O 750.0
CO 2.5
N2 2.5

Because a polymer membrane is used, some undesired species are also able to per-
meate through the membrane from the process side, namely carbon dioxide and carbon
monoxide. Another desired objective of this unit is to produce and capture as much hy-
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drogen as possible. Therefore, the performance objectives for this system are described by
Equations (8) and (9):

RH2 =
H2 in permeate

(H2 + CO)in f eed
=

FH2,p

FH2, f + FCO, f
, (8)

CCO2 =
carbon in retentate

carbon in f eed
=

FCO,r + FCO2,r

FCO, f + FCO2, f
, (9)

in which RH2 and CCO2 are the hydrogen recovery and carbon capture fractions, respectively.
These two objectives are not independent of each other, and they are actively competing
objectives. Changing the process to capture more hydrogen might ultimately lead to more
carbon dioxide and carbon monoxide escaping the process and decreasing the carbon
capture, for example, if the membrane permeance is increased substantially.

To see if the proposed modular design approach could improve the operability of the
membrane reactor, an optimum membrane reactor design and nominal operating point
was first determined. This was done using the following objective function:

f (L, D, Nt, Fsteam) =
(
1− RH2

)2
+
(
1− CCO2

)2, (10)

where L is reactor length, D is the shell diameter, Nt are the number of tubes, and Fsteam is
the nominal steam sweep gas flow. A utopian, however unachievable, design and operating
point would lead to 100% hydrogen recovery and 100% carbon capture. This objective
function effectively leads to the design and nominal operating point that results in the
minimum Euclidean distance to the utopian solution and, for this work, is considered
the “best tradeoff” between hydrogen recovery and carbon capture. This optimization
was performed using a sequential quadrative programming (SQP) optimization tool built
into the AVEVA Process Simulation Platform and assumed 500 kg/h of syngas must be
processed under normal operation. The results of this optimization are summarized in
Table 2.

Table 2. Optimal membrane reactor design that produces the “best tradeoff” between hydrogen
recovery and carbon capture according to the defined objective in Equation (10).

Parameter Optimal Value

L 4.9 m
D (shell) 3.3 m

Nt 53
Fsteam 1088 kg/h

RH2 0.949
CCO2 0.870

However, as discussed above, although membrane reactors are highly efficient, they
tend to face challenges when operating away from the operating point they were designed
for. For example, if a company was interested in using a modular membrane reactor for
multiple well sites, it would likely struggle to maintain high hydrogen recoveries at well
sites with larger load than 500 kg/h, as well as high carbon capture at sites with less load
than 500 kg/h. Figure 5 shows the assumed layout for the study.
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Figure 5. Image of the countercurrent WGS-MR setup where the syngas process flow control valve
(FC1) and the sweep gas control valve (FC2) manual positions are changed to generate the AIS.

The purpose of this previous study was to determine if a combination of N modules,
rather than a full membrane reactor, could improve the servo-OI of the original membrane
reactor and, therefore, improve the unit’s ability to service a wider range of syngas flowrates
into the process side of the membrane reactor. For the purpose of this research, determining
the design that leads to the largest improvement in the servo-OI given using a combination
of N modules is referred to as the N-mod problem. Since this initial study was to gain
insights into the N-mod problem, it was decided to use an exhaustive algorithm. This
means an operability analysis was conducted for every possible modular design for a given
N-mod problem. Although this is extremely inefficient, the knowledge gained through
doing this would eventually lead to the novel design algorithm that is proposed in this
work for solving general N-mod problems for membrane reactor systems. This previous
study found global optima for the 2, 3, and 4-mod problems for the WGS-MR case, which
are summarized in Table 3.

Table 3 shows that, by switching to a modular design instead (especially in the 4-mod
case), significant improvements in operability are achievable. The obtained solutions
also make sense as to why they would improve the operability. In all of these cases, the
incoming syngas has some hydrogen which ultimately inhibits the forward reaction for
WGS. In the 2 and 3-mod cases, the membrane reactor modules are used to produce and
capture hydrogen and the final membrane module can only remove hydrogen. This means
the front end is used to produce hydrogen, and then the control system can use the sweep
gas flow to determine the amount of hydrogen removed at the end of the unit, ultimately
giving it more control over the hydrogen recovery and, therefore, a larger servo-OI.
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Table 3. Summary of the operability and optimization analyses for maximizing the servo-OI.

N Optimum Design
(For Maximizing the Servo-OI)

Increase in the OI Compared to the Membrane
Reactor Base Case

2
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An interesting switch happens though when 4 modules can be used. Instead, the
membrane is moved to the front and the servo-OI is significantly improved. This solution
also makes sense. In this approach, the control system now has the freedom to use the
sweep gas to determine the amount of the initial hydrogen that is removed which will
determine the initial reaction rates when the syngas finally enters the membrane reactor
modules. In addition, since reactions do not occur at the beginning and the reactant CO
has a lower permeance than the product CO2, this also ends up giving it some freedom
to change the carbon capture of the unit (because in the 2 and 3-mod solutions, most of
the CO will be converted to CO2 in the membrane reactor modules before reaching the
membrane module at the end of the unit).

This was a great result; however, it was determined using an exhaustive approach
of checking every design. As most combinatorics problems do, this exhaustive approach
grows at a rate that, at best, is exponential according to the following equation determined
in previous work [18]:

Ndesigns = 4Nmodules − 2× 2Nmodules + 1. (11)

The objective of this research is to take the lessons learned from previous work to
develop heuristics for solving these N-mod problems and propose a novel design algorithm
that can reproduce these results, while also significantly reducing the size and complexity
of the problem.

4. Design Algorithm Theory and Development

The previous work provided many useful insights into the relationships between the
various N-mod problems and their optimal solutions. In this section, the focus changes
to the development of a novel design algorithm for solving this class of problems. This is
done by using previous observations to develop heuristics for the design of module-based
membrane reactor systems. It should be noted (for improved clarity) that the algorithm is
developed by assuming a global optimum exists for the N → ∞ problem and then work
back to the 3-mod problem. Therefore, for clarity of presentation, the following sections
are in reverse order of how the complete algorithm would run.
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4.1. Shortcut Method for Large Values of N

The greatest challenge to solving the general N-mod problem efficiently is the number
of possible combinations of modules as the value of N increases. This section provides
the thought process behind a proposed novel approach to addressing this challenge. The
first step is to think about the global solutions for some N-mod problem, where N is very
large, say, the 30-mod problem. Assume Figure 6 is the global optimum to the 30-mod
problem, in which reactor modules are colored red, membrane modules are colored blue,
and membrane reactor modules are colored purple.
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Figure 6. A representation of the solution to a hypothetical 30-mod problem with reactor modules
(red) and membrane reactor modules (purple).

The next step is to take one step back and ask the question: What is the global
optimum of the 29-mod problem? Note: The total length of the entire unit remains constant
throughout this process. Figure 7 shows two potential designs that could be the global
optimum for the 29-mod problem.
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Figure 7. Two hypothetical 29-mod designs with reactor modules (red), membrane modules (blue),
and membrane reactor modules (purple). Here, (a) is a 29-mod design that is very similar to the
30-mod design in Figure 6, whereas (b) represents a very different 29-mod design.

Knowing that the global optimum to the 30-mod problem is the one shown in Figure 6,
intuition would suggest that the first design shown in Figure 7a is much more likely to be
the global optimum to the 29-mod problem than the second design is. This means that, if
the solution to one N-mod problem is known, then this provides insight into what, say,
the (N + 1)-mod problem solution could be. Because of this, an algorithm is developed
to determine the “best guess” for the (N + 1)-mod problem given the solution to the
N-mod problem.

As shown in Figure 8, the (N + 1) guess can be generated by taking a given solution
to the N-mod problem and recutting it as if it had one additional module. The algorithm
then calculates which phenomena block occupies the most length within the new module
and then assigns it as such. For example, in the middle two modules, although there is
some red (reactor) and some blue (membrane), purple (membrane reactor) occupies the
majority of the new module; therefore, it is assigned as a membrane reactor in the guess. As
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observed in previous work [18], as N gets larger (tends to infinity), the difference between
the best guess and the actual global optimum may only differ by one module at most. This
gives the first heuristic for the design of these membrane-based systems:
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Figure 8. Example of a 3-mod solution generating the “best guess” to the solution of the 4-mod
problem. (a) represents the hypothetical solution to a 3-mod problem, (b) is the 3-mod solution
arranged as a pseudo-4-mod design, and (c) is the 4-mod design that most closely resembles (b), i.e.,
the best 4-mod guess.

Heuristic 1. As N becomes sufficiently large ( N → ∞) , the actual global optimum for the N-mod
problem will only differ from a guess generated from the known global optimum of the (N − 1)-mod
problem by exactly one module.

This heuristic holds because this specific problem is solving for the fixed total length
version of the problem. As N approaches infinity, the ratio of the length of the modules in
the N and N + 1 problems approaches unity. This means that as N gets larger, the modules
tend to become the same length despite the value of N increasing by one and ultimately
result in identical solutions. Although the optimal solutions of the N-mod and (N + 1)-mod
problems become identical in functionality as N goes to infinity, one still has one more
module than the other. This means the only necessary work at this stage would be to find
the correct module (membrane separator, reactor, membrane reactor, or heat exchanger) for
the one new module that is added when going from the N to (N + 1) problem.

So, once a guess is generated for the N-mod problem, one only needs to simply swap
each of the N modules of the guess with the other two candidate modules (for example,
swap a membrane reactor module with a reactor or membrane module) and check the OI
of that design and the global optimum will be the design with the largest OI in that group
of designs. This process is almost identical to performing a grid search and constantly
refining the grid as one approaches the optimum. This results in a massive reduction in the
size of the problem for larger values of N as the number of designs that must be checked in
this approach is bounded quadratically rather than exponentially as follows:

Ndesigns ≤
3
2

n2
modules +

5
2

nmodules − 4. (12)

A block flow diagram is provided in Figure 9 to help visualize the algorithm for
N-mod problems with sufficiently large values of N which will now be referred to as
the “Shortcut Method.” Note that this Shortcut Method assumes the design fed into it
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initially is optimal and then finds the optimal designs for higher values of N using it as an
initial guess. Therefore, feeding a suboptimal design will likely lead to finding suboptimal
solutions to the larger problems.
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Figure 9. Algorithm for finding the optimum design for an N-mod problem given a known solution
to a smaller (N − 1)-mod problem and that N is sufficiently large. This algorithm is referred to as the
“Shortcut Method”.

4.2. Determining When N Is “Sufficiently Large”

This algorithm in the previous section leaves two natural, unanswered questions:
(1) When is N “sufficiently large” to use this approach, and (2) what should be done
instead when N is deemed too small? This leads to the second heuristic for the algorithm:

Heuristic 2. N is considered sufficiently large when the difference in performance between the
optimum N-mod solution and the (N + 1) guess generated from it differs by a pre-specified tolerance
level, based on the flux and reaction rates occurring in each module.

This heuristic is conceptually similar to the guessing algorithm, but in this case there
is a comparison of the flux and reaction rates occurring in each module rather than just the
identities of the modules. Figure 10 is provided to demonstrate how such a comparison
may be performed.
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of performances between an optimum solution and the guess generated by it.

In the Figure 10 example, a 4-mod guess is first generated from the 3-mod optimum
solution. The 3-mod optimum is then redivided into 4 pseudo-modules denoted with
the prime notation. This allows for a one-to-one comparison between the two designs.
Heuristic 2 essentially says that, if the differences in flux and reaction rates between module
1 and 1′, module 2 and 2′, etc., are very similar, and it is assumed that the 3-mod design
here is the optimal design, then, the 4-mod guess is likely the optimal design or very close
to the optimum (i.e., one module away) for the 4-mod problem. Heuristic 2 in practice is
the same as Heuristic 1, except it takes the specific system into account, whereas Heuristic
1 is not dependent on the specific system.

There are likely many ways to assess how similar two designs are, but for this work,
the following steps are taken to determine the similarities:

1. Generate the (N + 1) guess from the N-mod optimum solution.
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2. Divide the N-mod solution into (N + 1) pseudo modules.
3. Calculate the average flux and reaction rates in each module of the (N + 1) guess and

in each pseudo-module of the N-mod solution.
4. Calculate the error in flux and reaction rates between 1 and 1′, 2 and 2′, etc.
5. Choose the largest of these error values as the error between the two designs.
6. If the error does not exceed the user’s predefined tolerance (e.g., 10%), then, N is

sufficiently large and the shortcut method can be used.

For this research, the relative error between two modules is defined using Equation (13):

EB,i = max
{
|Bi − Bi′ |
max{B}

}
, (13)

where i and i′ refers to the module and pseudo-module being compared, Bi is the average
of the quantity being compared (in this case flux and reaction rates) in module i or i′, and
max{B} is the maximum value of quantity B of every module in the analysis. The max{B}
quantity is used to convert the absolute errors into relative errors. For this work, an error
of less than 10% is considered acceptable; however, in the final form of the algorithm, this
tolerance is ultimately up to the user.

4.3. Solving N-Mod Problems When N Is Too Small

The only remaining case to consider is how to solve the problem when N is too small
to use the Shortcut Method. One option would be to go back and use the exhaustive
method of checking every design used in previous work [18]. This would be fine for maybe
the 2-mod problem which, according to Equation (11), only has 9 designs to check or the
3-mod problem with 49 to check, but what happens if the error conditions are not met
by then? The 4-mod problem takes several hours to calculate through exhaustive checks
due to having 255 valid combinations to check. Instead, an approach, such as a genetic
algorithm, is a better candidate as it searches more intelligently through the viable space
of designs rather than simply checking every single one. Genetic algorithms are also very
useful for mixed integer-based optimizations, such as the one in this work. First, a system
is developed for encoding these modular designs as strings of digits of ones and zeros, as
shown in Figure 11.
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Figure 11. An example of the encoding process to convert a given modular design to its coded form
for the genetic algorithm.

This coding system is then implemented using the genetic algorithm2 library [28]
available in Python. However, simply applying a genetic algorithm to this problem leads
to many problems. One way to better understand this is to look at the design spaces for
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these N-mod problems. Figure 12 shows the design space for the 2-mod problem in the
form of a graph.
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Figure 12. A graphical representation of the hypercube that defines the design space for the 2-mod
problem with invalid designs (in red), valid designs with an OI of zero (in orange), and valid designs
with a non-zero OI (in green). The pure heat exchanger (HX), membrane separator (M), reactor (R),
and membrane reactor (MR) are labeled for reference.

In Figure 12, every N-mod design can be represented as a vertex on a 2N hypercube.
For the 2-mod problem, there are three potential outcomes for a given design: (1) the design
could have either no membrane or no reaction zones and, therefore, is an invalid design
because it defeats the purpose of doing process intensification in the first place (red points);
(2) the design could be valid but has an OI of zero because none of the inputs map to a
desired output (orange points); and (3) the design could be valid and have a nonzero value
for the OI (green points). Most genetic algorithms will produce a random initial population
to initialize the algorithm. Since there are 16 total possibilities, in this case there is interest
in doing two iterations with generations of size four using a genetic algorithm to cut the
number of checks in half from the exhaustive approach. Since 13 out of 16 designs produce
an OI of zero or are designs that are not worth the computational expense to check, there is
a 57% chance that every design in the initial population has an OI of zero. This would give
the optimizer no information toward learning how to improve the OI; therefore, additional
iterations need to be added to ensure an optimum solution is determined.

The solution is to provide a population to initialize the genetic algorithm rather than
letting it randomly pick. One point to remember is that the goal of this algorithm is to
improve the operability of an intensified membrane reactor system. That objective also
suggests how an initial population could be generated. The initial population should
consist of the original membrane reactor, as well as designs that are random mutations
of the membrane reactor. This effectively searches the subspace of designs around the
membrane reactor instead of the entire design space during the first iteration of the genetic
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algorithm. The important fact is that the genetic algorithm should get examples of designs
that have a nonzero OI so that it can learn what increases or decreases the OI so that the
following iterations are attempting to find a better design than the membrane reactor, not
just trying again to find a design that works.

The first run of the genetic algorithm is the only time over the course of the entire
algorithm that the membrane reactor is used as the main blueprint for the population
initialization. For example, the membrane reactor may be used to initialize the population
of the genetic algorithm to solve the 3-mod problem. After it finishes running, it will return
an optimum design for that problem and a guess will be generated (as described earlier)
and this guess will be checked to see if N is large enough to use the Shortcut Method. If
the error is too great, it means the genetic algorithm must be used again for the 4-mod
problem. Instead of just using the membrane reactor to initialize the population for this
problem, both the membrane reactor and the 4-mod guess that is generated are used. This
is for two reasons: (1) As discussed through much of this work, the solution to the 3-mod
problem gives insight into how the 4-mod optimal design might look and, therefore, is a
good candidate for basing the initial population after; (2) including the membrane reactor
again adds some diversity to the initial population of this problem and helps to reduce the
chance of being pulled into a local minimum found by the previous N-mod optimization.

In summary, when N is small, a genetic algorithm is used to search the space and find
optimum designs. This process continues by feeding the optimum design back into the
genetic algorithm until it is determined that the value of N is now sufficiently large. When
this occurs, the algorithm switches to using the Shortcut Method until the OI can no longer
be improved. This algorithm is summarized in detail using a flowchart in Figure 13.

To better understand the concept behind the algorithm, an analogy is provided now.
One way to think about this is when one is presented a very distorted, pixelated image
and is asked to figure out what the image is. When the problem starts, there are many
images it could be, and it is hard to say what the answer is. Although the image is not
random, it is a distorted version (small value of N) of a very clear image (solution as
N → ∞ ). In this case, the genetic algorithm is the initial process to try and refine the
image to be clearer and easier to guess. However, anyone who has played one of these
“guess the pixelated image” games can normally guess the image at some point despite
it still being pixelated. This moment when one can accurately guess the image despite
the pixelation is synonymous to the tolerance check that switches the algorithm from the
genetic algorithm to the shortcut method. Therefore, the Shortcut Method is the stage after
the player recognizes the final image and simply needs to correct some of the pixels to get to
the final solution. This framework is implemented using the following three-part software
infrastructure: (1) The WGS-MR model and all simulation calculations are performed in
the AVEVA Process Simulation (APS) platform; (2) the design algorithm, specifically the
population initialization method, genetic algorithm, operability analyses, guess-generation
method, and the shortcut method, are all written in Python; and, (3) to allow the methods
in Python to interact with the model in APS, the APS Python Scripting Interface (developed
by AVEVA) is utilized. This is a Python library consisting of several methods that a Python
user can incorporate into their codes for controlling the simulator using Python. The
actual output of this Python/APS infrastructure is discussed further in the subsequent
Results section.
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5. Results

Now, the algorithm is applied to the water-gas shift membrane reactor (WGS-MR)
system from previous work to assess its accuracy and computational time. This system
was introduced in Figure 5 above.

In this figure, there are four control valves available as inputs to the WGS-MR system.
FC1 and FC2 are the process syngas flow control valve (tube side) and the steam sweep
gas control valve (shell side), respectively. PC1 and PC2 are pressure control valves for the
shell and tube sides, respectively. Although the transport across the membrane is heavily
dependent upon the pressure drop across it, these pressure control valves have little effect
on the system. This is because the pressure drop across the membrane is around 20 bar
and these control valves negligibly affect this driving force. For this reason, only the two
flow controllers are considered in this analysis.

The membrane reactor design parameters were determined through an optimization
of the nominal operating point to produce the highest hydrogen recovery and carbon
capture percentage that the pure membrane reactor could achieve. As stated in the Intro-
duction, this improvement in efficiency through process intensification also comes with the
tradeoff that the two flow controllers have less control over the system. So, the operability
analysis should focus on how the control moves of these two controllers are mapped to the
output space.

For this case study, the available input set (AIS) is defined as the combination of
every possible valve position the two control valves (FC1 and FC2) could assume (in
this case this range is from 10–100% open for both valves). To perform the operability
analysis, each of these combinations is simulated for a given module-based design to find
the set of all achievable hydrogen recovery and carbon capture percentages (AOS). Lastly, a
definition of what is a “desired” output (or DOS) is needed for the analysis. For this work, a
desired operating point is defined as one that achieves higher than 85% hydrogen recovery
and higher than 85% carbon capture. Figure 14 is provided here to assist in visualizing
the problem:
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the set of all control valve positions available and the DOS is defined as the set of all operating points
with greater than 85% for both hydrogen recovery and carbon capture.

Referring to Figure 14, the proposed algorithm is attempting to find an optimal M
(model) for this problem. M in this case represents some module-based membrane reactor
design for the WGS-MR system. The optimal M for this system is the one that, when it maps
the AIS to the output space, covers the largest fraction of the DOS. Therefore, the input
set remains fixed throughout this process and the algorithm only modifies M. Described
qualitatively, the AIS defines everything a hypothetical control system (whether that be
PID controllers, model predictive control, etc.) has available to it. Then, the algorithm
is making changes to M to find the design that allows the control system to access more
of the desired output set than the original membrane reactor alone was able to achieve.
This is the benefit of using operability and operability analysis for the DOF challenge as it
simultaneously considers both the design and control of the system.

To understand how the results are determined, the outputs of the algorithm are
discussed sequentially here. First, since the best-known design at the start of the problem
is the membrane reactor (as no other designs have been considered), then the initial
population of the genetic algorithm is generated by randomly mutating the membrane
reactor. Then, additional members are created by randomly selecting a member of the
current population and randomly mutating again. It should be noted that the mutation
process described here for the population initialization should not be confused with the one
done by the genetic algorithm on subsequent generations using the traditional approach
(where there is a probability of mutation or crossover happening). Figure 15 shows an
example of the output of this initialization algorithm using the colored-coded blocks
established earlier.
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Figure 15. An example of how members of the initial population are randomly generated from the
membrane reactor where red is for reactors, blue are membrane separators, and purple are membrane
reactors (note that not all ten members are shown due to a lack of space). The % values shown inside
the middle blocks are each design’s respective OI.

As one can see in Figure 15, this randomized approach led to some reactor-heavy
candidates for the genetic algorithm to initially test. When each of the designs are checked,
the genetic algorithm determines that the original membrane reactor is the best design for
maximizing the OI. The genetic algorithm also finds that as more membrane is removed,
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the OI seems to decrease. This is why, for the following generation, the genetic algorithm
generates a population that removes more catalyst rather than membrane and determines
the optimal design to be the one shown in Figure 16.
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Figure 16. The optimum solution for the 3-mod problem (OI = 16.49%) according to the genetic
algorithm with one membrane separator module (blue) and two membrane reactor modules (purple).

The algorithm then checks to see if the OI has been improved from the previous
optimal design (pure membrane reactor). In this case, the OI was improved by about 10.7%
to an OI of 16.5%, so, the algorithm should continue to improve the design by attempting
the 4-mod problem. A guess for the 4-mod problem is generated and compared to the
3-mod optimal design to see if they are similar enough (within the 10% tolerance) to use
the Shortcut Method or to continue with the genetic algorithm. Figure 17 shows the visual
comparison between the 3-mod optimum and its 4-mod guess.
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In this case, the algorithm determines the relative error as defined by Equation (13)
for the reaction rates is too high in the second module (about 15%). This means there is
a chance the actual 4-mod optimal design could differ from this guess by more than one
module; therefore, the genetic algorithm is preferred over the Shortcut Method. However,
this guess (4-mod) is still based on a design (3-mod) that is known to be better than the pure
membrane reactor; therefore, the next population initialization for the genetic algorithm
should be done using the pure membrane reactor (as in in Figure 15) but also should
include the 4-mod guess. This combination allows the genetic algorithm to both attempt
to improve on the currently best-known design, as well as search other alternatives to the
membrane reactor that could be better than what is currently known.

Upon completion of the next iteration, the genetic algorithm determines that the
4-mod guess shown in Figure 17 is in fact the optimal design for the 4-mod problem. The
operability index is compared to the 3-mod optimal design and the OI has been improved to
17.97% with an improvement of 8.9% from its 3-mod counterpart. This means the algorithm
should be continued to see if there is a 5-module design that could further improve the
OI. A 5-mod guess (shown in Figure 18) is generated and compared to the 4-mod optimal
design. In this case, the relative error is now below the 10% tolerance which means the two
designs are similar in functionality and the Shortcut Method can now be employed.
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Figure 18. The 5-mod guess based on the 4-mod optimal design. One membrane separator (blue),
followed by four membrane reactors (purple).

For the Shortcut Method, first, the OI is determined for the 5-mod guess that is
generated. Then, the first module is swapped for a reactor and the OI is calculated. Next it
is swapped with a membrane reactor and the OI is determined. This procedure is followed
for the second module, then third, and so on, until all neighboring designs are checked.
Because of Heuristic 1, the best design out of this set is the assumed to be the 5-mod optimal
design. In this case, the 5-mod guess shown in Figure 18 is the 5-mod optimal design.

The OI is checked and is once again improved from the 4-mod optimal design, how-
ever, by only about 0.6% to an OI of 18.09%. A 6-mod guess is generated, and the Shortcut
Method is run again to determine the 6-mod optimal design. This time, however, the
solution that is found leads to a decrease in the OI and the algorithm is terminated. Because
the 6-mod optimal design is worse than its 5-mod counterpart, the 5-mod optimal design
(which is identical to the guess shown in Figure 18) is selected as the optimal design for the
original WGS-MR. This design improved the OI by 21% when compared to the original
membrane reactor. Most notably, the proposed algorithm not only found an optimal design
for the 3-mod, 4-mod, 5-mod, and 6-mod problems, it also did it significantly faster than
using the exhaustive method. Using an Intel® Core ™ i7-4790 CPU @ 3.60 GHz processor,
the algorithm found these four optimal designs in 1 h and 36 min. For comparison, to
determine that the 5-mod design is in fact the optimal design, exhaustive methods would
have taken approximately 5.8 days to do the same. This amount in the reduction in problem
computational time means, even if the user was worried the algorithm may have missed
the global optimum, they could run it an additional 86 times before the exhaustive method
would finally finish. Likewise, they could increase the population sizes or number of
generations in the genetic algorithm and still finish in significantly less time.

6. Conclusions

In previous work, it was shown that the OI of a pure membrane reactor could be
improved through the use of a module-based design approach. It was also shown that the
global optimum solutions to the 2-mod, 3-mod, and 4-mod problems tended to share many
similarities, i.e., they were related to each other. However, these global optima had to be
determined by checking every possible design for each problem. Although this gives one
the confidence that the solution is in fact the global optimum, the time it takes to determine
this grows exponentially and eventually becomes intractable to solve anything larger than
the 4-mod problem.

The work presented here aimed to address this challenge through the development of
a novel design algorithm. This algorithm used a genetic algorithm paired with a population
initializing algorithm to determine optimal solutions to the N-mod problem for smaller
values of N where the design space is much smaller and easier to search. When the value of
N is determined to be sufficiently large, the algorithm utilizes two heuristics for the design
of module-based membrane reactor systems to find the optimal designs to larger N-mod
problems. This leads to significant reductions in the complexity of the overall problem.
Although only one case study is presented here, the justifications for the stated heuristics
do not assume a specific membrane reactor system and, therefore, are expected to have
application potential to many other systems. Future work will investigate the application of
this design algorithm to other possible membrane reactor systems, such as steam-methane
reforming to test the generalization of the algorithm and associated heuristics.
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The motivation for this work was to find module-based designs that addressed the
degrees of freedom challenge by improving the operability index of a membrane reactor
system. For the case of the WGS-MR, the 5-mod design from Figure 18 (with one membrane
module followed by 4 membrane reactor modules) was determined to be the optimum
design and led to a 21% improvement in the operability index as compared to the original
membrane reactor. This means that a control system applied to this design can achieve
21% more of the desired output set than one applied to the original membrane reactor.
In addition, this novel design algorithm grows at a rate according to polynomial time,
whereas the exhaustive method grew exponentially. This means that this work reduced the
size of the N-mod problem from NP-complexity to P-complexity, leading to a reduction in
computational time by a factor of 87. Future work will focus on expanding the heuristics
and algorithm to consider parametric changes, as well, such as changing the length, number
of tubes, etc., while simultaneously solving the combinatorics problem.
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