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Abstract: Since existing energy system models often represent storage behavior in a simplified way,
in this work, a tool chain for deriving consistent storage model parameters for optimization models
is developed. The aim of our research work is to identify what are non-negligible influences on
the the technical characteristics and dynamic behavior of the storage, to quantify the effect of these
influences, and represent these effects in the model. This paper describes the developed tool chain and
presents its application using an example. The tool chain consists of the steps “parameter screening”,
“dynamic simulation”, “regression analysis” and “refining optimization model”. It is investigated
which parameters have an influence on the storage system (here pumped hydroelectric energy
storage (PHES)), how the storage behavior is modeled, which influencing factors have a measurable
effect on the system, and how these findings can be integrated into optimization models. The main
finding is that in the case of PHES, the dependency of the charging and discharging efficiency on
the power is significant, but no further influencing factor has to be considered for accurate modeling
(0.946 ≤ R² ≤ 0.988) of the efficiency. It is concluded that the presented toolchain is suitable for other
storage technologies as well, including the analysis of aging behavior.

Keywords: energy storage; design of experiments; simulation; regression analysis; optimization;
modeling; scientific framework; tool chain

1. Introduction

The participants of Glasgow Climate Pact COP26 reaffirmed “the Paris Agreement
temperature goal of holding the increase in the global average temperature to well below
2 ◦C above pre-industrial levels and pursuing efforts to limit the temperature increase to
1.5 ◦C above pre-industrial levels” [1]. To achieve this goal, it is necessary to switch from
mostly fossil fuels in energy generation to renewable energy sources. This means current
energy systems have to be changed massively with respect to their energy generation
technologies. One way to analyze which technologies suit the challenge best and to
determine how much and where to build them is to use national and transnational energy
system models. These energy system models optimize the operation and the installation
of energy generation. Examples of this type of model are TIMES [2], REMix [3], and
Calliope [4].

Besides energy generation technologies, the energy system models also include energy
storage systems as a way to balance demand and generation. Most commonly, the storage
technologies are represented by their power, storage capacity, and efficiency, all of which
are typically modeled as constant over the optimization horizon (e.g., [5]).

This way of modeling does not represent the real behavior of storage systems though.
To name some examples: The efficiency and available storage capacity of a Li-Ion battery
depend highly on its age. Another example is the dependency of mechanical storage, such
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as compressed air energy storage (CAES) or pumped hydroelectric energy storage (PHES),
on the mass flow rates of air and water, respectively, which again depend on the required
charging or discharging power of the storage operation. Redox Flow batteries are another
example to operate with up to 1.5 times their nominal power, but only for a limited time.

The reason for failing to present these features of storage systems in energy system
models so far is that storage systems are just one part of the energy system, and modeling
it in a more detailed way leads to a higher computational burden. These simplifications are
acceptable (and necessary) as long as energy storage plays only a small role in the system,
and allows us to estimate the amount of storage needed in general. However, recent global
events showed, that energy storage systems will play a more significant role in future
energy systems. This bears the question of how great is the need for storage exactly and
how much of each of the different storage technologies will be needed. To answer these
questions, it is necessary to represent the different technologies in a more detailed way.
The ever increasing available computational power supports this and enables having more
detailed models without highly increasing runtimes.

Here, the modeling of energy storage in transnational energy system models can
learn from already existing more detailed models that analyze the operation of electric
storage devices in local energy systems or that have been created for the purpose of
technology development (e.g., [6–12]). For this reason, the IEA Annex 32 “Open Sesame -
Modelling of energy storages for simulation/optimization of energy systems” is carried
out to promote the transfer of knowledge between modelers of energy storage systems at
different levels of detail. The presented results were developed within the framework of
the annex, respectively, within the framework of the associated R&D project “Sesame Seed”
[FKZ 03EI1021].

To rely on a classified differentiation between energy storage models, four different
levels, according to their level of detail, are defined in Sesame Seed. So-called “Level 3”
models stand for very detailed dynamic simulation models of specific storage technologies,
which, for example, model physical, thermodynamic and chemical effects in depth. On the
other hand, there are transnational energy system models that model energy storage
technologies in a very simplified way (“Level 0” models). Table 1 gives an abridged
overview of this model classification.

Table 1. Classification of energy storage models considering model application and modelling depth.

Model Complexity
Class Model Application Modelling Depth Model Type

level 3 technology/process
development very high

dynamic or static
simulation of

technology/process

level 2 integration in local
energy system high systemic

bottom-up model

level 1
integration in

(trans)national energy
system

medium systemic
bottom-up model

level 0
integration in

(trans)national energy
system

low systemic
bottom-up model

level −1

annual balance based
integration in

continental to global
energy system

models

very low systemic
top-down model

Our literature research has shown that many transnational energy system models used
in recent years are at level 0 [2,3,5,13].

Future investigations of energy storage requirements are to be carried out with level 1
energy system models due to the increasing importance of energy storage systems de-
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scribed above. Based on the literature, there seems to lack publications that present a
systematic method for evaluation of the recommended modeling depth for energy storages.
Against this background, this paper aims at closing this gap and presenting a tool chain
that systematically derives from dynamic simulation models on level 3, which level of
detail will be recommended for the modeling of energy storage devices in transnational
energy system models on level 1 in the future.

Our developed tool chain supports users in developing accurate representations of
their selected energy storage system in available or to-be-designed energy system optimiza-
tion models. This tool chain aspires to construct simple, yet highly informative storage
system representations from the ground up. As each step is full of optional steps to be
taken and could be left out entirely (if desired), this workflow can be tailored to any user’s
needs. Within the following pages, we will explain each step of the chain individually
(Section 2), before exemplifying the application of the tool chain for the charging process of
pumped hydro energy storage only in Section 3. The paper then concludes with Section 4
discussing and evaluating the insights gathered throughout developing this tool chain
and applying it for pumped-storage hydroelectric systems and adiabatic compressed-air
electric storage systems (results presented in future publications).

2. Materials and Methods

As described in the introduction, it is recommended to model future energy storage
technologies in more detail in transnational energy system models. Nevertheless, limiting
computing power has to be taken into account, which is why significant mathematical
simplifications are still necessary compared to the modeling of energy storage systems in
very detailed dynamic simulation models. The developed tool chain guides the user from
screening potentially important physical and technological parameters (input electrical
power, storage duration, etc.) for a highly accurate level 3 energy storage model to extract
the most relevant components and information of such level 3 models to the desired level
of simplicity (level 2 or level 1 models) using statistical tools which can be tailored to the
user’s needs. The tool chain consists of four crucial steps, which are thoroughly explained
in the following sections. A general workflow of these four steps is illustrated in Figure 1.

Figure 1. Tool chain to identify most influencing factors concerning the charging, storage, and
discharging process.

This section will conceptually introduce the four core steps of the developed tool
chain. The first step “Screening parameters” (Section 2.1) serves to identify physical and
technological factors, such as storage unit capacity or storage duration, whose variability
is assumed to have an impact on system outputs relevant to the user (e.g., storage unit
efficiency, changing states of charge, etc.). Having obtained a list of potentially influencing
factors, the second step “Dynamic simulation” (Section 2.2) will focus on designing a
physically accurate level 3 model, representing the changes of the desired outputs by
varying the selected factors as closely as possible. This step also contains recommendations
on experimental designs for obtaining a large data set, representing the level 3 model.
This data set is fundamental for step 3 “Regression analysis”, explained in Section 2.3.
The explained regression analysis aims to convert the obtained information about the
predictions by the level 3 model into level 2 or level 1 surrogate models. By adjusting
the complexity of the regression model to the wanted predictive accuracy, and available
computational power, our tool chain allows for a flexible integration of the level 2 or level 1
model into existing energy system optimization models (step 4 “Refining optimization
model”; Section 3.4). Again, all operations of the individual steps can be adjusted to the
user’s needs, and not all operations are mandatory.
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2.1. Step 1: Screening Parameters

As described in the previous section, the first step of the tool chain is the screening of
parameters. This step is important to obtain a representation as complete as possible of the
technology under investigation and to consider all system input and system output for both
simulations (cf. Section 3.2.1) and modeling of energy storages in energy system models
(cf. Section 3.4). By screening the parameters, the aim is to identify influential parameters
affecting the system output and identifying relevant system output [14]. It is necessary to
perform methodical, structured considerations to ensure finding as many parameters as
possible. The reason for considering the parameters is that with more parameters taken
into account, the system descriptions by the simulation model and the experimental design
will become more congruent with the occurring process.

A helpful method is the parameter diagram which has its origins in Robust Design.
Besides the preparation of the experimental design, the parameter diagram also serves
the general understanding of the system. All parameters included in the experimental
design are called factors, while all other parameters not included in the experimental design
should be kept constant [14]. As shown in Figure 2, the parameter diagram includes control,
signal, and noise factors affecting the system, as well as system results which are called
either responses or error states. While the responses are desired system outputs, the error
states are designated as undesired outputs [14].

Figure 2. Parameter diagram. While control, signal, and noise factors affect the system, the responses
and error states are the affected system’s output cf. [14].

The colors chosen in Figure 2 have already been applied in Figure 1. The green sections
in this figure include the input parameters and factors, at the same time, the first two steps
in the tool chain (Figure 1) are the steps with the focus on the input parameters and factors.
The investigated system is marked in yellow because the goal of this work is to extract the
core essence of the technology, and this step succeeds with the regression analysis (shown
in yellow in the tool chain figure). Lastly, there are the areas marked magenta, which
represent the results and outputs: on the one hand, the outputs and results are represented
as system responses and error states within the scope of the parameter screening, dynamic
simulation, and regression analysis. On the other hand, the application of the findings from
the tool chain within the optimization model are considered as results.

During screening, a distinction is made between changeable or variable influencing
factors and influencing parameters that are usually invariable during the operation. For the
analysis of the storage operation, control factors are not integrated into the experimental
design because they are only variable at the design level and not after commissioning or
during operation. Variable system input, i.e., signal factors and noise factors, are included
in the experimental design with variable levels between the minimum and maximum
value during the simulation. To give an example: While the size of components can not
be changed, wind speed varies over time as well as the power of an energy storage can
vary during the operation. This means that the last two factors mentioned are included in
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the experimental design. Further information on the experimental design can be found in
Section 2.2.2.

The screening is carried out to set up a reasonable experimental design subsequently.
These results are used to adjust the simulation model if necessary and, above all, to consider
the key factors affecting the responses within the experimental design. All inputs and
outputs should be taken into account so that the relationship between system input and
system output is represented as simply as possible and as accurately as necessary with the
aid of a surrogate model set up later (cf. Section 3.3).

2.2. Step 2: Dynamic Simulation

The behavior and performance of energy storage systems are usually highly depen-
dent on their operating mode (partial load operation, downtimes, control strategy) as well
as the current state (state of charge, state of health, process temperature, environmental
conditions). Respective data sets for the entire operating range of a specific storage technol-
ogy are usually not available or only to a limited extent. One way to generate these data
sets is via experimental investigation, which is typically associated with a huge amount of
time and costs.

Another common and more time- and cost-efficient method for illustrating and ana-
lyzing complex storage processes are steady-state or dynamic process simulations. Usually,
so-called flow sheet simulation programs are used for this purpose [15]. In these, the com-
ponents of the overall system are described via mathematical models and assembled into
a flow diagram. By carrying out a dynamic process simulation, the transient behavior of
these components can be additionally described.

2.2.1. Requirements of a Storage Model

For a realistic virtual depiction of an energy storage, the main components of the
corresponding overall system model should be described via physical laws and, thus, by
common thermodynamic equations. In practice, energy storages are often operated at
off-design conditions, which has a significant impact on the system behavior. Operating
pneumatic or hydraulic based energy storages (e.g., CAES, PHES, Carnot batteries) at
off-design conditions is associated with a reduced mass flow of the respective working
fluid, which has to be considered in the main model components.

In particular, this applies to fluid energy machines (turbo machinery, reciprocating
machines, pumps). Furthermore, temperatures, storage pressures, or the geodetic head
typically fluctuate during a storage cycle, which has an additional influence on the operating
behavior of the fluid energy machines. Their behavior at off-design conditions is usually
represented by characteristic maps implemented in the respective component model [16].
These characteristic maps are often based on polynomial functions, which are fitted on
real operating data sets [17,18]. The part load behavior of other components such as heat
exchanger, piping, or heat storages is generally described by the flow and property data
dependent Reynolds and Nusselt number, which are used to calculate pressure losses
and/or heat transfer.

2.2.2. Design of Experiments

The Design of Experiments (DoE) within the developed tool chain helps to perform a
representative set of computational experiments to make a uniform investigation of the
entire experimental space. This is made possible by setting up experimental designs and
determining plausible factor limits in advance.

DoE establishes a reasonable and meaningful combination of sample size and factor
variation to facilitate interpretation of test scatter and differentiation of real or apparent
effects. The major advantage of computer simulations due to cost and time efficiency is
that huge experimental designs can be applied with a large number of factors. Within the
experimental design, the values of the factors are varied within their limits. These different
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values between the factor boundaries are called levels. A prerequisite for the experimental
design is that the combinations of different factors cannot cause mutual exclusion [14].

While there are many different types of experimental designs, the focus of this paper is
on the Advanced Latin Hypercube (ALHC). This sampling approach minimizes correlation
errors using stochastic evolution strategies and is recommended for experimental designs
with less than 50 factors. With the help of the ALHC, the distributions of the factors are
generated exactly uniform even for small samples, whereas, for example, in the Monte
Carlo simulation, random and, thus, non-uniform distributions of the factors occur [19]. It
is necessary to choose a well-fitting experimental design suitable for the application.

Without an experimental design, a less efficient investigation would be performed
that would not allow for optimal factor combinations, time-consuming and expensive “one
factor at a time” experiments would be performed, and effects on system outputs could
not be correctly interpreted [14]. Within the tool chain, CAE software is interfaced with
a simulation environment so that the simulations can be run based on the experimental
design. The result is a large amount of data (around 700 data points) that forms the basis
for the regression analysis.

2.3. Step 3: Regression Analysis

As a next step, the developed tool chain constructs a surrogate model (level 1 com-
plexity) of the previously designed dynamic storage system simulation model (level 3
complexity), as latter is too complex for efficient use in (trans)national energy system
modeling. Based on the screened input factors (Section 2.1), and data samples obtained
through repeated runs of the level 3 model, a correlation analysis between input factors
and state efficiency is conducted. The gathered insights are then used to inform linear
regression models for the level 1 model. The suitability of the resulting level 1 regression
model in emulating the level 3 simulation model is determined based on statistical tests and
performance metrics. For this assessment, one recommends using at least 600 simulation
samples to remove issues with the statistical tests due to non-normally distributed data [20]
and to increase the statistical power of all used tests [21].

The simulation model data is preprocessed using the inter-quartile range (IQR) to
remove atypical efficiency values (IQR-outliers), and a Pearson correlation analysis [22]
(pp. 61–92, pp. 126–138), to further select input factors for the regression model. The pro-
cessed data is then split into training and test sets for model construction and evaluation.
For good practice, the values of all the influencing factors are z-standardized in both data
sets [23] (p. 217) using the mean and standard deviation of each training set. The resultant
surrogate model reads

η̂ = β0 + β1x(1) + · · ·+ βkx(k). (1)

The coefficients β0, . . . βk are computed using the standard ordinary least-squares
(OLS) technique [22] (pp. 144–155) [24] (pp. 3–17).

For the regression analysis, the residuals û express the model error between the level 3
model and the linear model (1), and are computed as the difference of efficiency predictions
between both models û = η − η̂, where η references to the level 3 model prediction. Using
the residuals, the classical assumptions on linear regression [25] (pp. 89–91) [24] (p. 27)
can be analyzed, supporting the quality assessment of the linear model in approximating
the level 3 one. If assumptions are violated, one needs to adapt the subsequent coefficient
estimation errors δj and model prediction errors ε [22] (p. 457). Analyzing δj, one then can
assess whether the computed model coefficients β j are generally suitable for prediction
outside the training data; measuring ε then helps express the maximum expected error
between level 3 and linear model for any input [22] (pp. 460–461).

δj =
√

V̂ar[β](j,j)t
m−(k+1)
0.995 (2)

ε =
∑m

j=1(ηj − η̂j)
2

m− (k + 1)

(
1 + xT(XTX)−1x

)
tm−(k+1)
0.995 . (3)
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Here, the matrix X denotes the training data, written as a m− by− k matrix with all
k input values of the m simulation samples listed as rows. In both equations, the term
tm−(k+1)
0.995 describes the argument for the 99.5 percentile of a t-distribution with m− (k + 1)

degrees of freedom. Using both errors, 99 % confidence intervals [β j ∓ δj] for each model
coefficient and a 99 % prediction interval [η̂ ∓ ε] for the level 3 model’s efficiency value
are computed.

As the linear regression model (1) serves as a surrogate model for the level 3 simu-
lation model, estimation and prediction errors, along with performance metrics such as
R2 [25] (pp. 74–79), assess the extent to which the level 1 model is suitable in general
practice: A highly consistent prediction helps understand how much information about the
nonlinear simulation model can be represented by the linear model, and how much model
error is caused by simplifying the model complexity. In the energy industry, statistical
methods, among others, are used in a similar context, where the aim is to make the risk
assessment safer and to consider the technological, economic, and industrial aspects of the
controllability of the system [26].

2.4. Step 4: Refining Optimization Model

A typical representation of energy storage systems for optimization models is given
by Equations (4)–(6).

0 ≤ Pin,t ≤ Pin,max

0 ≤ Pout,t ≤ Pout,max (4)

0 ≤ SOCt ≤ SOCmax (5)

SOCt = SOCt−1 + ηin · Pin,t · ∆t− 1
ηout
· Pout,t · ∆t (6)

The charging and discharging power Pin,t and Pout,t, as well as the state of charge SOCt,
are limited by their maximum power Pin,max and Pout,max and the maximum state of charge
SOCmax, respectively. The state of charge in time step t is given by the state of charge of the
previous time step SOCt−1 plus the energy charged in time step t, which corresponds to the
charged power multiplied with the charging efficiency ηin and the duration of the time step
∆t, and minus the discharged energy, which corresponds to the discharge power multiplied
with the duration of the time step ∆t and divided by the discharging efficiency ηout.

These equations can be adapted with the information from the previous steps of the
tool chain. Which adaptions are necessary depends on the results of step 3. For example, if
the outcome of step 3 is, that an important influencing factor is, that the maximum state
of charge changes over time depending on the weather conditions, Equation (5) could be
adapted to depict this behavior more accurately.

3. Results-Case Study

To show how this tool chain is applied, the following section describes the individual
steps using the example of the charging process of a PHES model. Taking a look at
national and transnational energy system models, PHES is currently mostly represented
by a charging and discharging power, a storage volume, and an efficiency. This efficiency
is mostly modeled as being constant over time. Sometimes it is differentiated between
charging and discharging efficiency. If one looks at models that optimize the behavior of a
single PHES, this still holds true for a majority of the models.

In reality, the efficiencies of pumps and turbines have a nonlinear relationship to the
mass flow of water and the pressure difference. Moreover, the losses in the pipes depend
on the mass flow rate and the head of water in the upper reservoir. In addition, there might
be more influences than these simple models neglect.
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The designed tool chain allows for evaluating these influences, assessing the needs for
model adaptations, and quantifying errors that occur by neglecting fundamental influenc-
ing factors. Since these national to transnational energy system models might not allow for
detailed models of energy storage (e.g., because of the computational effort a more detailed
modeling approach would require), this enables us to at least get some insight into where
inaccuracies will occur and also keep those in mind, when interpreting the results of the
energy system models.

In the following sections, the tool chain is applied to PHES in the described way.

3.1. Step 1: Screening Influencing Factors

In this section, the application and the results of the parameter diagram method are
presented. As described in Section 2.1, there are different parameters and factors influencing
the system, and at the same time, there are different system responses. Subsequently,
all parameters and factors potentially related to the PHES system are divided into two
categories—variable and fixed input factors. These two categories and corresponding
factors can be found in Figure 3. Only the responses and not the error states are considered
as system outputs since the simulation runs deliver only desired system outputs.

Figure 3. Parameter diagram with a selection of factors and responses. Own representation
based on [14].

Figure 3 gives an overview of the parameters, factors, and responses for PHES, which
are divided into three categories, as mentioned previously. Input factors are the current
charging and discharging power and the current mass flow rate, because they can be varied
during operation. Among the fixed input factors, the following environmental factors
are considered: Wind speed, air pressure, precipitation, solar radiation, vapor pressure,
evapotranspiration, and ambient temperature. Furthermore, design-related factors also
belong to the fixed input factors, such as the characteristic curve, nominal power, volume
of the reservoir, friction coefficient, pipe diameter, and geodetic height. All these input
parameters and factors can have a greater or lesser influence on the system and, thus, on
the system output. This system output is the current charging and discharging efficiency
and the water level in the upper and lower reservoir (later referred to as the state of
charge (SOC)).

The efficiency is dependent on the power and this determines the mass flow of the
water, as can be derived from characteristic curves. So there is a direct relationship between
the two input factors and also between input and output in each case. These two input
factors can be changed during operation, which is why they are categorized here as variable
input factors. Only the power is part of the experimental design due to the correlation
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between the current power and mass flow. The SOC, which is the amount of water in
the reservoir, can be affected by wind speed, air pressure, precipitation, solar radiation,
and ambient temperature. Thus, in contrast to the air pressure, these factors are included
in the experimental design. The reason for neglecting air pressure in the consideration
is its little capacity for variability in just small ranges of values and, thus, is assumed
to be constant. However, evaporation is also an influencing factor, among others, it is
simultaneously influenced by wind speed and ambient temperature, and is, therefore, not
included as a separate factor in the experimental plan.

In Section 2.1, the system input is described as factors that are part of the experimental
plan and as parameters that are not included in the plan and should be kept constant
during the simulation. The variable input factors in Figure 3 and the fixed input factors that
vary over time, for example, wind speed, are taken into account within the plan. The other
fixed input factors are design parameters, such as pipe diameter, and are not included
in the experimental plan since they are neither adjustable nor changeable during storage
operation. For the factor’s value ranges, see Section 3.2.2.

3.2. Step 2: Dynamic Simulation

The dynamic PHES model used for the presented tool chain and to generate relevant
data sets was created via the modeling language Modelica using the user interface Dymola
(Dynamic Modeling Laboratory) in version 2021x (64-bit) [27]. The model is based on the
commercially available component library Hydro Power Library from Modelon, which
provides a framework for modeling and simulation of hydropower plant operation [28].

The overall model of the PHES generally consists of the following main components:
Pump, turbine, upper and lower reservoir, penstocks, motor, generator, and PID controller.
The structure and functionality of these components are described in [29]. Additionally,
to investigate the influence of atmospheric conditions on the performance of the PHES
plant, the effect of evaporation and precipitation in the upper reservoir according to [30]
was implemented in the model. The following section is focusing on design parameters
and implemented control strategy relevant to the tool chain.

3.2.1. Description of the PHES Model

The PHES model describes a closed-loop plant with ternary machine sets (separate
motor-generator, turbine, and pump). The most important parameters are listed in Table 2.
The parameterization of the plant is based on the existing plant Mapragg in Switzerland.
Further data, such as the nominal flow rates of the pumps and turbines, as well as the
dimensioning of the penstocks, can be found in [31].

Since the case study carried out in this work is only considering the charging process of
the PHES, it is described in more detail in the following. The electrical power consumption
of the pumps is kept constant over the entire charging process by a variable speed drive.
The minimum partial load for each pump is set to 0.3 of its nominal load. The number of
pumps operating simultaneously is depending on the given set point value of the charging
power of the overall system. In addition, it is specified that the pumps in operation always
transport the same amount of water and, thus, consume the same power.
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Table 2. Design parameters of the PHES.

Parameter Value

Nominal charging power [MW] 159
Nominal discharging power [MW] 280
Number of ternary machine sets [-] 3

pump/turbine head [m] 435–483
Upper reservoir volume [m3] 30,000,000
Nominal pump efficiency [-] 0.89

Nominal turbine efficiency [-] 0.93
motor and generator efficiency [-] 0.96

For a time-efficient analysis of parameter variations on the performance of the PHES
plant, important key figures of the overall system are calculated automatically in the model.
The most important evaluation parameter for the charging process is the charging effi-
ciency ηin. It is determined by the energy supplied to the upper reservoir Estored (potential
energy) and the energy consumed in the motor-driven pumps during the entire charging
process Ein.

ηin =
Estored

Ein
(7)

3.2.2. Design of Experiments for PHES

In the previous screening, the influencing parameters and factors were determined.
For each individual factor included in the experimental plan, a minimum and maximum
value have to be defined (cf. Table 3). The experimental plan is designed with the software
optiSLang (2021 R1). It is necessary to insert the factors and their value limits into the
plan and then select a suitable sampling method (here, Advanced Latin Hyper Cube).
OptiSLang is linked to the modeling and simulation environment Dymola to run as many
simulations as specified in the experimental plan.

In the investigated simulation model, three pumps are modeled, which leads to the
following ranges for the storage power: The relative charging power when operating one
pump is up to 33.4% when operating two pumps between 33.4% and 66.8%, and when
operating three pumps between 66.8% and 100% of the installed power. The initial state of
charge (SOCinit) can vary between 0% and 99% of the maximum storage capacity. The dif-
ference between SOCinit and the maximum storage capacity (100%) is SOCdelta and can vary
between 1% and 100%. The ambient temperature is set within the limits of 253.15 K and
313.15 K, the relative humidity phi between 0% and 100%, and the net radiation Rn between
0 W m−2 and 1000 W m−2. The limits for the precipitation are 0 m s−1 and 1.2222 10−6 m
s−1 and for the wind speed u2 at 2 m height between 0 m s−1 and 14 m s−1.

Table 3. Factors with corresponding limits used in the experimental design.

Factor Minimum Maximum

SOCinit [−] 0 0.99
SOCdelta [−] 0.01 1.0

TU [K] 253.15 313.15
φ [%] 0 100

Rn [W m−2] 0 1000
I [m s−1] 0 1.2222 · 10−6

u2 [m s−1] 0 14
Pin,rel (one pump) [−] 0.1 0.334

Pin,rel (two pumps) [−] 0.333 0.668
Pin,rel (three pumps) [−] 0.668 1.0

With these factors, their value limits, and the sampling method ALHC, the simula-
tion described in Section 3.2.1 is performed. By using the ALHC, the correlation errors
are minimized by using stochastic evolution strategies, and the factor’s distribution is
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uniformly generated. As explained in Section 2.3, a sample size of at least 600 samples
is deemed sufficient for deriving the linear surrogate model from the simulation model.
As around half of the simulation runs failed in smaller data acquisition tests, due to the
imposed constraints in the simulation model, it was decided to begin the simulation with
1500 factor-samples, resulting in around 700 usable instances of data for future use.

Table 4 shows an excerpt of the results calculated under consideration of the limits in
Table 3. In addition to the factors, the system response, the efficiency ηin, is also shown in
the table.

Table 4. Design of Experiments—results.

Factor/Response Value 1 Value 2 Value 3 . . . Value 700

SOCinit [−] 0 0.004 0.031 . . . 0.34
SOCdelta [−] 0.384 0.38 0.297 . . . 0.478

TU [K] 280.975 303.505 290.065 . . . 284.485
φ [%] 0.075 14.225 46.825 . . . 88.575

Rn [W m−2] 17.85 874.65 1272.95 . . . 278.25
I [m s−1] 1.20 · 10−6 3.15 · 10−7 6.23 · 10−7 . . . 6.98 · 10−7

u2 [m s−1] 0.101 6.233 11.126 . . . 13.19
Pin,rel [−] 0.199 0.430 0.701 . . . 0.529
ηin [−] 0.78 0.789 0.794 . . . 0.8152

With the help of the DoE, a uniformly distributed analysis of the technical properties
and environmental influences is made possible. These simulation results are subsequently
used in the regression analysis in the following section to investigate the influences of the
input factors on the efficiency. A transpose of this data is used as the data matrix X for
the OLS-regression algorithm and Equation (3). Prior to further analysis, each column is
z-standardized to [−1, 1].

3.3. Step 3: Regression Analysis

The overarching goal of the presented tool chain is to provide a flexible approach to im-
proving the representation of energy storage systems in energy system models. As already
stated, the commonly used constant models (level 0) for storage systems can be too simplis-
tic to predict efficiency variations arising from generally nonlinear energy storage cycles
accurately.

In this section, around 700 predictions by the previously introduced level 3 simulation
model for the charging state of a PHES system were used to inform a piecewise linear
regression model. This section summarizes the regression analysis results, showing that
the constructed model is highly consistent with the foundational simulation model (mean
absolute error of 0.5 percentage points between the linear and nonlinear prediction, and an
R2 larger than 0.94 for the simulation data).

3.3.1. Data Analysis

At the beginning of this regression analysis, the 700 simulation data samples are pre-
processed for IQR outliers; correlation coefficients are computed and analyzed for selecting
model input factors x. For the charging state, the scatter plots of the screened factors
x = Pin,rel , SOCinit, . . . and the charging state efficiency η = ηin suggested partitioning the
(raw) data set into three sub-data sets according to their value of Pin,rel :

• Sub-data set 1: Pin,rel ∈ [0.1, 0.334]
• Sub-data set 2: Pin,rel ∈ (0.334, 0.668]
• Sub-data set 3: Pin,rel ∈ (0.668, 1].

This partitioning is founded on the observed piecewise-linear relationship between
Pin,rel and ηin (Figure 4a) and no discernible relationship between any other factor and ηin
(Appendix A.1).
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(a)

(b)
Figure 4. (a) Scatter plot for raw data showing the relation between Pin,rel and charging state efficiency
ηin, and (b) box plot showing the IQRs (boxes and lines) and classified outliers (black diamonds) for
ηin on the partitioned data sets (green) and the raw data (orange).

Observing the data, partitioning the raw data set (all 700 samples) promises to increase
the accuracy of predicting ηin by using a piecewise linear model instead of a standard
linear regression, based on the scatter plots. To follow up on this hypothesis, a comparative
(IQR-)outlier analysis (Figure 4b) reveals that all samples with ηin < 0.71 are classified as
outliers, as such efficiency values were rather extreme on a global scale (Figure 4b, black
diamonds in the orange box plot). In contrast, the outlier analysis of each sub-data set
showed that no sample contains atypical ηin values, which is also suggested by the scatter
plots. Hence, the suggested partitioning of the data accounts for the “local variance” of
ηin and therefore keeps the typical information on the modeled charging state for further
analysis steps.

3.3.2. Correlation Analysis

To further elaborate whether a piecewise-linear model is more suitable for simplifying
the level 3 model, a correlation analysis followed, further arguing for the data partitioning
and the importance of Pin,rel in a (piecewise) linear model. Table 5a–d show the correlation
matrices for all 4 defined (sub-)data sets.
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Table 5. Correlation matrices for the three partitioned data sets Pin,rel ∈
[0.1, 0.334]|(0.334, 0.668]|(0.668, 1] and the raw data set, based on the highest absolute Pear-

son correlation coefficients |r(i)x(i) ,ηin
| of a (screened) variable x with ηin in data set i ∈ {1, 2, 3}.

(a) Pin,rel ∈ [0.1, 0.334]

Pin,rel Rn SOCinit

Rn 0.049 1
SOCinit −0.001 −0.002 1

ηin 0.994 0.051 −0.061

(b) Pin,rel ∈ (0.334, 0.668]

Pin,rel φ SOCinit

φ 0.003 1
SOCinit 0.034 0.04 1

ηin 0.984 −0.03 −0.072

(c) Pin,rel ∈ (0.668, 1]

Pin,rel φ SOCinit

φ −0.034 1
SOCinit −0.052 0.009 1

ηin 0.968 −0.044 −0.231

(d) Raw Data (before partitioning)

Pin,rel u2 SOCinit

u2 0.02 1
SOCinit −0.004 0.009 1

ηin 0.492 −0.028 −0.066

In each matrix, those three input factors x with the largest absolute correlation coef-
ficient |rx,ηin | with the state efficiency are listed, as these are the most suitable candidates
for the design of a linear model; all full correlation matrices are listed in Appendix A.2.
For each data set, significant correlations with ηin only show for Pin,rel . The environmental
input factors such as precipitation Rn, humidity φ, and wind velocity u2 show no significant
correlation with ηin.

In contrast to other publications, such as [32–34], the initial state of charge SOCinit
can also be neglected. This is a direct result of the way the level 3 model of the PHES
is set up (cf. Section 3.2.1). By choosing a control strategy for the PHES that keeps the
power constant over the whole charging process, the influence of the state of charge on the
required charging power is mitigated by the controller and is instead included indirectly in
the charging efficiency.

Hence, only Pin,rel is to be selected for the (piecewise) linear model. Underlining the
observations in the scatter plots, the correlation analysis on the three sub-data sets indicates
a near-perfect linear relationship between Pin,rel and ηin (rPin,rel ,ηin > 0.96, Table 5a–c),
whereas for the raw data, Pin,rel just weakly correlated with ηin (rPin,rel ,ηin = 0.492, Table 5d).
All gained insights, hence, argue for the use of three sub-data sets and for simplifying the
previously modeled PHES charging state as follows:

ηin = ηin(Pin,rel) =


β
(1)
0 + β

(1)
1 Pin,rel , Pin,rel ∈ [0.1, 0.334];

β
(2)
0 + β

(2)
1 Pin,rel , Pin,rel ∈ (0.334, 0.668];

β
(3)
0 + β

(3)
1 Pin,rel , Pin,rel ∈ (0.668, 1].

(8)

3.3.3. Assumption Analysis

After defining and scaling all three training and test data sets, model coefficients
β
(i)
j were calculated using OLS for each training data set. By using the test data sets,
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predictions, and residuals were then computed to check for the classical assumptions
of linear regression, revealing heteroscedasticity [25] (pp. 94–96) in all three cases (see
Appendix A.3). As all further assumptions were met, the heteroscedasticity-robust White
variance estimator [35] is chosen for the following t-tests.

3.3.4. Coefficient Analysis

Using heteroscedasticity-robust White variance estimates Var[β](i) for all three data
sets, t-Statistics [24] (pp. 117–119) were computed for the standard t-test for each estimate
β
(i)
j (Table 6a). The 99% confidence intervals for each model coefficient are then computed

using the estimation errors δ
(i)
j , showing that the coefficients (computed with each training

data set) are suitable for a flexible use of a piecewise linear model for describing the
discussed PHES charging state. Unsurprisingly, the connoted p-values for all t-tests are
close to machine precision.

Table 6. Coefficient Estimation errors δ
(i)
j , and Prediction Errors ε for the three sub-data sets Pin,rel ∈

[0.1, 0.334] | (0.334, 0.668] | (0.668, 1]. These errors are used for the 99% Coefficient Confidence
Prediction Intervals.

(a) Statistical test results for β(i) and the approximative piecewise linear model (8).

β
(i)
j Estimation Error δ

(i)
j

Intercept 0.782|0.803|0.81 10−4|10−4|10−4

Pin,rel 0.053|0.033|0.016 10−4|10−4|10−4

(b) Prediction errors used for 99% Prediction Intervals

Prediction Error

ε(i) 0.013|0.014|0.01

Following up the coefficient analysis, the computation of prediction errors ε(i), shows
that the constructed piecewise linear model with coefficients β consistently estimates the
efficiency values ηin of the level 3 model correctly up to an error slightly larger than 0.01
with a certainty of 99%. It can therefore be expected that the piecewise linear model will
predict similar ηin values to the level 3 model, when using the regression coefficients
presented in Table 6a and when inputting Pin,rel .

3.3.5. Performance Analysis

A key motivation for this research was to improve the representation of the PHES in
energy system models, as constant models fail to account for changes in efficiency levels
due to changes in the input factors. Computing widely-known performance metrics show
that a constant efficiency prediction performed significantly worse in matching the level 3
model when compared to a piecewise linear prediction.

Table 7 summarises the inability of the constant model ŷ = y(i)mean to accurately repre-
sent the variance of ηin with changing input values (R2 = 0.144). In contrast, the piecewise
linear model (8) captured nearly all variance of ηin in all cases (R2 ≥ 0.946), illustrating the
congruence between the level 3 and level 1 models in predicting ηin. No further inputs are
deemed necessary.

To sum it up, the performed regression analysis exemplified the potential of the sug-
gested tool chain, and showed that careful data analysis and a slight increase in complexity
can lead to a high increase in the prediction performance of a linear model over a constant
representation of an energy storage unit in an energy system model.
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Table 7. Comparing Regression Model and Constant Model Performances on the Test Data
(75–76 data points) for each sub-data set Pin,rel ∈ [0.1, 0.334]|(0.334, 0.668]|(0.668, 1]. For the constant
model evaluation, the mean efficiency value of all three training data sets and the metrics for all three
test data sets were computed.

Regression Model (Level 1) Constant Model (Level 0)

R2 0.988|0.976|0.946 0.144
Mean Absolute Error 0.005|0.005|0.003 0.031
Max Absolute Error 0.014|0.012|0.010 0.109

3.4. Step 4: Refining Optimization Model

As the previous sections have shown, to depict the charging process of a PHES more
accurately, it is necessary to model the dependence of the charging efficiency on the current
charging power. The new model should therefore adapt Equation (6).

It is not possible to include this dependency directly in Equation (6), since it would
lead to a nonlinear constraint (most of the national and transnational energy system models
are linear or mixed-integer linear models). Instead, the charged energy in time step t can
be calculated separately and subsequently be added to the state of charge of the previous
time step.

SOCt = SOCt−1 + Pcharged,t · ∆t− Pdischarged,t · ∆t (9)

The relation between the net charged power Pcharged and the charging power Pin
can be calculated from the simulation data by multiplying each charging power with its
corresponding charging efficiency. This leads to a nonlinear function for Pcharged(Pin), which
in turn can be linearized using SOS2-variables λn.

Pin,t =
N

∑
n=1

Pin,n · λn (10)

Pcharged,t =
N

∑
n=1

Pcharged,n · λn (11)

N

∑
n=1

λn = 1 (12)

Figure 4 shows the obtained data for Pin and the corresponding ηin. This data is used
to calculate Pcharged(Pin). To determine Pin,n and Pcharged,n, discontinuities in the data were
identified. This is done by approximating the gradients and selecting the points with the
highest absolute values. Additionally, adding the value at the minimum and maximum
charging power allowed for covering the whole interval. Table 8 shows a summary of the
breakpoint values for the analyzed charging process of the PHES.

Table 8. Breakpoint values for the analyzed charging process of the PHES.

n Pin,n Pcharged,n

0 0.1002 0.6887
1 0.3333 0.8583
2 0.3338 0.7372
3 0.6663 0.8483
4 0.6668 0.7739
5 0.9993 0.8317

4. Discussion

In this paper, we developed a tool chain to investigate the modeling and parametriza-
tion of simplified storage models based on the detailed simulation of a physical model.
The tool chain was carried out using the example of a pumped hydroelectric storage model.
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It was shown that the tool chain is well suited to identify the relevant influencing factors
which have to be modeled in simplified models to still accurately represent the behavior of
the storage model in the desired use case. In addition the tool chain yields the necessary
parameterization of the simplified model, which is consistent with the detailed physical
model of the real world system.

The steps of the developed tool chain are generic and, as such, can be used to analyze
other (storage) technologies and desired levels of simplification. The identified parameters
for the experimental plan of the PHES investigation can be used for other mechanical
storage technologies with only small adjustments. Further influencing factors can be ana-
lyzed by including them in the experimental plan. For example, it is possible to investigate
the influence of aging, by adding a state of health parameter. The representation of the
resulting correlation in the level 1 MILP model is the subject of ongoing research though.

For all results of the tool chain, including the ones of the case study in this paper, the
level 3 model has a great influence on the results. It is, therefore, necessary to be very
careful when designing the level 3 model and to include all relevant physical dependencies
in enough detail. In addition the chosen control strategy for the technology can also greatly
influence the results of the tool chain as shown in Section 3.3.2. An alternative to using
level 3 simulation models as data input into the tool chain is to use measured data, if it is
available for the whole range of the experimental plan. In this case all relevant physical
parameters should be included in the data, as well as the applied control strategy.

For the simplified PHES model derived in this paper, it was shown that the piecewise
linear regression model reproduces the variance in the simulation data quite accurately
(R2 ≥ 0.946). Moreover, the values of the level 3 model can be predicted correctly to within
6 percentage points of expected prediction error. With a range of about 45 percentage points
in storage efficiency, this is a relevant improvement over a constant PHES model, which
showed an average error of 19% in the data used.

In the future, in the context of the energy industry and further, we expect the appli-
cation of statistics and AI to increase generally. These powerful tools complement areas
of supply security, efficiency, and technological advancement. The aim of future work is
to quantify the impact the derived simplifications of the level 1 model have on the results
and the performance of the large-scale energy system models. To achieve this, besides the
analysis of the charging process shown in this paper, we also investigated the storage and
discharging process of the same pumped hydro electric storage system. In addition we are
going to use the tool chain to analyze different configurations of PHES systems as well as
compressed air energy storage systems.
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Abbreviations
The following abbreviations are used in this manuscript:

I Precipitation around the upper reservoir of a PHES system
IQR Interquartile Range
OLS Ordinary Least Squares
Pcharged,t Net charged power in timestep t
Pcharged,n Net charged power at breakpoint n
Pdischarged,t Net discharged power in timestep t
Pin,n Electrical charging power at breakpoint n
Pin,max Maximum electrical charging power
Pin,rel Relative electrical charging power
Pin,t Electrical charging power in timestep t
Pout,t Electrical discharging power in timestep t
Pout,max Maximum electrical discharging power
Pout,n Electrical discharging power at breakpoint n
PHES Pumped hydroelectric energy storage
R2 Coefficient of Determination
Rn Irradiance
SOCdelta Difference between states of charge at timesteps t + 1 and t
SOCinit State of charge at the start of a simulation run
SOCmax Maximum state of charge
SOCt State of charge in timestep t
TU Ambient temperature of the upper reservoir of a PHES system
u2 Wind Speed around the upper reservoir of a PHES system
∆t Duration of one timestep
ηin Constant charging efficiency
ηout Constant discharging efficiency
λn SOS2 variable
φ Humidity around the upper reservoir of a PHES system

Appendix A. Auxiliary Results for the Regression Analysis Example

Appendix A.1. Scatter Plots for Individual Influencing Parameters against Charging State Efficiency

The charging state simulation data set was subdivided based on the visible piecewise
linear relationship between the relative input electric power Pin,rel and the charging state
efficiency ηin, as well as no clarly visible relationships between all further variables and ηin.
The following figures provide an extensive list of all scatter plots observed before deciding
for the data partitioning described in Section 3.3.

(a) Scatter plot Pin,rel (b) Scatter plot φ

Figure A1. Cont.
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(c) Scatter plot SOCdelta (d) Scatter plot SOCinit

(e) Scatter plot TU (f) Scatter plot u2

Figure A1. Scatter plots for raw data showing different features x(j) and charging state efficiency ηin.

Appendix A.2. Pearson Correlation Coefficient Matrices

Based on the Pearson correlation coefficient rx(j),y between an input variable x(j) and

the efficiency y, a subset of all x(j) was selected for the linear regression model, if the
absolute value of a coefficient was larger than 0.4. In the example given in Section 3.3, four
data sets were analyzed simultaneously (the three constructed sub-data sets and the raw
data), and the Correlation Coefficient Submatrices for the three parameters with the largest
absolute coefficient |rx(j),y| were shown. The full correlation matrices are given below.

Table A1. Full Pearson Correlation Coefficient Matrices.

(a) Pin,rel ∈ [0.1, 0.334].

Pin,rel φ Rn SOCdelta SOCinit TU I u2

φ −0.015 1
Rn 0.049 0.007 1

SOCdelta 0.038 −0.002 0.023 1
SOCinit −0.001 0.03 −0.002 −0.524 1

TU −0.033 −0.012 0.01 −0.029 0.002 1
I −0.019 0.026 0.015 −0.018 0.007 0.024 1

u2 0.012 −0.02 0.018 0.03 0.001 0.048 0.016 1
ηin 0.994 −0.018 0.051 0.046 −0.061 −0.037 −0.019 0.01

(b) Pin,rel ∈ (0.334, 0.668].

Pin,rel φ Rn SOCdelta SOCinit TU I u2

φ 0.003 1
Rn −0.023 0.015 1

SOCdelta 0.006 0.019 −0.009 1
SOCinit 0.034 0.04 0.009 −0.514 1

TU −0.011 0.016 0.026 0.015 −0.005 1
I 0.023 0.005 0 −0.028 0.007 −-0.064 1

u2 −0.029 0.004 0.015 0 −0.041 0.007 −0.026 1
ηin 0.984 −0.03 −0.022 0.016 −0.072 −0.009 0.028 −0.024
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Table A1. Cont.

(c) Pin,rel ∈ (0.66, 1].

Pin,rel φ Rn SOCdelta SOCinit TU I u2

φ −0.034 1
Rn 0.004 0.023 1

SOCdelta −0.016 0.02 0.021 1
SOCinit −0.052 0.009 0.024 −0.512 1

TU −0.021 0.01 0.036 0.024 −0.04 1
I −0.019 0.003 0.013 0.016 0.037 −0.028 1

u2 0.04 0.013 0.002 −0.032 0.042 −0.06 −0.013 1
ηin 0.968 −0.044 0 0.019 −0.231 −0.009 −0.027 0.025

(d) Raw charging state data.

Pin,rel φ Rn SOCdelta SOCinit TU I u2

φ −0.029 1
Rn −0.018 −0.042 1

SOCdelta −0.006 −0.024 −0.014 1
SOCinit −0.004 −0.028 0.013 −0.492 1

TU −0.018 −0.029 0.01 −0.013 0.003 1
I −0.015 −0.062 0.026 −0.029 0.048 −0.055 1

u2 0.02 0.002 0.017 0.025 0.009 −0.042 −0.021 1
ηin 0.492 −0.007 −0.047 −0.023 −0.066 −0.005 0.026 −0.028

Appendix A.3. Qualitative Analysis of the Coefficient Estimates

The adaptations of the statistical tests/quantitative analysis of the regression param-
eters β resulted from the insights of the qualitative analysis of the OLS estimator for the
BLUE property in the three sub-data sets. With this section, all results of the qualitative
analysis are summarised to make transparent why only adaptations for heteroscedasticity
were neccessary.

Linearity

The piecewise regression model is, due to its definition as a matrix-vector product,
linear in its model parameters β. The assumption holds by design.

Zero Expected Error

For OLS to be the Best Linear Unbiased Estimator, it needs to be shown that the
model error u is expected to be 0. As this population property for the linear model
y = Xβ + u cannot be computed (the population/input variable space is infinitely large),
the “sample mean estimator” is used to computing the expected error of the unknown
quantity u. This means that for checking this assumption, the mean value of all training
data residuals û was computed. As these sample means were all close to machine precision
(−1.6 ∗ 10−17 − 1.2 ∗ 10−16), it was concluded that this BLUE assumption is satisfied.

Only Exogenous Influencing Parameters

Exogeneous Influencing Parameters show “no correlation” with the regression error
term u. Again, as the exact form of the regression error is unknown; this condition
is tested by computing the Pearson correlation coefficients of each selected influencing
parameter with the residual of the computed OLS/piecewise linear model. Again, all
correlation coefficients rPin,rel ,û were close to machine precision (−2.8 ∗ 10−15 to 1.8 ∗ 10−15),
and therefore it could be concluded that the variable Pin,rel is exogenous, and this condition
to hold.
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No Multicolinearity

As only a single variable was selected for the piecewise linear regression model,
a perfect linear correlation between two different parameters is not possible. In other terms,
no parameter x(j) can be described as a linear combination of all other parameters as there
is no other parameter. Hence, there is no multicolinearity in the piecewise model.

No Heteroscedasticity

As already sketched in the main body of this paper, all three residuals û(i) for data sets
i ∈ {1, 2, 3}were tested for heteroscedasticity with the Breusch–Pagan test. The basis of this
test is to construct a regression model for the squared residuals û2 using the input variable
of the regression model with which the residuals were calculated. The squared residuals are
used as an estimator of the variance in the error term of the tested regression model (in this
case, the piecewise linear regression model). For the given example, the “Breusch–Pagan
test model” reads as following:

û2 =


γ
(1)
0 + γ

(1)
1 Pin,rel + γ

(2)
1 P2

in,rel + γ
(3)
1 P3

in,rel , Pin,rel ∈ [0.1, 0.334];

γ
(2)
0 + γ

(2)
1 Pin,rel + γ

(2)
2 P2

in,rel + γ
(2)
3 P3

in,rel , Pin,rel ∈ (0.334, 0.668];

γ
(3)
0 + γ

(3)
1 Pin,rel + γ

(3)
2 P2

in,rel + γ
(3)
3 P3

in,rel , Pin,rel ∈ (0.668, 1].

The coefficients γ
(i)
j , i, j{1, 2, 3} are computed by applying the OLS estimator to the

transformed data matrices Z(i) = [1, Pin,rel , P2
in,rel , P3

in,rel ] where Pi
in,rel is the data vector

obtained by elementwise squaring or cubing the of the values in Pin,rel . Having computed

the coefficients γ
(i)
j , linearity tests on each data set were used to check whether any coef-

ficient significantly differs from 0. If so, the respective linear submodel would produce
heteroscedastic residuals.

The results of the Breusch–Pagan model showed that all three linear submodels
significantly differ from a constant model, and, therefore, signal that the regression error
of the piecewise linear model is heteroscedastic. Based on the computed coefficients γ

(i)
j ,

an orange prediction/regression line was plotted in Figure A2.

(a) Pin,rel ∈ [0.1, 0.334] (b) Pin,rel ∈ (0.334, 0.668] (c) Pin,rel ∈ (0.668, 1]

Figure A2. Scatterplots (blue) of squared OLS residuals û2 (y-axis) against feature Pin,rel (x-axis) for
the charging state data sets. The Breusch–Pagan test suggests heteroscedasticity for all three data sets
(as the orange prediction lines are not constant).

No Autocorrelation

Autocorrelating regression errors are described by the potential to predict a single
error accurately u(i)

j based on previously computed/other errors u(i)l 6=j . Such errors do
typically appear in time-series data which is structurally different from the cross-sectional
data used in the outlined tool chain. Still, there is the need to check for autocorrelation,
for example, by using autocorrelation plots and the Durbin–Watson tests.
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The shown autocorrelation plot in Figure A3 suggests the absence of autocorrelation
in each data set. Similar results also show for the Durbin–Watson test. This test computes
the Durbin–Watson statistic

d(i) =
∑

m(i)
j=2

(
û(i)

j − û(i)
j−1

)2

∑
m(i)
j=2 û(i)2

j

for the residuals û(i) of each data set. If the resultant value is “close to 2” (for this tool
chain: ranging from 1.9 to 2.1), the test would suggest that autocorrelation is absent from
the regression error u(i). The statistics for the three relevant data sets ranged from 1.94 to
2.04, which further suggests the absence of autocorrelation in the regression error of the
piecewise linear model.

(a) Pin,rel ∈ [0.1, 0.334] (b) Pin,rel ∈ (0.334, 0.668] (c) Pin,rel ∈ (0.668, 1]

Figure A3. Autocorrelation plots for all three residuals û(i) obtained from the linear submodels for
data sets i ∈ {1, 2, 3}. The appearance of any bars but one at x = 0 being visibly larger than 0.1
suggests autocorrelation of the respective residuals.
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