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Abstract: Mobility and transportation activities in smart cities require an increasing amount of
energy. With the frequent energy crises arising worldwide and the need for a more sustainable
and environmental friendly economy, optimizing energy consumption in these growing activities
becomes a must. This work reviews the latest works in this matter and discusses several challenges
that emerge from the aforementioned social and industrial demands. The paper analyzes how
collaborative concepts and the increasing use of electric vehicles can contribute to reduce energy
consumption practices, as well as intelligent x-heuristic algorithms that can be employed to achieve
this fundamental goal. In addition, the paper analyzes computational results from previous works
on mobility and transportation in smart cities applying x-heuristics algorithms. Finally, a novel
computational experiment, involving a ridesharing example, is carried out to illustrate the benefits
that can be obtained by employing these algorithms.

Keywords: energy consumption; mobility; transportation; smart cities; optimization; x-heuristics

1. Introduction

In the emerging world of cutting-edge technologies, smart city is a term used to de-
scribe cities that offer the possibility of collecting various data. These data might support
decision-making in different decision levels and sectors. One of these decisions is optimal
energy utilization or “smart energy” [1]. Thus, researchers have investigated various ap-
proaches to reduce the energy consumption in smart cities (Figure 1). A total of 574 articles
were found in the Scopus database when searching for “energy consumption” and “smart
cities”. In these articles, either “algorithm”, “electric vehicle”, or “collaborative economy”
are studied. These articles investigate approaches to recommend solutions that allow
us to reduce energy consumption in smart cities. Some of the most frequent topics are
carpooling [2] and electric vehicles [3].

Different concepts have been defined to decrease the consumption of energy, such
as the 2000-watt society [4]. This concept forces society to reduce its power consumption
to 2000 W. The consumption of energy associated with transportation, personal activities,
households, and other activities is divided by the population to determine the society’s con-
sumption. It is assumed that 2000 W per person is a sustainable value and environmentally
friendly. However, this target is hardly achieved due to several factors, such as consump-
tion habits. Hence, regulations need to be set to enforce efficient energy consumption.
This has become a topic in various sectors, from cloud computing to the mobility sector,
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due to its reflection on the environment. The efficient utilization of cloud computing and
networking resources decreases CO2 emissions [5]. The trend in the building and housing
industry forces cities to deal with different factors affecting the industry, e.g., overpopula-
tion and urbanization [6]. However, this trend has its reflections on the environment, such
as on household energy use and carbon emission [7]. It is thought that the service sector
consumes less energy than other sectors [8]. However, most energy consumption in the
service sector is consumed as mobility involved in providing or asking for the service [8].
Mobility refers to customer transportation to get a service and the travel of service providers.
Various factors affect energy consumption in the mobility and transportation sector, such
as air temperature and traffic delays [9]. Bartłomiejczyk and Kołacz [9] mentioned that
traffic delays could be responsible for increasing the energy consumption by 60% in electric
buses. Auxiliaries in the buses contribute to this consumption. The dynamic changes in
the world, e.g., changes in fuel prices, force the search for renewable energy sources. Since
the transportation and mobility sector heavily utilizes fossil fuel, these dynamic changes
affect the operational costs and force improving sustainable fuel technologies [10,11]. In
addition, changes resulting from the COVID-19 pandemic influenced the habits of society
and the practices of citizens worldwide, and gave rise to new opportunities related to
energy consumption [12].

Figure 1. The number of Scopus papers published after searching in the title, abstract, and key-
words for “energy consumption” and “smart cities” when either “electric vehicle”, “algorithms”, or
“collaborative economy” was mentioned.

Thus, minimizing the consumption of energy in order to reach sustainable devel-
opment has become a must all around the world. Frequent energy crises, such as that
following Russia’s invasion of Ukraine in early 2022, tend to affect global energy markets,
increase inflationary pressures, and slow economic growth. In this international context of
increasing awareness about environmental issues and instability in the world, institutions
such as the European Commission and the United Nations (UN) set their objectives and
plans to provide an energy-saving scheme [13,14]. In light of the increased awareness,
our paper tries to consider the literature by studying and proposing strategies that can
effectively contribute to energy consumption optimization in the transportation and mo-
bility sector. Hence, the first contribution of this work is the analysis of relevant trends
in the context of energy consumption optimization in this sector. Another contribution is
the identification of the challenges faced in the sector, as well as strategies that can effec-
tively contribute to the aforementioned challenges. These strategies rely on concepts and
technologies such as: (i) collaborative economy—which helps to achieve the sustainable
development goals proposed by the UN [15]; (ii) electric vehicles—which are expected to
provide 30% of the passenger fleets all around the world by 2032 [16]; and (iii) intelligent
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algorithms (e.g., x-heuristics)—which may provide better solutions for transportation in
the context of optimization. Additionally, the paper reviews some related problems and
computational results previously published in the literature. Finally, we also illustrate some
of the previous concepts with a computational experiment regarding ridesharing mobility.

The rest of this research is organized as follows: Section 2 discusses energy utilization
in transportation and mobility in smart cities, while Section 3 refers to the optimization of
energy consumption. The challenges faced in the transportation and mobility sector are
described in Section 4. Afterwards, some strategies that contribute to these challenges are
introduced in Sections 5–7; these strategies rely on collaborative economy, electric vehicles,
and x-heuristic algorithms, respectively, and aim to optimize energy consumption. Some
computational results obtained in previous studies are analyzed in Section 8. Section 9
provides a computational experiment, related to ridesharing mobility, to illustrate how
intelligent algorithms can contribute to reduce energy consumption. Finally, Section 10
summarizes the conclusions.

2. Energy Consumption in Smart Cities’ Mobility

The aspect of mobility is only one of many characteristics that ultimately define a
city’s aspiration to eventually become smart [17]. In a smart city, mobility is continuously
advanced through technologies that are already transforming the urban landscape: auto-
mated driving in both citizen and goods transportation, connected vehicles, and usage
of communicating sensors form a foundation for further innovation [18,19]. Mobility is
set to shift from fossil-fueled, ownership-driven modes of transport toward mobility as a
service using an exceedingly electrified fleet [20]. To provide sustainable value, smart city
mobility must aim to decrease pollution and traffic jams. Both of these goals can be met by
optimizing urban traffic and using an electric-powered mobility grid [21]. From a top-level
view, Chen et al. [22] argue that the key enablers for the successful implementation of
energy-saving mobility systems are the users themselves, who can change the way they
perceive and use transportation means. In their article, Butler et al. [23] derived four main
levers to reduce energy consumption in smart cities context: First, connected vehicle net-
works can improve traffic flow and reduce overall energy wasted in congestion. Secondly,
automatic vehicles can improve driving efficiency. Thirdly, the use of non-combustion
engines could also improve traffic flow. Lastly, they note that sustainable transport should
exploit efficiencies created through flexible transportation services. Such services increase
traffic performance by providing flexibility regarding means, timing, routing, and payment
of and for transportation [24]. Referring to this concept as “mobility-as-a-service” (MaaS),
Mulley et al. [25] state that a flexible mobility service might include an on-demand mix
of different means of transportation that can be booked as needed. In the rest of this
section, the energy consumption in transportation and smart cities’ mobility are discussed
in more detail.

2.1. Energy Consumption in Transportation

A significant part of energy consumption is associated with the required energy in the
transportation sector. The United States recorded that 28% of energy consumption in 2021
was used in transporting people and goods [26]. Petroleum products, bio-fuels, natural
gas, and electricity are the major types of energy used for transportation. In particular,
petroleum contributed around 90% of the total energy consumed in 2021. Comprehensively,
a trend that began emerging in the 1950s shows that the transportation sector is responsible
for a growing share in the world’s total oil consumption. Around 62% of all oil used in a
year, and also 29% of the world’s energy demand, is associated with the transportation
sector, including concepts such as: (i) vehicles manufacturing, maintenance, and disposal;
(ii) vehicles operations; and (iii) infrastructure construction and maintenance. As pointed
out by Rodrigue [27], a vast amount of energy is consumed on land (around 85% of the
total), maritime, and air transportation modes.
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2.2. Sustainability and Smart Urban Mobility

Sustainable urban mobility can be defined as “an affordable access by traveling to
one’s destination with the minimum impact on the environment” [28]. In addition, af-
fordability and accessibility can be extended by changing some factors such as technology
advances, supportive economic policies, behavior change, and improving urban designs.
The concept of sustainability in transportation is accepted by most governments in the
world, and the countries’ authorities consider it as an ultimate goal and a critical point in
their environmental plans [27]. Transportation is among the fastest-growing sources of
pollution produced in the world, and accounts for 17% of global greenhouse gas (GHG)
emissions, as well as for 20% of global CO2 emissions [29]. The COVID-19 pandemic in
2020 gave rise to a significant decrease in GHG emissions as a result of the reduction in
transportation used during the lockdown. Despite this massive drop, emissions rebounded
in 2021 [29]. Under the IEA’s sustainable development Scenario, the emission from all types
of transportation should be decreased over the future years. One aspect that can contribute
to this effect is the development of an EV battery market. Projections forecast a market
increase by a growth rate of 14% between 2019 and 2030 [29].

Sustainability in city logistics is also promoted by using state-of-the-art advances in
carsharing and ridesharing systems. The raise of carsharing services can decrease the
number of private cars and change travel behaviors toward sustainability [30]. As a matter
of fact, carsharing users can take advantage of using private cars without the responsibility
and cost associated with car ownership [31]. At first, city managers considered carsharing
and ridesharing as affordable systems for low-income people such as students. However,
more and more citizens in developed countries show a preference for using carsharing and
ridesharing options for commutes and trips [32]. In the case of using EVs in carsharing, in
addition to relocation and route scheduling, the area of the charging stations and charging
scheduling are some of the current subjects of the new research in the field of carsharing [33].

3. Energy Optimization in Transportation

Energy consumption optimization is an essential aspect of improving energy efficiency
worldwide. Studies show an opposite relation between energy consumption and urban
density. On the one hand, cities and countries with a lower urban density, such as USA and
Canada, have a higher energy consumption. On the other hand, more densely-populated
countries such as Japan and China have less energy consumption [33]. Two fundamental
reasons justify this reverse relation. Firstly, in sparsely populated countries, the average
distances in the cities are higher. Commuting these distances requires higher energy
consumption by vehicles. Secondly, in dense cities, using public and non-motorized
transportation is common [27].

Reducing the use of energy in transportation and minimizing travel time are among
the most repeated goals in energy-consumption optimization problems. Likewise, multi-
objective models are applied to sustainable transportation systems. In most problems, the
environmental impacts (e.g., greenhouse gas emission, energy consumption, and pollution)
as well as social impacts (e.g., accessibility, reliability, and health) are considered [34].
Machine learning and metaheuristics constitute two solution mechanisms to achieve high-
quality solutions in the energy optimization field [35]. While exact methods are able to find
the optimal solutions in most of the times, the computational time required tends to be
prohibitive. Thus, their use for large-sized problems is not efficient [36]. In contrast, meta-
heuristics are capable of providing feasible and high-quality solutions and, in comparison
with machine learning algorithms, they usually generate solutions of a higher quality [37].

Due to the population growth and the development of smart cities, the need for energy
optimization has increased. In the last decade, a huge number of publications regarding
energy optimization has been published. Among them, many researchers have discussed
the energy consumption associated with traffic issues, EVs, roads conditions, and so on.
Table 1 presents representative and recent works on energy consumption problems.
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Table 1. The latest works on the energy consumption problem.

Authors Problem Addressed Solving Approach Remarks

Du et al. [38]
A nonlinear route
optimization model for ship
fuel oil consumption.

Particle swarm
optimization (PSO)
algorithm.

The model improves the energy
efficiency, increases the benefits,
and reduces the pollutant
emissions.

Zhou et al. [39]

Optimization of schedule and
train circulation plan to
reduce the energy
consumption in urban
rail train.

PSO algorithm.
The model decreases the total
costs of trains in a case study of
Guangzhou Metro in China.

Lin et al. [40]
Energy consumption
optimization of dual-motor
EVs.

Non-dominated sorting
genetic algorithm-II.

This method considers a
real-time optimization of energy
and shift shocks

Naldini et al. [41]

A real-time energy
consumption optimization of
rail traffic management
problem.

Ant colony optimization
algorithm.

The objective function minimizes
the energy consumption and
total delays in railways.

Xing et al. [42] Energy optimization of
tramway operation.

Competition
mechanism-based PSO.

The model aims to reduce the
operational cost of tramways.
A case study based on the
Guangzhou Haizhu tramway is
presented.

Dai et al. [43]
An energy consumption
model for autonomous taxi
ridesharing system.

Unified optimization
model.

All the possible paths of vehicles
are represented in order to build
an energy-efficient carsharing
model.

Wang et al. [44]

Optimization energy
consumption of the ship
industry in order to reduce
the CO2 emissions.

A model predictive control
strategy of the sailing
parameters and PSO
algorithm.

To build a nonlinear dynamic
model, the spatial and temporal
distribution characteristics are
firstly analyzed.

Fan et al. [45]
Energy-efficient model of
sea-rail inter-modal
transportation.

Performance-driven
multi-algorithm selection
strategy.

A learning-forgetting algorithm
is proposed to improve the
selection probability of the
methods from a pool of
differential evolution algorithm
variants.

Zhao et al. [46] Efficiency optimization of
extended-range EV.

A combination of artificial
neural network (ANN) and
genetic algorithm.

Results show that a higher
maximum efficiency of the
range-extender engine can be
fulfilled.

Chuang et al. [47]

Coasting speed optimization
for a mass rapid transit
system to minimize the energy
consumption and travel times.

ANN.

The data of travel times and
energy consumption has been
built by simulation. In addition,
a case study in China is selected
to validate the approach.

4. Challenges in Mobility Energy Consumption

Transportation, as one of the biggest consumer sectors, is responsible 30% of the
total energy consumption [4]. In addition, it is included and forms a basis for other
sectors, such as the service sector. Thus, the transportation and mobility sector greatly
influences energy consumption. Accordingly, this sector is affected by the energy crisis
and various energy and environmental regulations. For example, the war between Russia
and Ukraine raised the energy crisis worldwide. This crisis impacts energy policies and
strategic plans, thus raising energy costs worldwide. Concepts and regulations were
set to force a decrease in energy consumption, such as the European Commission call
for a neutral climate by 2025 [48]. These regulations demand changing the efficiency
of energy consumption and usage. In addition, these environmental regulations force
a reduction of the carbon impact. The required changes by these regulations demand
investments dedicated to research and development [10]. New approaches should be
developed to realize the defined concepts and satisfy the set regulations. The research
and development phase includes the investigation of new technologies capable of energy-
efficient strategies. In addition, predictive models are required to forecast dynamic changes
and energy demands [49]. Better models enable the practical planning and utilization of
energy resources and, hence, a reliable supply of energy. These models could be used
to plan vehicle routing while reducing travel distance and, hence, energy consumption
in general. However, various factors contribute to energy consumption, such as traffic
delays, weather conditions, and vehicles’ kinetic characteristics [9,49]. These factors are
difficult model [49], increasing the difficulty of building an accurate prediction model.
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In addition, the prediction and optimization models benefit from the global positioning
system (GPS) and different distance-based metrics [50]. Changes in the transportation
and mobility sector are affected by culture. Using private cars for mobility influences the
energy consumption in this sector [4]. Sustainable mobility demands changing habits and
replacing them with a sustainable alternative. According to Ref. Scarinci et al. [4], the
acceptability of the required changes should be investigated. With increased awareness in
societies, the available infrastructure constrains the transition toward sustainable mobility.
For example, sustainable alternatives require appropriate infrastructures presented, such as
public transportation, walking and cycling paths, carsharing and ridesharing possibilities,
etc. The current trends in transportation and mobility involve the benefits of automobile
advancement. EVs have begun to replace traditional fuel vehicles. This new vehicle type
has created a new concern related to the traveled distance and battery technology [51]. In
addition, personal mobility has become one of the new solutions [52].

5. Collaborative Economy

According to Petropoulos [53], a collaborative economy refers to establishing a connec-
tion between people with the goal to share assets and services via the internet. Platforms
may help to match potential providers and consumers based on their preferences and
characteristics. These platforms may allow more efficient transactions by removing bar-
riers to information sharing. Airbnb and Uber are popular examples of such platforms.
Botsman [54] proposed five criteria for a collaborative economy platform: (i) “the core
business idea involves unlocking the value of unused or under-utilized assets”; (ii) “the
company should have a clear values-driven mission and be built on meaningful principles
including transparency and authenticity”; (iii) “the providers should be valued, respected
and empowered, and the companies behind the platforms should be committed to making
the lives of these providers economically and socially better”; (iv) “the customers should
benefit from being able to access goods and services in more efficient ways, with payment
for access instead of ownership”; and (v) “the business should be built on distributed
marketplaces or decentralized networks that create a sense of community, collective ac-
countability and mutual benefit”. The four sectors in which a collaborative economy has a
higher relevance are accommodation, transportation, online labor markets (e.g., Amazon
Mechanical Tusk), and finance (e.g., the crow-funding platform Kickstarter).

Focusing on transportation, we find platforms facilitating the sharing of vehicles such
as cars, motorbikes, bicycles, and motorized scooter (e.g., ZipCar, EasyCar, and car2go) as
well as platforms that enables their users to offer services as well as their assets to be rented
(e.g., BlaBlaCar, Sidecar, and Uber). Gordon-Harris [55] refers to carsharing as a sustainable
urban mobility solution to facilitate a population mobility demand. The author states that
the success of individual carsharing schemes depends on the availability of (i) a effective
public transport system that complements the carsharing schema; (ii) a proper pricing
structure; (iii) a diverse and large urban population; (iv) adequate charging infrastructure;
(v) allocated spaces for stations and on-street parking; and (vi) a support from public author-
ities. Wadhwani and Saha [56] reveals that carsharing market size surpassed $2 billion in
2020. This market is expected to grow in 20% from 2021 to 2027. Some experts also forecast
that technology will continue revolutionizing and disrupting the carsharing market [57].
The developments in EVs and autonomous driving as well as route optimization influences
the ways in which cars are utilized. However, there are significant barriers to carsharing
demand and use. For instance, Hazée et al. [58] highlight the main challenges as service
complexity (in terms of its understanding, perceived access, and usage); reliability of the
service and related technology; perceived contamination and access of vehicles by different
users; responsibility (user being accountable for their own and others’ usage); limited
availability of cars or waiting time [59]; low public awareness and lack of prior experiences
with similar services [60]; non-monetary costs (e.g., the inconvenience of having to reserve
a car [61]; as well as comfort and independence limitations [62].
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Carsharing can reduce the number of cars on roads, using this smaller fleet more inten-
sively [63]. Shaheen et al. [64] summarize the next generally-accepted effects of carsharing:
(i) decrease in vehicle purchases; (ii) increased use of other transportation alternatives,
e.g., walking, biking, etc.; (iii) reduced vehicles traveled distances; (iv) increase the per-
centage of formerly carless households; (v) reduced energy consumption and greenhouse
gas emissions; and (vi) increased environmental awareness. However, as expected, there
are several factors that affect the magnitude of these effects, such as region, population
density, public transit accessibility, and carsharing service and business model, among
many others. Esfandabadi et al. [65] utilized system dynamics and casual-loop diagrams
to study the correlation between carsharing services and their environmental effects. The
subsystems considered are: population, transportation, car manufacturers, environment,
and regulations and administration. The authors propose the following managerial strate-
gies: expanding carsharing offered services while controlling the number of fleets, using
environmental-friendly vehicles, and using renewable energy sources for the generation of
electricity for EVs. Indeed, the flexibility of charging EVs makes both grid balancing and
the integration of renewable energy sources possible [66].

6. Electric Vehicles

Electric mobility, and especially EVs, plays a crucial role not only in the context of
sustainability in smart cities, but also in the trans-national politics of countries to achieve
an economy with low carbon emissions [67]. Usage of EVs in both people and goods
transportation promises to ameliorate fossil fuel consumption and resulting emissions,
enabling city ecosystems to reduce their carbon footprint. Indeed, in a 2018 meta-analysis of
4734 studies, Requia et al. [68] found that EVs generally reduce greenhouse gas emissions
and other critical pollutants. This effect is emphasized in cities, since the actual place of
emission is shifted away from the combustion engine on a road to a power-generating
plant typically in the countryside. Especially in wealthy countries, the market share of
EVs and the corresponding charging infrastructure are steadily growing, increasing in
momentum through governmental policies [16]. A crucial success factor in maintaining
this momentum is consumers’ willingness to switch from a combustion engine to an EV.
Li et al. [69] argue that, apart from demographic factors, the intention to buy an EV is
mostly influenced by technical and psychological features such as the driving experience
or the cost of ownership. The impact of a mobility transformation in smart cities is clear:
air quality can be significantly improved when citizens use EVs for transportation [70].
This positive effect can be accredited to the nature of emissions for EVs; since the vehicle
runs on an electric battery, it does not produce local emissions [71]. However, the benefits
of EV usage strongly depend on how the energy they use is produced: the cleaner the
energy production, the greater the positive impact of electric mobility in comparison to
fuel-powered vehicles [72].

Despite a global trend towards sustainable energy, non-renewable sources still repre-
sent the majority of worldwide energy production [73]. Therefore, policy makers should
both increase EV acceptance and usage while simultaneously advocating for a more sus-
tainable energy mix. However, it is not sufficient to only invest in a transition toward
EVs. To reap the benefits of electric mobility to their fullest, smart cities should minimize
the energy consumption of vehicles. In an urban environment, EV energy consumption
is influenced by external factors such as traffic conditions and travel duration as well as
internal factors such as the respective driver’s style of driving [74,75]. However, it is not
only the origin of the energy used by electric vehicles that is a concern for smart cities.
Nour et al. [76] warn that EV charging, when not controlled, can increase peak electricity
demands in a city grid, potentially overwhelming the grid infrastructure and risking power
outages and disruptions. The research to prevent such scenarios is well-established. For
example, Gan et al. [77] have formulated an algorithm to mitigate imbalances in charging
scheduling by allowing communication between electric vehicles and charging providers.
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Energy Optimization Using Electric Vehicles

As mentioned in Section 3, energy optimization in transportation has received in-
creasingly more attention in the last decade. For instance, Corlu et al. [78] review studies
on the optimization of energy consumption in transportation, specifically, road freight,
passenger rail, maritime, and air transportation modes. According to Corlu et al. [78],
the main strategies used to optimize energy consumption in road freight are the follow-
ing: First, modifying the objective function of the vehicle routing problem (VRP) and its
variants to consider energy aspects. Li et al. [79] present an illustrative example, which
addresses the routing problem of EVs, including their constraints of battery life and battery
swapping stations. Their problem aims to minimize the total costs, energy consumption,
and travel time of EVs. Secondly, they aim to reduce the load factors while maintaining
the traditional distance-based objective function (e.g., by considering back-hauling or
including pick-up and delivery applications). In this context, Nolz et al. [80] describe a
consistent VRP for the delivery of parcels with EVs, which is addressed by implementing
a template-based adaptive large neighborhood search. Finally, they design horizontal
cooperation practices to promote sustainable policies and optimize energy consumption.
Muñoz-Villamizar et al. [81] study the utilization of fleet of EVs, working in urban goods
distribution, in the context of a horizontal collaboration between carriers. A multi-objective
function is defined based on delivery and environmental costs.

Designing routes considering EVs constitutes a task that has been explored by many
authors. These works either considered energy consumption as an objective function (such
as total consumed energy, recharging time, and number of used charging stations or EVs)
or energy-related constraints. For instance, the use of electric batteries typically present
driving-range limitations and long re-charging times. Martins et al. [82] present a review
on EV routing. The paper describes a current trend in the literature of integrating real-life
characteristics such as partial recharging, battery swapping, allocation of charging stations,
horizontal cooperation strategies, backhauling practices, hybrid gas and electric fleets, and
battery durability.

In addition, the authors discuss the need of developing prediction models for battery
charge status according to multiple factors, such as weather conditions, speed, weight of
the vehicle, and road condition. Another review is presented by Kucukoglu et al. [83],
in which the authors study more than 130 articles on the routing of battery EVs. The
authors highlight the extended use of metaheuristics to solve the related problems, mainly
large neighborhood search, tabu search, and variable neighborhood search, and call for
more realistic and complex benchmark instances and parallel solving approaches to obtain
solutions in computational times that are acceptable in practice.

Regarding the management of carsharing systems with EVs, a wide range of optimiza-
tion problems arise at strategic, tactical, and operational levels [84]. Table 2 lists the most
relevant decision-making processes in this context and introduce a recent work for each
of them.

Table 2. Recent works on the management of carsharing systems with electric vehicles.

Authors Problem Addressed Solving Approach Remarks

Brandstätter et al. [85] Location of stations
and station capacity

A two-stage stochastic
integer linear programming
formulation and a heuristic
for medium and big
instances.

Aim: determine optimal locations for
charging stations and number of EVs.
Computational experiments based on
real world instances from Vienna are
presented.

Huang et al. [86] Fleet sizing

A mixed integer non-linear
program model. A rolling
horizon method, a golden
section line search method,
and a shadow price
algorithm.

Aim: select the fleet size and the
station capacity, as well as the
required relocation operations.
A large-scale case study is carried out
for the Suzhou industrial park
in China.
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Table 2. Cont.

Authors Problem Addressed Solving Approach Remarks

Huo et al. [87]
Allocation/relocation
of vehicles to existing
stations

Combination of a probability
expectation model and a
linear programming model.

The authors study historical order
data from a company to characterize
the dynamics of vehicles and the
behavioral features of the users. An
instance with real data is solved.

Vosooghi et al. [88] Battery swap
Combination of a probability
expectation model and a
linear programming model.

In the context of shared autonomous
EVs, the authors study the impacts of
station placement, charging type, and
vehicle range onto service efficiency
and customer experience. An
agent-based simulation based on the
Rouen Normandie metropolitan area
in France is carried out.

An interesting and recent line of research in this field is the use of renewable energy
sources in carsharing systems with EVs. Indeed, carsharing contributes to the electrification
of the transport sector and, hence, makes transportation less polluting. However, the usage
of EVs increases the electricity demand in the electricity supply system, which could lead to
a shortage. The electricity suppliers, electric power systems, have significant environmental
impacts, such as CO2 emission. Both problems can be addressed by relying on renewable
energy sources for EV charging. However, renewable energy sources may be difficult to
predict. Arranging EV charging based on renewable resources and generation constitutes
a challenging optimization problem. Smart charging EVs may contribute to compensate
power fluctuations in the electric grid. Thus, researchers have investigated integrating re-
newable energy sources such as wind and solar energies in the smart grid environment [66].
Iacobucci et al. [89] minimize the total costs of a fleet of shared autonomous EVs by schedul-
ing their charging and discharge. In their problem, the EVs could be charged through a
virtual power plant or microgrid.

The topic of carsharing systems providing autonomous connected EV is still in its
infancy. As described in Ref. Miao et al. [90], autonomous vehicle technology presents
many advantages: eliminates users walk towards available vehicles, allows for automatic
relocation of vehicles, and reduces energy consumption as a consequence of a more efficient
driving. Connected vehicle technology may provide a more efficient carsharing system
management thanks to the use of real-time data when making decisions. Miao et al. [90]
present a two-stage multi-objective optimization model. In the first stage, the approach
optimizes the geographical service area. The second stage of the model optimizes the
distribution of charging infrastructure. In another study, Ma et al. [91] optimize the allo-
cation of stations that play the role as a depot and charging stations for autonomous EVs
used in carsharing. Several mixed-integer nonlinear models are formulated and separately
solved using GAMS and a genetic algorithm. Computational experiments are used to test
the approaches.

7. Intelligent x-Heuristic Algorithms

Mobility and transportation optimization problems in smart cities are composed of
many variables (e.g., customers, products, facilities, etc.), as well as a set of rich and soft
constraints, making them NP-hard problems. Considering these characteristics, exact opti-
mization methods show limited capabilities to solve these problems. Thus, heuristics and
their extensions are needed. These extensions combine heuristics with other methods, and
are called x-heuristics [92]. They constitute excellent alternatives to generate high-quality
solutions in reasonable computing times. Hence, heuristics and metaheuristics can be
hybridized using exact methods (matheuristics) [93], which allows us to find solutions of
higher quality in relatively short computational times. However, mobility and transporta-
tion problems are challenging not only because of their size but also because their variables
can be subject to uncertain and dynamic conditions.

Simulation-based optimization approaches are required to deal with random events
and consider the variables’ stochasticity. In these approaches, optimization algorithms and
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simulation methods are combined. The simulation method might be Monte Carlo simula-
tion, discrete-event simulation, agent-based simulation, etc. The optimization algorithm
could be heuristics or metaheuristics. For example, biased-randomized heuristics and
simheuristics combine simulation and a heuristic or metaheuristic algorithm. Using biased-
randomized heuristics [94], a deterministic constructive method becomes a stochastic one.
Thus, different solutions are defined at each execution of the method. These solutions are
of ‘good’ quality and are found in extremely short computing times. In biased-randomized
heuristic, a “light” randomness is introduced to the procedure, without modifying the
original logic behind the heuristic. One way to introduce this randomness is by selecting the
next step in the procedure based on a skewed probability distribution. Thus, a candidate
list of building steps is ordered based on a criteria, such as the shortest travel distance. The
candidate list can be used during the solution-building process, where each building step
gets a probability of being selected based on its order in the candidate list. The probability
distribution is skewed; thus, the building steps at the top of the list get a higher selection
probability compared to the steps at the bottom of the list. The building steps are selected
one after another by employing Monte Carlo Simulation. Thus, relatively, some deviation
to the deterministic selection of building steps is achieved. This deviation is controlled
through a parameter. At each execution of the biased-randomized heuristic, a different
solution is constructed. Running this heuristic several times generates several solution
alternatives based on the main selection logic. Notice that biased-randomized heuristics
can be combined with parallel programming techniques to run several instances of the
heuristic in parallel, without increasing the wall-clock time.

In contrast, simheuristics [95] refers to a particular type of simulation-based optimiza-
tion, which combines metaheuristics with any type of simulation. Simheuristics aims to
solve optimization problems with the stochastic nature. In that way, metaheuristics and
simulation exchange information while exploring the search space of a stochastic problem.
In the simheuristic solution approach, it is assumed that when solving the deterministic
version of a problem, it could be a high-quality solution to the stochastic version of the
problem. This assumption is valid for stochastic problems of moderate degree of variability.
Although simheuristics allows one to deal with scenarios with uncertainty, due to the
complexity of smart cities, other extensions of metaheuristics need to be considered. For in-
stance, some mobility activities such as carsharing or ridesharing systems present dynamic
behavior—e.g., delays and travel times can be influenced by traffic conjunctions, customers
can appear and disappear dynamically in the system, etc. This dynamic nature might be
solved by combining metaheuristics and machine learning methods (learnheuristics) [96].
This combination enables handling the dynamic (non-static) problem input. The main idea
behind the learnheuristics is that some problem inputs are influenced by specific configura-
tions of the built solution (e.g., defining a vehicle route might influence the travel times and
delays of other vehicles). Although these influences and dependencies between variables
could be identified, it is difficult to formulate them. They might depend on other factors
(e.g., the system status at any given time) or follow a complex pattern, forming a ‘black
box’ that influence the consequences of taken decisions. The optimization of problems with
dynamic inputs demands building predictive models to emulate the dependencies and
predict the consequences of making decisions within a solution.

8. Review of Computational Results

Researchers have defined some NP-Hard optimization problems in mobility and trans-
portation problems in smart cities. We have selected some publications related to these
problems in which the solution approach is based on the intelligent x-heuristic algorithms.
Specifically, we have focused on solution approaches that use biased-randomized heuris-
tics, because they can solve large-scale optimization problems, providing ‘good’ quality
solutions in reasonable computing times. Table 3 lists the eight selected optimization
problems, their acronyms, and the publications in which the problems were solved. In
addition, Table 4 documents the solution values found for the problems in Table 4. The
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solution values are tabulated as (i) the problem best-known solution (BKS); (ii) the solution
reported by the authors (OBS) of the selected publication; and (iii) the percentage gap
between the BKS and the OBS with respect to the BKS. Figure 2 depicts a summary of the
tabulated results for the problems; the vertical axis represents the calculated percentage
gap. According to the results, algorithms based on biased-randomized heuristics provide a
competitive performance for all the selected problems, improving the BKS by about −0.44%
on average, varying from about 0.41% for the LRP up to −2.55% for the VRPMDR. In
particular, to solve the former problem,the authors use a simple but effective constructive
biased-randomized heuristic.

Table 3. Selected optimization problems.

Problem Acronym Reference

Multidepot Vehicle Routing Problem MDVRP-1 [97]
Multidepot Vehicle Routing Problem MDVRP-2 [98]
Vehicle Routing Problem with Multiple Driving Ranges VRPMDR [99]
Fleet Mixed Vehicle Routing Problem with Backhauls FSMVRPB [100]
Vehicle Routing Problem with Multiple Driving Ranges
and Loading Capacities HeVRPMD [101]

Sustainable Vehicle Routing Problem SU-VRP [102]
Location Routing Problem LRP [103]
Location Routing Problem with a Constrained Distance LRPCD [104]

Table 4. Summary of the results of the different optimization problems.

Reference Problem BKS (1) OBS (2) GAP (1)–(2)

[97] MDVRP-1 1879.42 1885.54 0.33%
[98] MDVRP-2 2662.42 2673.35 0.41%
[99] VRPMDR 1047.42 1020.68 −2.55%

[100] FSMVRPB 3086.86 3067.89 −0.61%
[101] HeVRPMD 1016.26 1013.62 −0.26%
[102] SU-VRP 750.46 741.27 −1.22%
[103] LRP 196.77 197.47 0.36%
[104] LRPCD 891.24 891.62 0.04%

0.33% 0.41%

-2.55%

-0.61%

-0.26%

-1.22%

0.36%
0.04%

Problem

G
A

P
 (%

)
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–
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–

Figure 2. Gaps between OBS and best BKS (baseline 0% gap).

9. A Case Study Regarding Ridesharing Mobility

This section illustrates the benefits that can be achieved by expanding ridesharing
practices in urban areas. We consider a typical scenario in which citizens departing from
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multiple origins wish to reach certain common destinations by a target time. Thus, Figure 3
shows a simple example of such a scenario, where a vehicle departs from each source node
(circles i, j, k, etc.) and has to be in its associated destination (D1, D2, or D3). In addition,
we will assume that each route cannot exceed a maximum travel time t > 0.

Figure 3. A multi-origin multi-destination mobility scenario.

Clearly, a ridesharing practice such as the one illustrated in Figure 4 would require
less vehicles, cover shorter distances, and consume less energy.

Figure 4. A carsharing strategy for the multi-source multi-destination scenario.

The questions are then: how many vehicles are really necessary to provide the same
mobility service? What is the reduction in distance (and, hence, in energy consumption)
that can be obtained if the operations are optimized? In order to illustrate how intelligent
algorithms can contribute to answer the aforementioned questions, a case study regarding
multiple sources and three different destinations is considered and solved using an adapted
variant of the algorithm proposed in the study by Panadero et al. [105] for the deterministic
version of the team orienteering problem. The algorithm was adapted to take into account
that there is a maximum occupancy level per vehicle and the fact that the final solution has
to cover all nodes while still respecting the maximum traveling time per route. Python 3.9
was used to implement and run the proposed algorithm, and we run experiments on a
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workstation with an Intel(R) Xeon(R) processor at 3.2 GHz with 64 GB of RAM memory. In
our experiment, we used three small instances from the well-known team orienteering prob-
lem benchmarks proposed by Chao et al. [106]. These benchmarks consist of 320 instances,
belonging to 7 different subsets. An instance name follows the nomenclature ‘pa.b.c’, where
‘a’, ‘b’, and ‘c’ refer to the subset number, the number of available vehicles, and the specific
instance under study, respectively. In this work we have selected the instances p1.4.k
(subproblem 1), p2.4.k (subproblem 2), and p3.4.k (subproblem 3) to illustrate the benefits of
ridesharing strategies. Notice that the aggregation of these three instances (subproblems)
lead to a multi-source and multi-destination team orienteering problem, thus emulating
the scenario represented in Figure 3. In fact, the aforementioned scenario is obtained when
the single origin in each subproblem is connected with each of the circular nodes in the
subproblem and the traveling times of these connections are set to 0. In our computational
experiments, we have assumed that the capacity of each vehicle is 4 passengers. Table 5
shows the parameters assumed in each sub-problem and the final results obtained for both
the individual and the ridesharing mobility strategies. The total time-based costs (total
time traveled) obtained for the ridesharing (collaborative) strategy are 95.21, 31.73, and
90.42, respectively. In the individual (non-collaborative) strategy, the total costs obtained
are 195.03, 67.94, and 181.46, respectively. As the percentage gap column shows, even in a
small-sized instance such as the one considered, the gains can be noticeable.

Table 5. Parameters and final results obtained for each mobility strategy.

Sub-
Problem

No. of
Customers

Maximum
Traveling Time

per Route

Maximum
Occupancy
per Vehicle

Final Cost
Individual (1)

Final Cost
Ridesharing (2)

Gap (%)
(1)–(2)

1 31 13.8 4 195.03 95.21 −51.18%
2 20 11.2 4 67.94 31.73 −53.29%
3 32 16.2 4 181.46 90.42 −50.17%

Figure 5 illustrates the ridesharing solution proposed by the algorithm for each of
the tested subproblems. Notice that, in the ridesharing strategy, most passengers in a
sub-problem are serviced by shared vehicles unless they are far away from other source
nodes and this makes it impossible to include them into an already existing route without
violating either the occupancy capacity or the maximum traveling time constraint.

(a) Sub-problem 1

Figure 5. Cont.
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(b) Sub-problem 2

(c) Sub-problem 3

Figure 5. Optimized ridesharing strategy for each subproblem.

10. Conclusions

This paper focuses on studies related to energy consumption in the transportation
and mobility sector. This sector, as well as other sectors, is affected by the global crisis
and by a shortage in energy sources. In addition, energy consumption contributes to
gas emission, and regulations have been set to reduce both energy consumption and gas
emission. Studies are examining efficient energy resource utilization and strategies to
reduce energy consumption. Current trends are raised in the form of EVs and collabora-
tive economy. EVs could replace traditional vehicles and their usage is spread, despite
some challenges associated with them in the form of charging time and battery life. The
spread of carsharing and ridesharing indicates the impact of the collaborative economy in
the transportation and mobility sector. New optimization problems arise in this context.
The new problems include additional constraints or objective functions related to EVs,
carsharing, or ridesharing concepts. These problems tend to be real-world optimization
problems under uncertainty, dynamic, and synchronization scenarios. Thus, advanced
x-heuristic approaches are needed in order to efficiently solve them. The potential ben-
efits of these algorithms are discussed by employing computational results that refer to
different transportation problems. Our analysis shows that the use of x-heuristics based
on biased-randomization techniques have been able to provide highly competitive results
for many different transportation and mobility problems, with average gaps (with respect
to the best-known solution) ranging from −2.55% to 0.41%. In addition, a novel computa-
tional experiment is introduced to show the potential benefits of employing ridesharing
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(collaborative) strategies over utilizing individual (non-collaborative) ones. As expected,
the results indicate that a noticeable reduction in time-based total costs can be achieved. In
particular, for each considered subproblem, a reduction larger than 50% in these costs has
been obtained. Obviously, such a significant reduction in time-based costs impact other
dimensions such as energy consumption and sustainability of the transportation system.
Regarding future work, we plan to employ different x-heuristics to analyze the impact of
intelligent strategies on carsharing and ridesharing mobility practices.
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