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Abstract: The thermodynamic characterisation of magnetocaloric materials is an essential task when
evaluating the performance of a cooling process based on the magnetocaloric effect and its application
in a magnetic refrigeration cycle. Several methods for the characterisation of magnetocaloric materials
and their thermodynamic properties are available in the literature. These can be generally divided
into theoretical and experimental methods. The experimental methods can be further divided into
direct and indirect methods. In this paper, a new procedure based on an artificial neural network to
predict the thermodynamic properties of magnetocaloric materials is reported. The results show that
the procedure provides highly accurate predictions of both the isothermal entropy and the adiabatic
temperature change for two different groups of magnetocaloric materials that were used to validate
the procedure. In comparison with the commonly used techniques, such as the mean field theory
or the interpolation of experimental data, this procedure provides highly accurate, time-effective
predictions with the input of a small amount of experimental data. Furthermore, this procedure opens
up the possibility to speed up the characterisation of new magnetocaloric materials by reducing the
time required for experiments.

Keywords: magnetic refrigeration; magnetocaloric effect; LaFe13 − x − yCoxSiy; gadolinium; artificial
neural network; modelling

1. Introduction

Over the past two decades many research efforts have been focused on the development of
not-in-kind refrigeration technologies [1], defined as alternative options to vapour-compression
refrigeration systems. Among these, magnetic refrigeration shows promising results in terms of
energy efficiency [1–5]. Furthermore, the scientific community is very interested because of the
favourable environmental characteristics of this technology [6,7], which uses a solid substance as
the refrigerant rather than the greenhouse-effect-promoting refrigerants used in vapour-compression
applications. These latter refrigerants are being phased out [8,9], and they will need to be replaced.
However, only a few pure fluids possess the combination of properties necessary for a refrigerant.
Unfortunately, these fluids are at least slightly flammable [10]. In addition, some natural fluids, such as
isobutane, propane or carbon dioxide, have been proposed as a solution. But, due to their flammability,
hydrocarbons can only be employed in countries that permit their use [11]. On the other hand, the use
of carbon dioxide is limited since it needs a high working pressure and this leads to poor performance
in terms of energy [12,13].
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The functioning of a magnetic refrigerator system is based on the magnetocaloric effect (MCE),
the discovery of which is attributed to Weiss and Piccard [14]. The MCE is a feature of some magnetic
materials that heat up when they are subjected to an external magnetic field, since the atoms, which act
as magnetic dipoles, align with the magnetic field, and then cool down after the applied field is
removed. They are called magnetocaloric materials (MCMs). The MCE is characterised by the directly
measured temperature change of the MCM subjected to the external magnetic field. It can be evaluated
as the isothermal entropy change ∆siso or the adiabatic temperature change ∆Tad of the MCM induced
by the increasing or the decreasing of an external magnetic field that the material is subjected to.
If the conditions are kept adiabatic, the temperature of the MCM increases/decreases by the amount
∆Tad. On the other hand, if the conditions are kept isothermal, the specific entropy of the MCM
decreases/increases by the amount ∆siso.

One of the main problems associated with MCMs is related to the small MCE [15], which is not
large enough to reach an appropriate temperature span for near-room-temperature applications, i.e.,
between 20 ◦C and 35 ◦C. A theoretical study about the maximum MCE achievable with an MCM,
referring to a single-stage cooling device, was presented by Zverev et al. [16]. For achieving a larger
temperature span, the prototypes built so far have been based on the active magnetic regenerative
(AMR) cycle [17], which makes it possible to increase the temperature span between the heat sink and
the heat source, so that it can be several times larger than the adiabatic temperature changes in an
MCM. The AMR cycle is based on four operational steps (in the case of the Brayton thermodynamic
cycle): an adiabatic magnetisation, isofield cooling, adiabatic demagnetisation and isofield heating.
During the first step, the MCM is subjected to the external magnetic field and the temperature of the
MCM increases due to the MCE. Then, keeping the magnetic field at a constant value, a fluid can flow
through the material absorbing heat from it, which is subsequently rejected in the hot heat exchanger.
In the adiabatic demagnetisation step, the external magnetic field is removed, and the MCM cools
down. During the last step of the cooling cycle, with no external magnetic field, the fluid flows in a
counter-flow direction through the material, expelling heat to it. Next, the fluid absorbs heat in the
cold heat exchanger. The steps are then continuously repeated.

For room-temperature applications, starting from the construction of the first magnetic refrigerator
prototype [18], several devices with different configurations and different magnetocaloric materials
have been developed. In these prototypes, Gd and Gd-based alloys were the most commonly used
MCMs [19–25]. Nevertheless, other substances have also been tested to evaluate their performances in
magnetic refrigeration systems. These include La-Fe-Co-Si [26–30] and also Mn-Fe-P-As [31,32] alloys.
Considering low-temperature applications, a comprehensive review about MCMs and devices for
magnetic refrigeration in the temperature range of nitrogen and hydrogen liquefaction was performed
by Zhang et al. [33]. Furthermore, a very recent review about magnetic refrigerator devices for
room-temperature applications can be found in Gimaev et al. [34]. In addition to the experimental
investigations, several AMR numerical models have been developed over the years, with the aim of
studying different operating conditions and different MCMs in order to understand the feasibility of a
magnetic refrigerator application [35,36].

The magnetocaloric properties required for AMR modelling, such as the adiabatic temperature
change, can be obtained experimentally by employing direct and indirect methods [37–39]. The former
is based on measurements of the temperature of the MCM sample subjected to an external magnetic
field, thereby obtaining the adiabatic temperature change directly. The latter is based on heat-capacity
and/or magnetisation measurements. With the indirect methods there are two routes to obtaining
the magnetisation curves, depending on the temperature and the external magnetic field: the isofield
process and the isothermal process. The isothermal measurement is the commonly used technique since
it is faster. Hence, once the M (T, H) curves for the different temperatures and external magnetic fields
are obtained, it is possible to calculate the isothermal entropy change and the adiabatic temperature
change indirectly using Maxwell’s relations [37]. Another experimental method has been presented by
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Nielsen et al. [40], where the authors show an experimental device that can perform direct measurements
of the magnetic entropy change.

Another approach to evaluating the adiabatic temperature change of MCMs is the application
of theoretical models, which can be divided into two groups [41]: thermodynamic models and
first-principle models. In particular, the formers are frequently used in the area of magnetic refrigeration
to evaluate the magnetocaloric effect within numerical models of AMR cycles [42–45]. They identify a
link among the magnetisation, the temperature and the external magnetic field using equations of
state [41]. The most widely applied thermodynamic model for the calculation of the magnetocaloric
effect is the Weiss mean field theory (MFT), which can be used to evaluate the total entropy of
a ferromagnetic material as a function of the temperature and the external magnetic field [46] by
considering the link with the magnetisation. The first-principle models are based on a calculation of
the exchange-coupling energies and the magnetic moments of MCMs. They are usually performed to
extract information about the values of magnetization at finite temperatures, the magnetic entropy,
the magneto-structural transition temperatures, and the MCE, as shown in Paudyal et al. [47].

However, both the theoretical and experimental methods for evaluating the MCE have some
important disadvantages. For example, the theoretical model (such as MFT) requires several
material-based data that are not always known (in particular for new MCMs) and usually quite
significantly over-predicts the MCE, as shown, for example, in Mugica Guerrero et al. [48]. On the other
hand, the experimental methods are time-consuming and could be challenging to perform, especially
in the case of direct measurements, where a high density of the data is required (as in the case of
AMR modelling). Furthermore, it should be noted that there is no standardisation of the method
for evaluating the magnetocaloric properties to characterise MCMs, which does not allow a direct
comparison of the results. However, a correct and rapid evaluation of the magnetocaloric properties of
an MCM, especially the adiabatic temperature change, and also isothermal entropy change and specific
heat, is crucial to understanding the feasibility of using it in a magnetic refrigerator application.

In this study we propose a new MCMs-modelling method based on artificial neural networks
(ANNs), which have been used in the past only for modelling the performance of AMR-based
refrigerator devices [49,50]. This approach could represent a unique standardised method to evaluate
the magnetocaloric effect and make it possible to reduce the experimental efforts to characterise known
or new MCMs. A successful ANN can be used in the research field to produce results close to the
experimental ones in a much faster way, providing sets of data which can be used for testing more
detailed theories. Several mathematical models stemming from machine-learning algorithms were
already applied with this purpose, such as the genetic algorithm [51], Bayesian approach [52] and
ANNs themselves [53]. Furthermore, the ANN-based procedure can facilitate the implementation of
the magnetocaloric properties of MCMs within an AMR numerical model. The latter represents the
main advantage of this technique. Indeed, it is only necessary to perform the experiments at a few
magnetic fields and temperatures to obtain a mathematical model of the magnetocaloric properties of
the MCMs that can be easily included in an AMR numerical model. Then, the proposed ANN model
can predict accurately the behaviour of the MCM for any magnetic fields and temperatures in between,
ensuring a high density of the data needed for accurate AMR numerical simulations.

2. Materials and Methods

The ANN-based method is divided into four steps starting with the experimental phase that
involves isothermal magnetisation and specific heat measurements at different magnetic fields and
different absolute temperatures. Then, the collected data are processed to feed the development and
the training of the ANN.

The ANN is a mathematical model inspired by the biological neural network in the human brain.
An ANN is composed of several simple processing units, named neurons, which are connected to each
other through weighted links, i.e., the synaptic weights. A neuron is characterised by three essential
elements: a set of synaptic weights, a summation junction and an activation function. The first of
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these represents the strength of the relationships among adjacent neurons. The summation junction
computes a weighted sum of the input and the activation function determines the output of the neuron
itself. The main advantage of this model is related to its simplicity and ability to identify complex
relationships between the input and the output using experimental data, without requiring any specific
equation [50].

In order to define the ANN, it is necessary to specify the number of inputs, its architecture (i.e.,
the number of layers and the topology), the activation function of each layer and the training algorithm
through which the knowledge-extraction process from the experimentations is run, modifying the free
parameters of the network (synaptic weights). This task is accomplished by a training phase, during
which the synaptic weights are modified to reduce the estimation error of the network. After the
learning process, the ANN can predict the magnetisation and the specific heat of an MCM at each
magnetic field and each absolute temperature within the range of the training dataset.

The third step foresees the calculation of the isothermal entropy change of the magnetocaloric
material using the parameters of the ANN, which are the synaptic weights. In the last step, the adiabatic
temperature change is evaluated by the construction of the s-T diagram, with the isothermal
entropy-change values calculated in the previous step.

2.1. Experimental Setup and Data Collection

The first step of the ANN-based procedure is the experimental characterisation of the isothermal
magnetisation and specific heat data. Two groups of materials were used to test the procedure:
commercial gadolinium (Gd) and three different samples of LaFe13 − x − yCoxSiy (hereto referred to as
La-Fe-Co-Si) with exact compositions of (x = 0.86, y = 1.08), (x = 0.94, y = 1.01) and (x = 0.97, y = 1.07)
and Curie temperatures of about 276 K, 287 K and 289 K, respectively. They are named Specimen 1,
Specimen 2 and Specimen 3, respectively. For the purposes of this work the required experimental
data were obtained from Bjørk et al. [26] The magnetisation measurements were performed with a
vibrating-sample magnetometer (VSM), while the specific-heat data were collected with a differential
scanning calorimeter (DSC) equipped with a magnetic field source. Furthermore, data relating to the
adiabatic temperature change, measured with a type-E thermocouple (±0.1 K), were used to evaluate
the performance of the entire ANN-based procedure. The experimental equipment and the procedures
for the different tests are explained and presented in detail in Bjørk et al. [26] and Jeppesen et al. [54] It
is important to note that all the measured values of the magnetocaloric properties were subsequently
evaluated as a function of the internal magnetic field µ0Hint, which depends on the geometry of the
sample (and the demagnetisation factor). Therefore, the thermodynamic properties were obtained as a
function of µ0Hint. The latter is fundamental since the internal field µ0Hint (subsequently referred to
as H) is used as the input for the ANN in the second step. The output of this step is represented by
the magnetisation and the specific heat experimental data of the MCMs, organised in matrix format
(Equations (1) and (2)), where the values of the magnetic field H and the absolute temperature T are
reported as rows and columns, respectively

M =



[] T1 T2 . . . Tv

H1 M11 M12 . . . M1v

H1 M21 M22
. . .

...
...

...
. . . . . .

...
Hu Mu1 Mu2 . . . Muv


, (1)
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cP,H =



[] T1 T2 . . . Tv

H1 cP,H11 cP,H12 . . . cP,H1v

H1 cP,H21 cP,H22

. . .
...

...
...

. . . . . .
...

Hu cP,Hu1 cP,Hu2 . . . cP,Huv


. (2)

2.2. Training the Artificial Neural Network

A multi-layer perceptron (MLP) with two inputs, one hidden layer and two outputs was used as
part of the procedure to predict the behaviour of the MCMs (Figure 1).
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Figure 1. The adopted structure of the ANN. The magnetic field, in T, and the absolute temperature,
in K, are the inputs of the ANN. The model provides the values of magnetisation, in A/m, and specific
heat, in J/kgK, at the given magnetic field and absolute temperature. The subscript h refers to the
synaptic weights between the hidden and the input layer. The subscript o refers to the synaptic weights
between the output and the hidden layer. The index and the subscript k refer to the k-th neuron of the
hidden layer.

The number of hidden layers can be greater than one, and it depends on the complexity of the
problem. For very complex problems, such as vision and human language understanding, ANNs with
more than one hidden layer (deep neural networks) can provide better performance [55], but considering
approximation problems of continuous functions only one layer is sufficient to obtain good results [56].
If the approximation problem concerns non-continuous function, it may be necessary to use more than
one hidden layer. In the framework of MCMs, this could happen considering first-order magnetic
transition materials, characterised by a discontinuity in the magnetisation. The following equation
describes the generalised mathematical model of an MLP with one hidden layer:

y j = ϕo

 Nh∑
k=1

w jk ∗ϕh

 Nil∑
i=1

wki ∗ xi + bk

+ b j

, (3)

where:

• y j is the output estimated j by the ANN;
• ϕo is the output-layer activation function;
• Nh is the number of hidden neurons;
• w jk are the synaptic weights between the output j and the hidden neuron k;

• ϕh is the hidden-layer activation function;
• Nil is the number of inputs;
• wki are the synaptic weights between the hidden neuron k and the input i;
• xi is the input i to the ANN;
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• bk, b j are the bias of the hidden neuron k and the output j, respectively.

Considering the indirect method based on magnetisation measurements, the selected inputs for
the model are represented by the magnetic field H, corrected for the demagnetisation factor, and the
absolute temperature T. They are re-arranged in a matrix I2 x p, where p is the number of available
experimental data, like the following:

I2 x p =

[
H1 H2 . . . Hp

T1 T2 . . . Tp

]
. (4)

As outputs, this architecture calculates the value of the magnetisation M(H, T) and the specific
heat at a constant magnetic field cP,H(H, T), corresponding to the magnetic fields and temperatures
given. For each p, the ANN draws up the inputs according to the synaptic weights and provides the
following output matrix:

O2 x p =

[
M1 M2 . . . Mp

cP,H1 cP,H2 . . . cP,Hp

]
. (5)

The number of hidden neurons can be identified by employing a trial-and-error procedure [57,58]
or using some empirical rules, as reported in [59]. There is no specific process to evaluate the optimal
number of hidden neurons, but it must be identified case by case. In this study the evaluation of the
number of hidden neurons was made by employing an iterative trial-and-error process. The minimum
number of hidden neurons Nh,min was identified using the following empirical rule [59,60]:

Nh,min = 2 ∗Ni + 1, (6)

where Ni is the number of input neurons. Since the ANN has two inputs, the minimum number of
hidden neurons was fixed at 5. Several ANNs were trained to vary the number of hidden neurons
between the minimum and the selected maximum value. The latter was fixed at 15 units, but it can be
changed to extend the range of the investigation. The activation functions selected for the hidden and
output layers are the hyperbolic tangent (Equation (7)) and the linear one (Equation (8)), respectively:

ϕH(vk) = tanh(vk) =
2

(1 + e−2∗vk)
− 1, where vk =

Ni∑
i=1

wki ∗ xi + bk , (7)

ϕO
(
v j

)
= v j, where v j =

Nh∑
k=1

w jk ∗Hk + b j. (8)

In Equations (7) and (8), the subscripts k and j refer to the k-th hidden neuron and the j-th output
neuron. The term v represents the induced local field of the neuron, which is the weighted sum of its
inputs. The ANNs were trained using the standard error back-propagation (EBP) algorithm [61] with
cross-validation [62], developed and performed with a code written in the MATLAB environment.
The EBP algorithm can be divided into two steps: the forward pass and the backward pass. During the
first one, the output of the ANN, fed with the input array (x1, x2, . . . , xN), is calculated and then the
error e j is evaluated in comparison to the target. This error is used to compute the correction ∆w jk of
the synaptic-weight values of the output layer. In the backward pass, the error is propagated towards
the input layer, and the adjustment ∆wki of the synaptic-weight values of the hidden layer is calculated.
The evaluation of the synaptic-weight changes is usually performed according to the steepest descent
method [63] and can be expressed using the following equation:

∆w jk = −η ∗
∂E

(
e j
)

∂w jk
, (9)
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where η is the learning rate, and E
(
e j
)

is the error function. The error derivative of Equation (9) can
be easily calculated through the derivative chain rule [61]. The learning rate for this application
has been fixed at 0.3 after a trial-and-error procedure, but it can be modified according to needs.
The batch-training method was used to perform the EBP. According to this learning technique,
the synaptic weights are updated only when all the examples are fed into the ANN. The range between
the processing of the first and the last experimental sample is named epoch. At the end of each
epoch, the error metric is calculated, and the synaptic weights are updated according to Equation (9).
This process is repeated until the stop condition is reached, which can be achieved when the error metric
is lower than a target value or when the maximum number of epochs is reached. The Experimental data
used as inputs and targets were normalised in the range of values between –1 and 1 (Equation (10)),
as suggested in [64]:

xn = −1 + 2 ∗
x− xmin

xmax − xmin
. (10)

This type of normalisation limits the value of the data within the domain of the hyperbolic tangent
function. In Equation (10), x represents either the input or output variables, xn is the corresponding
normalised value, xmin is the corresponding minimum value and xmax is the corresponding maximum
value. The cross-validation technique was used to avoid the overfitting of the experimental data,
which can lead to poor generalisation capability. The initial dataset of the experimental data is divided
into three different sub-sets: the training, validation and test sets. Only the first of these is used to
modify the parameters of the ANN, i.e., the synaptic weights. The others are needed to evaluate the
performance of the trained neural network when it observes data that are not included in the training
dataset. Hence, the partition percentages must be defined to perform the cross-validation technique.
In this procedure, the following values were fixed:

• 60% for the training set;
• 20% for the validation set;
• 20% for the test set.

Random extractions are performed from the entire dataset to build these different clusters.
Furthermore, the order of the examples within the same subset is randomised at the beginning of each
epoch. The training algorithm stops when the error function related to the validation set reaches the
desired value. The most common error function used within the EBP algorithm is the mean square
error (MSE), which is calculated as follows:

MSE =

∑No
j=1

∑p
m=1

(
Y j,m − y j,m

)2

p ∗No
. (11)

In Equation (11), Y j,m is the target value of the j-th output for the m-th example, y j,m is the output
value predicted by the ANN of the j-th output for the m-th example, and No is the number of output
units. The latter assumes a value equal to 2 in this case. Furthermore, the mean absolute percentage
error (MAPE), mean absolute error (MAE) and the determination coefficient (R2) are evaluated as
performance indexes. These error metrics are calculated, respectively, as follows:

MAPE j =

∣∣∣∣∣∣∣∣∣∣
∑p

m=1
(Y j,m−y j,m)

Y j,m

p

∣∣∣∣∣∣∣∣∣∣ ∗ 100, (12)

MAE j =

∣∣∣∣∣∣∣
∑p

m=1

(
Y j,m − y j,m

)
p

∣∣∣∣∣∣∣, (13)
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R2 = 1−

∑No
j=1

∑p
m=1

(
Y j,m − y j,m

)2

∑No
j=1

∑p
m=1

(
Y j,m

)2 . (14)

The second step of the procedure, starting from the experimental data of the isothermal
magnetisation and the calorimetric measurements obtained for different magnetic fields and absolute
temperatures, provides an ANN-based analytical formulation of the magnetisation and specific heat of
the investigated sample. Hence, bearing in mind Equation (3), making appropriate substitutions also
considering Equation (10), these properties can be expressed as follows:

M(H, T) = Mmin +
Mmax −Mmin

2
∗

1 +
Nh∑

k=1

(w1k ∗ tanh(vh(H, T))) + b j=1

, (15)

cP,H(H, T) = cP,Hmin +
cP,Hmax − cP,Hmin

2
∗

1 +
Nh∑

k=1

(w2k ∗ tanh(vh(H, T))) + b j=2

, (16)

where:
vh(H, T) = wk1 ∗

Hmin + Hmax − 2H
Hmin −Hmax

+ wk2 ∗
Tmin + Tmax − 2T

Tmin − Tmax
+ bk. (17)

The Equations (15) and (16) make it possible to obtain the characteristic curves of the magnetisation
and specific heat as functions of the magnetic field and absolute temperature, for each value within
the training domain of the ANN. In detail, Equation (15) is proposed as an alternative mathematical
formulation of magnetisation that can be evaluated by different magnetic phenomenological models,
most of them based on the Weiss Mean Field Theory (MFT). The Equations (15) and (16) depend on
the parameters of the ANN, which are the synaptic weights and the minimum and maximum values
identified during the normalisation process. The synaptic weights are grouped within the matrixes of
the synaptic weights Wh

Nhx(Ni+1) and Wo
Nox(Nh+1), organised as follows:

Wh =


w11 w12 b1

w21 w22 b2
...

...
...

wk1 wk2 bk

, (18)

Wo =

[
w11 w12 . . . w1k b1

w21 w22 . . . w2k b2

]
, (19)

where the subscript k identifies the k-th hidden neurons. Considering Wh, the first and the second
column are referred to as the first and the second input, i.e., the applied magnetic field and the absolute

temperature, respectively. In Wo, the first and the second row are referred to the first and the second
output, i.e., the magnetisation and the specific heat, respectively. The minimum and the maximum
value of the input and output variables are grouped into two matrixes, named mapi

2xNi and mapt
2xNo ,

respectively. They are organised as follows:

mapi =

[
Hmin Tmin
Hmax Tmax

]
, (20)

mapt =

[
Mmin cP,Hmin

Mmax cP,Hmax

]
. (21)

The matrixes from Equations (18) and (21) represent the result of the second and the input for
the third step of the procedure introduced here. It is important to highlight that the training dataset
does not include all the available experimental data. By exploiting the generalisation capability of
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the ANN, a reduced number of experimental tests was needed to carry out the predictions for the
different materials. Specifically, a sensitivity analysis considering the different sizes of the training set
was performed to point out the proper dimension of the dataset. Seven different training sets were
developed, changing the number of magnetic field samples from 3 to 101 and considering only 11
temperature values. In Figure 2 the results of this analysis are reported.
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the training set at different magnetic fields. The number of temperature samples considered during the
training of the ANNs has been fixed at 11.

Hence, 21 different values of the magnetic field, from 0 T to 1 T with a step of 0.05 T, and 11
different values of the absolute temperature, from 270 K to 310 K with a step of 5 K, plus 250 K and
260 K, were used to perform the learning phase.

2.3. Isothermal Entropy-Change Evaluation

Using Equation (15), the isothermal entropy change of the investigated MCM can be obtained
by numerical integration for every desired step of both the magnetic field and the temperature.
The latter can lead to an improvement of the modelling capability of the material properties, since it is
possible to compute the evaluation with a small temperature step, reducing the systematic errors [65].
However, the properties defined for the ANN developed in the previous step can be used to evaluate
the isothermal entropy change of the MCM via an indirect method using an analytical approach
(Equation (22)). The EBP algorithm requires continuous and differentiable functions to be performed.
Hence, the magnetisation formulation of Equation (15) makes it possible to calculate the magnetisation
derivative concerning absolute temperature at a constant magnetic field, as follows:

(
∂M(H, T)

∂T

)
H
=

Mmax −Mmin
2

∗

Nh∑
k=1

(
2 ∗w1k ∗wk2 ∗ sech2(vh(H, T))

Tmax − Tmin

)
. (22)

In Equation (22), w1k is the synaptic weight that links the first output, i.e., the magnetization
of the specimen, to the k-th hidden neuron, whereas wk2 is the synaptic weight that links the k-th
hidden neuron to the second input of the ANN, which is the absolute temperature T. It is important to
note that the synaptic weights used in this equation are linked to the derivative argument M and the
derivative variable T. The magnetization derivative value is used to calculate the isothermal entropy
change using Maxwell’s relation. Hence, by analytical integration of Equation (22), the isothermal
entropy change can be expressed as:

∆siso(H1, H2, T) = µ0
Mmax −Mmin

2
∗

Nh∑
k=1

(B ∗C ∗ (tanh(vh(H2, T)) − tanh(vh(H1, T)))), (23)
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where:
B =

Hmax −Hmin
Tmax − Tmin

, (24)

C =
w1k ∗wk2

wk1
. (25)

Equation (23) represents a new mathematical formulation of the isothermal entropy change based
on ANN theory. The values of H2 and H1 are the final and the initial external magnetic fields of the
process to which the specimen is subjected, respectively. In Equation (25), wk1 is the synaptic weight
that links the k-th hidden neuron to the first input of the ANN, which is the applied magnetic field
H, i.e., the integration variable. Hence, using the output of the previous step, the isothermal entropy
change can be straightforwardly obtained by Equation (23), avoiding the systematic errors caused by
the numerical integration of Maxwell’s relation.

2.4. Adiabatic Temperature-Change Evaluation

The adiabatic temperature change ∆Tad can be obtained from the isothermal entropy change,
but the most accurate method used in numerical modelling is based on the construction of the s-T
diagram of the MCM. The latter ensures an accurate and coherent evaluation of the magnetocaloric
properties of the materials, which are correlated with the thermodynamic relations and are strongly
dependent on the temperature and the magnetic field. The success of an AMR numerical model
is strongly related to the correct prediction of these properties. The s-T diagram is built using the
calculation of the total entropy stot of the material. The evaluation of this property can be performed
using different methods [37,40,66]. Another method is proposed in [67] where a protocol to perform the
correct building of the s-T diagram for FOMT materials is described. In this procedure, the approach
based on the use of the magnetisation data and the specific heat at zero magnetic field was implemented.
The total entropy at zero field stot,H0(T) can be evaluated according to the following equation:

stot,H0(T1) = sre f +

∫ T1

Tre f

cP,H(0, T)
T

dT, (26)

where sre f and Tre f are the total entropy and the absolute temperature at the reference state, respectively,
T1 is the upper limit of the integration and cP,H(0, T) is the specific heat at zero magnetic field.
For building the total entropy curves at different values of the magnetic field stot,H, it can proceed to
add to isothermal entropy change calculated in the previous procedure step to the total entropy at zero
magnetic field, as follows:

stot,H( Hset, T) = stot,H0(T) + ∆siso(Hset, T). (27)

In Equation (27), Hset is the applied magnetic field to which the MCM is subjected. In this way,
the s-T diagram is completed, and the adiabatic temperature change ∆Tad can be computed according
to Equation (28), where T2

(
stot,H2

)
is the temperature at the total entropy value along the curve of the

magnetic field equal to H2 and T1
(
stot,H1

)
is the temperature at the total entropy value along the curve

of the magnetic field equal to H1:

∆Tad = T2
(
stot,H2

)
− T1

(
stot,H1

)
. (28)

Hence, the last step of the procedure described in this paper considers the isothermal entropy
change as the input and provides the adiabatic temperature change as the output. The implementation
of the entire process was made by developing a code written in the MATLAB environment, which allows
loading of the experimental data, developing and training the ANN, and calculating the isothermal
entropy change and the adiabatic temperature change. The specific heat values are directly provided
by the ANN trained with both the magnetisation and heat-capacity measurements, although they
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should be calculated from the total entropy curves (see Equation (29)) to ensure the thermodynamic
consistency of the data within the AMR numerical model:

cP,H(T) = T ∗
(
∂stot,H

∂T

)
H=const

. (29)

However, the evaluation of the magnetocaloric properties of the MCMs performed here can be
carried out using only the parameters of the ANN, i.e., the synaptic weights and the input-output
mapping. Hence, once the ANN is trained, it needs only a small database to store information about
these parameters for different MCMs. The code can be easily integrated into the existing and new
numerical models, like that recently introduced in Mugica et al. [68].

3. Results and Discussion

3.1. Procedure Performance with Gadolinium

The ANN (refer to Appendix A for the ANN parameters) fits well both in terms of the magnetisation
curves and the specific heat behaviour, as well as with data that the ANN was not trained for. The model
predicts very well the trend of the specific heat near the Curie temperature: the peak value of specific
heat decreases as the magnetic field increases and it shifts towards higher temperatures (see Figure 3b).
Considering both outputs of the ANN (magnetisation and specific heat), an average mean absolute
percentage error (MAPE) equal to 7.0% and an average determination coefficient (R2) of 0.9969 have
been obtained.
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(b) Specific heat at a constant magnetic field of Gadolinium. The asterisk in the legend indicates an
applied magnetic field not included in the training dataset.

By performing the third step of the procedure, the isothermal entropy change was calculated for
the same conditions (magnetic fields and absolute temperatures) as in the previous step (see Figure 4).
It is highlighted that in most cases the model predicts values of isothermal entropy change within the
range of the error of the numerical solution [37].

The trend of isothermal entropy change as a function of temperature is also well predicted around
the Curie temperature, where the isothermal entropy change shows its peak value.

From Figure 5b it is clear that the application of the ANN-based procedure leads to a slight
underestimation of the adiabatic temperature change for all the magnetic fields, except for the
maximum one. However, although these deviations are more pronounced for smaller magnetic fields,
these differences are within the range of the error. Generally, it emerges that the trend of the adiabatic
temperature changes as a function of temperature is preserved, also around the Curie temperature.
It can be concluded that the model provides an estimation of the ∆Tad with a mean absolute error
(MAE) equal to 0.1 K and a maximum absolute error of 0.4 K. The determination coefficient between
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the measured and predicted values of the adiabatic temperature change is equal to 0.9871, which is
close to the value obtained by Mugica Guerrero et al. [48].
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Figure 5. Results of the last step of the procedure: (a) s-T diagram of Gd and (b) adiabatic temperature
change of gadolinium during the magnetisation phase at different magnetic fields. The asterisk in the
legend indicates an applied magnetic field not included in the training dataset.

In Figure 6 a comparison between the ANN-based procedure (introduced in this study),
the direct-measurement method, and the MFT reported in Petersen et al. [45] is shown. It is evident that
the MFT does not fit the experimental values of the specific heat particularly well. The values predicted
by the ANN-based procedure are much closer to the measured ones, especially for H = 1 T. At zero
field, some differences in the specific heat values occur around the Curie temperature. These deviations
could be reduced by considering a smaller temperature step in the training set of the ANN around
the Curie temperature. Furthermore, the MFT overestimates the adiabatic temperature change below
the Curie temperature, with the most significant deviation from the experimental data at the Curie
temperature. For temperatures above the Curie temperature, the deviations decrease. On the other
hand, the prediction of the adiabatic temperature change using the developed ANN-based procedure
is significantly better, within the error range of the experimental data (see Figure 6b), excluding just a
few points at higher temperatures (between 306 K and 308 K).

3.2. Procedure Performance with the La-Fe-Co-Si Alloy

As shown in Figure 7, the predicted magnetisation and the specific heat values for the three
specimens of La-Fe-Co-Si alloy fit well with the experimental results. For the Specimens 1–3, the MAPE
values are equal to 8.5%, 6.6% and 6.5%, whereas the determination coefficients are 0.9980, 0.9946 and
0.9943, respectively.
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and H = 0 T in comparison with values predicted by the MFT approach and ANN-based procedure,
(b) Measured values of the adiabatic temperature change of Gd at H = 1 T in comparison with the
values predicted by the MFT approach and the ANN-based procedure.
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Figure 7. Measured and predicted values at different magnetic fields: (a–c) Magnetization of the three
samples of La-Fe-Co-Si alloy, (d–f) Specific heat at a constant magnetic field of the three samples of
La-Fe-Co-Si alloy. The asterisk in the legend indicates an applied magnetic field not included in the
training dataset.
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The comparison of the isothermal entropy changes calculated with the ANN-based procedure
and those obtained by the direct numerical integration of Maxwell’s relation shows a good agreement
(see Figure 8). It is worth pointing out that, also in these cases, the ANN-based calculation process
maintains the behaviour of the isothermal entropy change, highlighting a peak value around the Curie
temperature for all the specimens. However, the predicted values for the isothermal entropy change of
the three specimens are within the range of the error [37] in most cases.
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Figure 8. Comparison between the isothermal entropy changes of the three samples of La-Fe-Co-Si
alloy at different magnetic fields calculated with the ANN approach and those calculated by numerical
integration. The asterisk in the legend indicates an applied magnetic field not included in the
training dataset.

The outcomes calculated in the fourth step of the procedure for the three samples of La-Fe-Co-Si
alloy are shown in Figure 9, where in the left column (a–c) are the s-T diagrams, while in the right one
(d–f), the adiabatic temperature changes are shown for four applied magnetic field values.

For all three samples, the MAE value related to the adiabatic temperature change was kept at
0.1 K, with a maximum between 0.2 K and 0.3 K. On the other hand, the R2 values for Specimens 1–3
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are equal to 0.9932, 0.9845 and 0.9907, respectively. The parameters of the ANNs developed for the
La-Fe-Co-Si alloys are reported in Appendix B.Energies 2019, 12, x FOR PEER REVIEW  15 of 22 
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Figure 9. Results of the last step of the procedure: (a–c) s-T diagram of the three samples of La-Fe-Co-Si
alloy and (d–f) adiabatic temperature change of the three samples of La-Fe-Co-Si alloy during the
magnetisation phase at different magnetic fields. The asterisk in the legend indicates an applied
magnetic field not included in the training dataset.

3.3. Summary of the Results

In Table 1 the maximum values of the adiabatic temperature change, the isothermal entropy change
and the specific heat of the investigated MCMs are reported. These results show good agreement
with the experimental data reported in Bjørk et al. [26], considering both the maximum values of the
properties and the temperature at which these maxima occur (Tpeak).

The performances shown by the ANN-based procedure with the different MCMs are summarised
in Table 2 with respect to the error metrics (Section 2). In the second column the number of hidden
neurons (Nh) is reported.

Considering the accuracy of the temperature sensor, the results reported in the previous
sections and summarised in Table 2 prove the excellent prediction capability of the method. Hence,
the application of the ANN-based procedure for two different materials led to similar error values
(R2 = 0.9871 for Gd against an average R2 = 0.9895 for La-Fe-Co-Si alloy), demonstrating its capability
to model the magnetocaloric properties of different types of MCMs.
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Table 1. Maximum values of the magnetocaloric properties of Gd and the three samples of La-Fe-Co-Si
alloy at µ0H = 1 T from Bjørk et al. [26] and calculated by the ANN-based procedure.

Gadolinium Specimen 1 Specimen 2 Specimen 3

Bjørk et al.
[26]

This
work

Bjørk et al.
[26]

This
work

Bjørk et al.
[26]

This
work

Bjørk et al.
[26]

This
work

∆Tad (1 T)
[K] 3.3 3.3 (0.0%) 2.3 2.4

(+4.3%) 2.1 2.2
(+4.8%) 2.1 2.2

(+4.8%)
Tpeak [K] 295.1 294.9 277.1 276.3 287.1 286.7 289.6 288.1

|∆siso (1 T)|
[J/kgK] 3.1 3.0

(−3.2%) 6.2 5.9
(−4.8%) 5.1 5.2

(+2.0%) 5.0 5.3
(+6.0%)

Tpeak [K] 294.8 295.0 275.8 277.0 287.1 287.0 289.8 289.0
cp,H (1 T)
[J/kgK] 298.8 295.0

(−1.3%) 783.4 776.6
(−0.9%) 754.9 748.8

(−0.8%) 740.9 743.7
(+0.4%)

Tpeak [K] 289.2 289.0 276.1 276.0 286.1 286.0 288.2 288.0

Table 2. Summary of the results carried out by implementing the ANN-based procedure with Gd and
the three samples of La-Fe-Co-Si alloy.

MAE MAPE ∆Tad

MCM Nh
M

[A/m]
cp,H

[J/kgK] M [%] cp,H
[%]

Ave
[%] R2 R2 MAE

[K]
Emax
[K]

Gd 15 20681.1 2.6 13.0% 0.9% 7.0% 0.9969 0.9871 0.12 0.4
LaFe11.06Co0.86Si1.08 13 13504.0 7.4 15.8% 1.2% 8.5% 0.9980 0.9932 0.04 0.2
LaFe11.05Co0.94Si1.01 13 22975.9 3.5 12.7% 0.6% 6.6% 0.9946 0.9845 0.06 0.3
LaFe10.96Co0.97Si1.07 14 21518.0 5.3 12.1% 0.9% 6.5% 0.9943 0.9907 0.05 0.2

The method introduced in this work provides thermodynamic properties for both evaluated
groups of MCMs, making it possible to predict the magnetocaloric properties of both with reasonable
accuracy. Furthermore, few data were used to train the ANN model, as described in Section 2. This fact
represents a significant advantage, since the time needed to carry out the experiments decreases
significantly. Indeed, computing the numerical integration with the same amount of data as used by
the ANN-procedure could lead to up to 35% deviations of the maximum isothermal entropy change
compared to the full data set measured with a step of 1 K [65].

Furthermore, the training parameters were kept unchanged. This makes it possible to perform the
ANN procedure efficiently with different MCMs, by facilitating and speeding up the characterisation
of new materials. To evaluate the magnetocaloric properties of an MCM by this procedure, one should
measure the magnetisation and the specific heat at different temperatures and magnetic fields.
Considering an arbitrary range, the temperature and the magnetic field steps which can be considered
for the experiments are 5 K and 0.1 T, respectively. These values represent a guideline stem from the
results reported in this work (see Figure 2). The volume of collected data depends on the chosen
range. For example, if one wants to model the behaviour of an MCM in the magnetic field range
between 0 T and 0.5 T (6 different values) and in the temperature range between 250 K and 350 K
(21 different values), the volume of collected data will be equal to 126 for each output of the ANN, i.e.,
magnetisation and specific heat. Once the ANN is trained, the results could be verified and validated
by analysing some intermediate points not considered during the ANN training. Hence, just a few
other experiments are needed to validate the new ANN. However, some precautions have been taken
when using the ANN-based procedure, related to the experimental part of the process. The results
are strongly affected by the training phase of the ANN since the main thermodynamic properties are
calculated using the synaptic weights identified during this step. The quality of the learning depends
on the quality of the data with which the ANN is trained. Hence, it is necessary to make correct
measurements of both the specific heat and the magnetisation. For the latter case, some indications can
be found in the literature [41,65,69].
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4. Conclusions

We propose a new and flexible procedure based on the use of ANNs to evaluate the thermodynamic
properties of MCMs. It is shown that the procedure improves over the commonly used methods in the
framework of magnetic refrigeration and provides similar or better results based on a reduced amount
of information. Indeed, only a few experimental data are needed to perform a complete thermodynamic
characterisation of an MCM, and no modifications to its general formulation are required. Hence,
the tool developed in this work, available from the authors upon reasonable request, is proposed as a
standardised procedure to evaluate the magnetocaloric properties of MCMs, which can improve the
implementation of AMR numerical models and speed up the characterisation of new MCMs.
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Appendix A

Table A1. Hidden synaptic weights of Gd ANN.

Wh H T b

w1 −1.4212 −0.2781 −1.5975
w2 −1.7606 −0.1633 −1.8839
w3 0.0286 0.9740 0.0373
w4 2.2650 0.3972 1.4500
w5 −1.1547 0.4693 −0.8224
w6 0.9427 −2.6658 1.2563
w7 −0.2284 0.2009 −0.6378
w8 0.8338 0.2446 0.6600
w9 0.1867 −0.5571 −0.7011
w10 −0.6442 3.2147 −1.9418
w11 0.2429 −0.2356 1.0931
w12 0.0053 −1.7567 0.2993
w13 −0.8154 0.3201 −0.2907
w14 −0.1940 0.6915 −0.2957
w15 0.0960 −0.7824 −0.1980

Table A2. Output synaptic weights of Gd ANN.

Wo
T

M cp, H

w1 −1.5651 −0.6911
w2 −1.5142 0.6707
w3 −0.2390 0.5765
w4 −1.2677 −0.0193
w5 −0.4934 −0.3781
w6 0.0465 −1.1169
w7 0.5484 −0.1520
w8 0.1967 −0.3960
w9 0.8164 0.0993
w10 −0.2668 −1.7536
w11 −1.2219 0.4227
w12 0.2918 0.4122
w13 0.1137 0.0266
w14 0.2462 0.0562
w15 −0.0229 −0.6135

b −0.3358 −1.0183
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Table A3. Input-target mapping of Gd ANN.

H [T] T [K] M [A/m] cp, H [J/kgK]

Min 0 250 0 216.1
Max 1 310 1144982 339.0

Appendix B

Table A4. Hidden synaptic weights of La-Fe-Co-Si ANNs.

Specimen 1 Specimen 2 Specimen 3

Wh H T b H T b H T b

w1 0.1917 0.8973 0.7315 0.4618 −1.6667 0.3750 0.8520 0.2031 0.8984
w2 −0.2097 0.3061 −1.2611 −0.3502 4.7871 −1.1755 −0.1914 0.5909 −1.1288
w3 −0.3497 −0.2112 0.0701 1.3672 −0.3242 1.1277 0.1162 −0.1996 −0.2653
w4 −0.4082 5.2952 0.7372 −0.1936 1.7104 0.6309 −0.4516 0.3241 −0.0616
w5 0.4184 −1.4710 0.0050 −0.4580 3.9225 −0.4588 0.4635 0.6240 0.3144
w6 −0.3845 3.7749 1.0538 −0.0357 0.0634 0.9233 −0.3054 4.0817 −0.9671
w7 −0.4790 0.8194 −0.7946 −0.5250 −0.6962 −0.5996 −0.8399 0.9857 −0.5522
w8 −0.0558 −0.8351 0.4745 −0.0765 −0.6675 0.0295 −0.0363 1.3581 0.4379
w9 0.5199 −0.5261 0.4265 0.7811 1.0029 −0.0288 1.8243 0.4333 2.2864
w10 −0.0324 −0.0243 0.7000 0.3465 −0.5162 −0.5920 −0.4274 4.0521 −0.3688
w11 −0.5055 0.7145 0.5963 −0.0238 0.9699 −0.4976 −0.1458 0.4901 0.3521
w12 −0.3771 0.2812 −0.2925 −1.6583 −0.2331 −0.7204 1.8930 0.3430 1.2621
w13 −0.7053 −0.4690 0.4303 −0.7434 −0.6370 0.6484 −1.1674 0.6076 0.0530
w14 −0.1267 0.1076 −1.4187

Table A5. Output synaptic weights of La-Fe-Co-Si ANNs.

Specimen 1 Specimen 2 Specimen 3

Wo
T

M cp, H M cp, H M cp, H

w1 −0.1875 0.2929 0.6240 0.6533 0.7351 −0.6447
w2 0.4129 0.4394 −0.3269 −2.3121 0.7421 −0.3485
w3 −0.0026 −0.7827 1.2805 −0.0905 0.1774 0.5389
w4 −0.3346 −2.3002 −0.1154 0.8733 −0.2926 0.1307
w5 0.3067 0.5734 −0.0184 2.2231 0.2230 0.2111
w6 −0.1666 2.3449 −0.3507 −0.8183 −0.4881 −2.3771
w7 0.1253 −0.3257 −1.0127 0.2958 −0.7768 −0.1102
w8 −0.7623 0.2733 −0.5434 −0.6073 −0.2466 0.7265
w9 0.2552 −0.3323 −0.4603 0.2283 1.9406 0.0475
w10 0.2185 −0.4438 1.0259 0.3566 0.0306 1.9483
w11 −0.1077 0.2698 0.8814 −0.3649 −0.6731 0.0233
w12 −0.9737 0.4039 0.8366 −0.0055 −0.8551 0.1545
w13 0.6014 0.1432 0.4854 0.2014 0.6048 −0.0711
w14 1.2991 0.4230
w15

b 0.0585 −0.4769 −0.1803 −0.3426 −0.0325 −0.5758

Table A6. Input-target mapping of La-Fe-Co-Si ANNs.

H [T] T [K] M [A/m] cp,H [J/kgK]

Specimen 1 Min 0 252 0 450
Max 1 311 879830 831

Specimen 2 Min 0 252 0 468
Max 1 309 944056 792

Specimen 3 Min 0 252 0 466
Max 1 311 945918 826
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