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Abstract: This work proposes a structural enhancement and a new technique to design the loop
filter (LF) of a third-order phase-locked loop (PLL) to enhance the PLL dynamic performance un-
der abnormal grid conditions. The proposed PLL combines a moving average filter (MAF) and
an arbitrarily delayed signal cancelation (ADSC) for structural enhancement to achieve DC-offset
rejection and harmonics elimination. The window length of the MAF is selected to be one-sixth of
the fundamental grid period to remove non-triple odd harmonics and speed up the PLL dynamic
response. The triple harmonics are eliminated, adopting the line-to-line voltage concept, while the
ADSC operator rejects the DC offset. The LF design is based on a modified third-order polynomial
tuned using stochastic optimization to minimize the settling time of the frequency deviation, offering
better dynamic performance over the symmetrical optimum method (SOM) and achieving synchro-
nization within one grid cycle. The PLL mathematical model, small-signal model, and LF design
based on the modified polynomial are discussed. Finally, the proposed PLL performance is verified
numerically and experimentally with comparisons with other PLLs to demonstrate the effectiveness
of the proposed work.

Keywords: arbitrarily delayed signal cancelation; moving average filter; phase-locked loop; loop
filter; stochastic optimization; controller tuning

1. Introduction

The feasible control of the grid-connected converters is of prime importance when
renewable energy sources are connected to the grid. Therefore, grid synchronization is of
interest due to more and more renewable energy sources tied up to the grid using power
electronic converters in recent years [1].

The phase-locked loop (PLL) is a technique that can effectively synchronize the phase,
frequency, and amplitude of the grid-connected inverters with the grid [2,3]. By maintaining
synchronization, PLL helps to ensure that the renewable energy source can be safely
and efficiently integrated into the grid. Additionally, PLLs can also be used to optimize
the power output of the renewable energy source, further increasing its efficiency [4].
Conventional PLLs work effectively in ideal conditions. However, PLLs face significant
challenges in estimating the phase and frequency under abnormal conditions [5–10]. PLLs
should keep up the synchronization process in the presence of disturbances such as DC
offset, phase jump, frequency jump, and the harmonics and return to the steady state within
two grid cycles [11]. Therefore, a robust and accurate PLL with high filtering capability
to achieve grid synchronization has attracted much attention in the literature [12–17]. In
addition, the PLL loop filter is responsible for both the system static noise and dynamic
performance to be set while considering the constraints imposed by the other system
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elements [18]. Hence, properly tuning the parameters of the loop filter (LF), including the
proportional-integral (PI) controller’s parameters, is one of the most important issues in the
PLL design [19]. There are many methods to design the PLL’s LF based on its small-signal
model. If the system is third-order, one of the most used methods to design the LF is the
symmetrical optimum method (SOM) [20–22], whereas if the system is a second-order
system, the damping factor and natural frequency of a standard second-order system are
used to design the gains [7,23,24]. An adaptive feedforward mechanism can adjust the
filter gains according to the estimated grid frequency [25]. In general, the value of the
gains is selected targeting a 2% criteria settling time. All the papers above rely on the
small-signal model of the PLL to design the LF gains, giving a local nature to the solution.
In contrast, the LF gains are designed in this paper based on the actual PLL model without
approximations using stochastic optimization.

On the other hand, the filtering capability of DC offset and harmonics are associated
with the MAF window length that can be used as a prefilter or as an in-loop filter [24,26].
The DC offset and harmonics are rejected if the window length is the same as the funda-
mental grid period, but this will add a delay. In [13], the MAF is used as a prefilter in the
αβ-reference frame; this speeds up the response because no delay is introduced in the loop.
However, under off-nominal frequencies, a phase shift is introduced; hence, a phase error
correction must be created, increasing the system’s complexity. Another choice of window
length is half of the nominal period. In general, when the window length decreases, the
speed of the response increases, affecting the filtering capability such that the DC offset
cannot be rejected.

A quasi-type1 (QT1) PLL uses the MAF as an internal filter, although utilizing the
filter inside the control loop decreases the response speed. The response can be enhanced
by utilizing a P-controller with a feedforward term [14]. However, the performance of
this PLL degrades under frequency drift with the presence of harmonics and takes more
than two grid cycles to settle down. Another approach in [15], similar to [14], adopts the
same window length for the MAF to remove the impact of the odd harmonics and uses αβ
delayed signal cancellation (DSC) with a fixed time delay to remove the effect of the DC
offset and the even harmonics. Under frequency deviation, a phase shift is created; hence,
phase error correction is needed. A combination of MAF and DSC in the paralleled filter
(PF) is suggested in [16]. The MAF extracts the fundamental frequency negative sequence
(FFNS) at 100 Hz and the fundamental frequency positive sequence (FFPS) at 0 Hz, while
the modified DSC (MDSC) extracts the FFNS only. Thus, the PF benefit passes the FFNS
through MAF and MDSC with a reversed phase. Finally, the FFNS can be removed by
an arithmetic operation. The MAF can remove the other harmonics, where the window
length equals one-sixth of the nominal period, speeding the response speed more than
the previous techniques. However, this PLL suffers from oscillation in the estimated grid
information under frequency drift; it also has no dc offset rejection capability.

This paper proposes a new approach to design the loop filter (LF) of a third-order
phase-locked loop (PLL), offering contributions in terms of the structural improvement
of the three-phase PLL and a method for the optimal loop filter design. Without loss of
generality, the proposed PLL combines an MAF with an arbitrarily delayed signal cancel-
lation (ADSC) for structural enhancement to achieve DC-offset rejection and harmonics
elimination. The window length of the MAF is selected to be one-sixth of the fundamental
grid period to remove non-triple odd harmonics and accelerate the PLL response. The
triple harmonics are eliminated, adopting the line-to-line voltage concept, while the ADSC
operator rejects the effect of the DC offset. Moreover, different optimization methods
are adopted to design the gains of the LF targeting the 2% criterion settling time in grid
frequency deviation. The effectiveness of the proposed PLL and the adopted loop filter
design method is verified by comparing their performance with other related PLLs and
verifying the offered improvements numerically and experimentally.
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2. The Proposed Method
2.1. PLL Structure Enhancement

PLL structure improvement includes the phase-to-line voltage transformation to block
the triple harmonics. The ADSC, which is not restricted to a specific time delay, blocks the
DC offset and the MAF with a window length of one-sixth of the fundamental grid period
to block the non-triple odd harmonics.

The schematic diagram of the proposed PLL is shown in Figure 1, where νaϕ, νbϕ,
and νcϕ are the phase voltages; νab, νbc, and νca are the line voltages; ωn is the nominal
angular frequency; kϕ is the phase error correction; ∆ω̂g is the deviation in the estimated
grid frequency; θ̂ is the estimated phase angle; ω̂g is the estimated grid frequency.
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2.1.1. Elimination of Odd Triple Harmonics

Typically, the grid-connected converters’ phase at neutral voltage is a source of odd
triple harmonics. Thus, a transformation to line voltage is adopted in the proposed PLL to
eliminate the odd triple harmonics out of the box without any additional cost or complexity,
allowing for the decrease in the MAF window length, hence speeding up the PLL dynamic
response. To verify the elimination, assume the input voltages of three-phase has odd triple
harmonics as:

νaϕ = V sin(θ) + ∑k=3,9,27,... Vk sin(kθ), (1)

νbϕ = V sin(θ − 2π

3
) + ∑k=3,9,27,... Vk sin

(
k
(

θ − 2π

3

))
, (2)

νcϕ = V sin(θ +
2π

3
) + ∑k=3,9,27,... Vk sin

(
k
(

θ +
2π

3

))
, (3)

where θ is the phase, V is the amplitude of the grid voltage, and Vk is the amplitude of the
odd triple harmonics. After some mathematical simplification, (1) to (3) can be written as
shown in (4) to (6).

νab =
√

3V sin
(

θ +
π

6

)
, (4)

νbc =
√

3V sin
(

θ − π

2

)
, (5)

νca =
√

3V sin
(

θ +
5π

6

)
, (6)
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It can be noticed from (4) to (6) that the conversion from phase to line voltages
eliminates the odd triple harmonics. However, it is worth mentioning that this conversation
adds a phase shift of π/6 rad and scales the magnitude by √3 .

2.1.2. Moving Average Filter (MAF)

The MAF is a linear phase filter that is deemed as a low-pass filter (LPF) [27,28]. Its
transfer function can be written as in Equation (7):

GMAF(s) =
1− e−Tws

Tws
, (7)

where Tw is the window length of the MAF; the block diagram of the MAF in the discrete
domain is shown in Figure 2 [13].
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In Figure 2, ν(k) is the input signal, ν(k) is the output signal, and Nw is the number of
samples within the nominal period. The transfer function in the discrete domain can be
expressed as:

GMAF(Z) =
1

Nw

1−Z−Nw

1−Z−1 , (8)

The magnitude and phase can be found by substituting (s = jω) into Equation (7)

GMAF(jω) =

∣∣∣∣∣∣
sin
(

ωTw
2

)
ωTw/2

∣∣∣∣∣∣∠− ωTw

2
, (9)

The harmonic (k× f ) positive-sequence harmonic in the αβ-frame is transformed into
a (k− 1)× f harmonics order in the dq-frame. In addition, the (k× f ) negative-sequence
harmonic in the αβ-frame is transformed into a (k + 1) × f harmonic in the dq-frame,
where k is the order of harmonics, and f is the nominal grid frequency. Therefore, the most
common αβ harmonics that appear in the input voltages of 5th, 7th, 11th, 13th, 17th, and 19th

are transferred 6th, 12th, and 18th in the dq-frame.
Based on Equation (9), the MAF has a unity gain at zero frequency and zero gains at

frequencies =2πk/Tw , (k = 1, 2, 3, . . .). The harmonics rejection in the MAF is associated
with its window length, which is adjusted to trade-off between noise reduction and response
time, depending on the application’s specific requirements. If the window length equals
the nominal period, the DC-offset and the harmonics are rejected. In contrast, only odd
harmonics are rejected if the window length is half the nominal period. The non-triple
odd harmonics are rejected if the window length is adjusted to one-sixth of the nominal
period [27]. This work adopts the window length of the sixth fundamental grid period
allowing the PLL to block the non-triple odd harmonics while the line voltage blocks the
triple harmonics.
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2.1.3. Arbitrary Delayed Signal Cancellation (ADSC)

The ADSC blocks the DC offset in the αβ reference frame [11,23]. It is represented in
(10) and shown in Figure 3.

ναβ = (ναβ(t)− ναβ(t− d))/2, (10)

where d = T/n is the time delay in s, T is the nominal grid period, and n is an arbitrary
positive number. The transfer function of the ADSC can be expressed as in (11).

ADSC(s) =
ναβ

ναβ
=

1− e−
T
n s

2
, (11)

which has the following magnitude and phase in the frequency domain:

ADSC(jω) =

∣∣∣∣sin
(

ωd
2

)∣∣∣∣∠(π

2
− ωd

2

)
, (12)
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2.1.4. Mathematical Model

The grid line voltages can be written as

vab(t)
vbc(t)
vca(t)

 =
√

3

V+ sin
(
θ+ + π

6
)

V+ sin
(
θ+ − π

2
)

V+ sin
(
θ+ + 5π

6
)
+

V− sin
(
θ− + π

6
)

V− sin
(
θ− + 5π

6
)

V− sin
(
θ− − π

2
)
+

V0
ab

V0
bc

V0
ca

+ ∑∞
k=5,7,11...

V+
k sin

(
θ+k + π

6
)

V+
k sin

(
θ+k −

π
2
)

V+
k sin

(
θ+k + 5π

6
)
+

∑∞
k=5,7,11,...

V−k sin
(
θ−k + π

6
)

V−k sin
(
θ−k + 5π

6
)

V−k sin
(
θ−k −

π
2
)
,

(13)

where θ+ = ωgt + ϕ+, θ− = ωgt + ϕ−, θ+k = kωgt + ϕ+
k , and θ−k = kωgt + ϕ−k . ωg is the

fundamental grid frequency; θ is the phase angle; ϕ+ and ϕ− are the initial phase angles of
FFPS and FFNS, respectively; ϕ+

k and ϕ−k are the initial phase angles of positive-sequence
and negative-sequence harmonics, respectively; V+ and V− are the amplitudes of FFPS
and FFNS, respectively; V+

k and V−k are the amplitudes of positive-sequence and negative-
sequence harmonics, respectively. V0

ab, V0
bc, and V0

ca are the amplitudes of the DC offset
components. Now, to convert from abc-frame to αβ-frame:

vαβ = Jαβ × vabc(t), (14)

where

Jαβ =
2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
, (15)
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vαβ =
√

3

([
V+ sin

(
θ + π

6

)
−V+ cos

(
θ + π

6

)]+ [V− sin
(
θ + π

6

)
V− cos

(
θ + π

6

)]+ 2
3

[
Vdc

ab −
1
2 Vdc

bc −
1
2 Vdc

ca

0 +
√

3
2 Vdc

bc −
√

3
2 Vdc

ca

]
+ ∑∞

k=5,7,11,...

[
V+

k sin
(
θk +

π
6

)
−V+

k cos
(
θk +

π
6

)]+
∑∞

k=5,7,11,...

[
V−k sin

(
θk +

π
6

)
V−k cos

(
θk +

π
6

)]),
(16)

The DC components are canceled after using arbitrary delay signal cancellation (ADSC).

ναβ =
(

vo
αβ(t)− vo

αβ(t− d)
)
−
(

vdc
αβ − vdc

αβ

)
= vo

αβ(t)−Y
(
ωgτ

)
vo

αβ(t), (17)

where vdc
αβ is the DC-offset component, and vo

αβ are the other components of vαβ.
Now, to convert from αβ-frame to dq-frame:[

vd
vq

]
= Y(θ + θ0)

[
vo

α

vo
β

]
−Y

(
θ + θ0 + ωgd

)[vo
α

vo
β

]
, (18)

where

Y(θ) =
[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]
, (19)

[
vd
vq

]
= 2
√

3 sin
(

ωgd
2

)(
V+

[
1
0

]
+ V−

[
− cos(2θ)

sin(2θ)

]
+ ∑∞

5,7,11... V+
k

[
cos(θ − θk)
− sin(θ − θk)

]
+ ∑∞

5,7,11... V−k

[
− cos(θ + θk)

sin(θ + θk)

])
, (20)

Y(θ) is the transformation matrix, and θ0 = −ωgd
2 −

π
6 . Based on Equation (20), vq is

zero and the amplitude is scaled by 2
√

3 sin
(

ωgd
2

)
. Moreover, the ADSC introduces a

phase shift that can be corrected through feedback. In addition to that, the line-to-line
transformation introduces a phase of π

6 that can be simply subtracted from the estimated
phase to compensate for it, as shown in Figure 1. The vd is multiplied by 1

2
√

3 sin
(

ω̂gd
2

) to

compensate for the amplitude.

2.1.5. Small-Signal Model

The small-signal model can be written using θ̂ and substituting θ̂0 = − ω̂gd
2 −

π
6

into (20). [
vd
vq

]
= Y

(
θ̂ −

ω̂gd
2

)[
vo

α

vo
β

]
−Y

(
θ̂ −

ω̂gd
2

+ ωgd
)[

vo
α

vo
β

]
, (21)

After some approximations, with some trigonometric identities and using the MAF transfer
function, νq(t) can be expressed as in Equation (22).

ν̂q = 2V+ sin
(

ωnd
2

)[(
−

∆ωgd
2

)
+

(
∆ω̂gd

2

)
+
(
∆θ − ∆θ̂

)]
× GMAF(s), (22)

ν̂q = V+

(
2 sin

(
ωnd

2

))
(

1 + e−ds
)

2︸ ︷︷ ︸
ADSC(s)

∆θ(s)− ∆θ̂(s) +
∆ω̂gd

2

1− e−Tws

Tws︸ ︷︷ ︸
MAF(s)

, (23)

ν̂q =


(

1 + e−ds
)

2︸ ︷︷ ︸
ADSC(s)

∆θ(s)− ∆θ̂(s) +
∆ω̂gd

2

 1
Tw
2 s + 1︸ ︷︷ ︸
MAF(s)

, (24)

The small-signal model of the proposed method is shown in Figure 4.
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Figure 4. The block diagram of the small-signal model for the proposed PLL.

2.2. The Loop Filter Design

The LF is designed based on a modified third-order polynomial (25), in which the
polynomial coefficients are tuned using stochastic optimization with the objective function
and constraints to minimize the settling time of the frequency deviation.

s3 + a2ω0s2 + a1ω2
0s + ω3

0 = 0 (25)

The stability of the modified polynomial is determined using the Routh–Hurwitz criterion,
from which the coefficients of the modified polynomial must obey the following conditions:

ω0 > 0, (26)

a2 > 0, (27)

a2a1 > 1, (28)

Based on the small-signal model, the closed-loop transfer function is shown in (29):

∆θ̂

∆θi
=

1− e−Ts/n

2

kps + 2
Tw

ki

s3 + 2
Tw

s2 + 2
Tw

(
kp − ki

d
2

)
s + 2

Tw
ki

, (29)

Comparing (25) with the characteristic equation of (29), kp and ki can be rewritten in
terms of the coefficients of the modified polynomial as:

ki =
4

T2
wa3

2
, (30)

kp =
2

Twa2
2

(
d

Twa2
+ a1

)
, (31)

where Tw = T/6 is the window length, d is the phase delay, and a1 and a2 determine the
optimum parameter of the LF proportional-integral (PI)-gains. The optimization formula-
tion is shown in (32). The flowchart that summarizes the optimization process is shown in
Figure 5.

Min J(a1, a2) = tss

subject to


OS < 2%
a1a2 > 1
a2 > 0

(a1)min ≤ a1 ≤ (a1)max
(a2)min ≤ a2 ≤ (a2)max

, (32)

where the objective function (J) is the settling time (tss) of the frequency deviation, OS is
the overshoot, and (a)min and (a)max are the coefficients’ boundaries that are selected to be
1 ≤ a1 ≤ 20 and 1 ≤ a2 ≤ 20.
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Different optimization methods were investigated for the selection of the coefficients
a1 and a2: Particle swarm optimization (PSO), genetic algorithm (GA), bee algorithm (BA),
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and cuckoo optimization algorithm (COA) [29–31]. The results of the aforementioned
optimization methods are shown in Table 1.

Table 1. Optimization method comparison.

Method a1 a2 J OS

GA 2.2776 2.0026 0.0165 0.0625

PSO 2.2531 1.9532 0.0159 0.0675

BA 2.24531 1.9668 0.0156 0.0660

COA 2.27480 2.0444 0.0164 0.0586

The results of the COA optimum parameters are adopted without loss of generality.
The corresponding PI-controller gains for all d values are listed in Table 2. It can be noticed
that ki is constant for any d. This is because (30) depends on the window length and the
coefficient a2 only, which is a constant independent of d.

Table 2. The optimum PI-controller.

d kp ki

T/2 537.22 42,131

T/4 431.89 42,131

T/8 379.22 42,131

T/10 368.69 42,131

T/12 361.67 42,131

T/16 352.89 42,131

T/32 339.73 42,131

Figure 6 shows the response of the actual model along with its small-signal model
under a 40◦ phase jump and a 6 Hz frequency jump from a 50 Hz grid frequency, validating
the small-signal model in predicting the response of the actual PLL at a distinct phase delay.
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Figure 6. The proposed PLL and its small-signal model at t = 0.02 s under (a) + 40
◦

at d = T/8 and
(b) +6 Hz at d = T/8.

3. Simulation Results

The performance of the utilized PLL adopting the proposed third-order optimized
polynomial with DC-offset and harmonics rejection is verified using numerical simulation.
It is compared with αβMAF-PLL [13] and hybrid-PLL (HPLL) [15]. The nominal grid
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frequency is fn = 50 Hz, and the parameters of the compared PLLs are summarized in
Table 3, while the grid harmonics are listed in Table 4. Several case studies were considered
for a fair comparison, as shown below:

Case 1: A phase jump of 40◦ at 0.02 s and d = T/4, T/16, and T/32. The results are shown
in Figures 7–9, respectively, and summarized in Table 5.
Case 2: A frequency jump in the grid from 50 to 56 Hz at 0.02 s and d = T/4, T/16, and
T/32. The results are shown in Figures 10–12, respectively, and summarized in Table 6.
Case 3: Only DC-offset is added to the grid voltage by 0.1 pu of phase a, −0.1 of phase
b, and 0.05 of phase c at 0.02 s, and d = T/4, T/16, and T/32. The results are shown in
Figures 13–15, respectively, and summarized in Table 7.
Case 4: A frequency jump of 5 Hz with DC-offsets similar to case three with harmonics,
listed in Table 4, is added at 0.02 s for d = T/4, T/16, and T/32. The results are shown in
Figures 16–18, respectively, and summarized in Table 8.
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Table 3. Control parameter values.

Method kp ki

HPLL 94 -

αβMAF-PLL 439.6 48,312
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Table 4. Parameters of distortion in input voltage.

Component −1 −3 +5 +7 +9 +11 +13 +27

Amplitude (p.u.) 0.01 0.05 0.01 0.01 0.05 0.01 0.01 0.05

THD ≈ 9%
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Table 5. The results of case 1 (Phase Jump).

The Proposed PLL

n

32 16 4 αβMAF-PLL HPLL

40 deg phase jump
Phase settling time (ms) 16.8 17.3 21.3 44.4 36.7

Overshoot (%) 47.62 49.95 52.23 50.13 51.24
Peak frequency error (Hz) 13.36 13.1 10.25 5.23 5.78

Table 6. The results of case 2 (Frequency Jump).

The Proposed PLL

n

32 16 4 αβMAF-PLL HPLL

6 Hz frequency jump
2% frequency settling time (ms) 15.6 16 19.3 39.3 40.9

Overshoot (%) 0 0 0 0 2.61
Peak phase error (◦) 6.96 7.43 8.82 15.16 13.02

Table 7. The results of case 3 (DC-Offset).

The Proposed PLL

n

32 16 4 αβMAF-PLL HPLL

DC-offset
Phase settling time (ms) 19 19.4 22.4 44.6 41.4

Peak frequency error (Hz) 0.91 0.91 0.87 0.3 0.34
Peak phase error (◦) 6.08 6.13 6.18 4.16 4.06

Table 8. The results of case 4 (Frequency Jump with Harmonics and DC-Offset).

The Proposed PLL

n

32 16 4 αβMAF-PLL HPLL

6 Hz frequency jump with harmonics and DC-offset
2% frequency settling time(ms) 14.8 15.7 18.1 37.1 41.1

Peak phase error (◦) 11.53 12.8 14.57 19.57 17.35
Peak frequency error (Hz) 0.15 0.15 0.13 0 0.26
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4. Discussion

Tables 5–8 summarize the performance comparisons between the proposed PLL, the
αβMAF-PLL, and HPLL. The comparison is made considering the phase settling time, the
frequency settling time, the overshoot, the estimated frequency peak, and the phase error
peak. In the first case, it can be noticed that the proposed PLL has the fastest dynamic
response reaching the steady state in less than 0.02 s for any delay factor except τ = T/4
for which it needs about 1.1 grid cycles, while the other PLLs need about two grid cycles to
settle down. The phase percent overshoot is slightly better than those of the other methods.
In the case of frequency jump, the proposed PLL has the fastest dynamic response and
reaches the steady state in less than one grid cycle without overshooting for any delay
factor. Concerning DC offset, the proposed method rejects the DC offset two times faster
than the other methods. The peak frequency and phase errors are almost the same as the
other methods. In the last case—the frequency jump with DC-offset and harmonics—the
proposed PLL achieves the fastest response with less peak phase error with respect to other
methods, synchronizing with the grid in a fraction of a grid cycle.

5. Experimental Verification

To demonstrate the performance enhancement of the proposed PLL and the LF design
with comparisons to HPLL and αβMAF-PLL, digital implementation of all the PLLs is
made utilizing the DE2-115 development and education board from Altera. An AC power
supply is used to generate the voltage signal. The experiment maintains the grid voltage
amplitude (V) and sampling frequency ( fS) at 1 pu and 10 kHz, respectively. The nominal
grid frequency is 50 Hz. The results are captured using RIGOL MSO5354 mixed-signal
oscilloscopes. Two cases are considered adopting d = T/4 without loss of generality.

Case A: From the ideal grid condition, three disturbances occur simultaneously, including
the dominant harmonics listed in Table 4 with DC-offset (0.1 pu to phase a, −0.1 pu to
phase b, and 0.05 pu to phase c) and a frequency jump by 6 Hz. The results of the phase
error and the estimated grid frequency of all the PLLs are shown in Figure 19.
Case B: The frequency jump in case A is replaced by a phase jump of 45◦ while keeping the
harmonic and DC-offset. The results of the phase error and the estimated grid frequency of
all the compared PLLs are shown in Figure 20.
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The experimental results agree with the simulation, which validates the proposed method.

6. Conclusions

A new approach for designing the loop filter of a third-order phase-locked loop is
proposed in this paper. The proposed PLL consists of a moving average filter and an
arbitrarily delayed signal cancelation. The arbitrary delay signal cancelation blocks the
DC offset. In contrast, the moving average filter, with a window length of one-sixth of
the fundamental grid period, blocks non-triple odd harmonics. The remaining triple
harmonics are blocked utilizing the line voltage. The loop filter design is based on a
modified third-order polynomial derived from stochastic optimization with the settling
time of the frequency deviation as the objective function. The effectiveness of the proposed
PLL and the adopted loop filter design method is verified by comparing their performance
with other related PLLs, demonstrating the offered improvements. The simulation and
experimental results show that the proposed PLL achieves synchronization within one
grid cycle two times faster than the other PLLs. Therefore, the proposed PLL can be used
to ensure that the renewable energy source can be safely and efficiently integrated into
the grid.
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