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Abstract: Metaheuristic optimization techniques have successfully been used to solve the Optimal
Power Flow (OPF) problem, addressing the shortcomings of mathematical optimization techniques.
Two of the most popular metaheuristics are the Genetic Algorithm (GA) and Particle Swarm Opti-
mization (PSO). The literature surrounding GA and PSO OPF is vast and not adequately organized.
This work filled this gap by reviewing the most prominent works and analyzing the different traits of
GA OPF works along seven axes, and of PSO OPF along four axes. Subsequently, cross-comparison
between GA and PSO OPF works was undertaken, using the reported results of the reviewed works
that use the IEEE 30-bus network to assess the performance and accuracy of each method. Where
possible, the practices used in GA and PSO OPF were compared with literature suggestions from
other domains. The cross-comparison aimed to act as a first step towards the standardization of
GA and PSO OPF, as it can be used to draw preliminary conclusions regarding the tuning of hyper-
parameters of GA and PSO OPF. The analysis of the cross-comparison results indicated that works
using both GA and PSO OPF offer remarkable accuracy (with GA OPF having a slight edge) and that
PSO OPF involves less computational burden.

Keywords: Optimal Power Flow; Genetic Algorithm; Particle Swarm Optimization; hyper-parameter
tuning; metaheuristic optimization

1. Introduction
1.1. Motivation

Since its introduction in 1962 [1], Optimal Power Flow (OPF) has been one of the most
well-researched problems in power systems engineering [2]. OPF seeks to optimize a given
objective (e.g., cost, reliability, planning, etc.) within a power system, while respecting
Power Flow (PF) constraints, the system’s physical constraints, and the operating limits of
its components [2]. In its most general formulation, OPF is a non-linear (NL), non-convex,
large-scale, highly constrained, multimodal optimization problem, which contains both
continuous and discrete control variables [3].

OPF is a fundamental tool for efficient power system planning and operation. Prior
to the deregulation of the electricity sector, OPF was routinely used in transmission-
constrained economic dispatch and reactive power management [4]. Since the deregulation
and emergence of competitive electricity markets, OPF has had many use cases, such as
market clearing, scheduling, and dispatch, determination of Locational Marginal Prices
(LMPs), calculation of available transfer capacity, etc. [2,4,5].

Recent trends in the industry indicate that the size and complexity of the OPF problems
practitioners will need to solve in the near future will increase. These developments are
crucial, as solving the OPF problem becomes increasingly harder as the size of the network
and the complexity of its components increases [2]. In Europe, the trend towards integrating
the European day-ahead electricity markets, as well as the shift towards quarter-hourly
market time units, drastically increases the size of OPFs that need to be solved for market
clearing, scheduling, and dispatch purposes [6]. Moreover, traditionally, OPF has included
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only the transmission network topology. With the proliferation of distributed and renewable
generation, which is typically located in the distribution network, the distribution network
topology may also have to be included in the OPF formulation, further increasing its
size [7]. At the same time, the emergence of demand response [8] adds extra variables
to the demand-side of OPF problems, increasing the complexity [2]. Additionally, due to
aging equipment and the increase in demand, OPF is more tightly constrained, and thus a
more realistic reflection of the network’s physical constraints (i.e., its non-linearities and
non-convexities) is desirable. In addition, the presence of distributed energy resources,
storage entities, and electric vehicle fleets, along with the adoption of advanced control
devices such as Flexible AC Transmission Systems (FACTS), further complicates the OPF
formulation [2].

Due to its demanding nature and importance, numerous optimization techniques have
been used to solve the OPF problem [2,3,9–12]. Optimization techniques can be broadly
split into two categories: mathematical (also known as classical) and metaheuristic [2].

Mathematical techniques take advantage of the analytical properties of a problem
to generate a sequence of points that converge to a globally optimal solution [13]. In
the context of OPF, most mathematical techniques used in the literature use one of the
following: gradient method, Newton’s method, Linear Programming (LP), Sequential
Linear Programming (SLP), Successive Quadratic Programming (SQP), and the Interior
Point Method (IPM). While mathematical techniques can be efficient, accurate, and robust,
they feature three main disadvantages: (i) their global optimality cannot be guaranteed for
non-convex problems (such as OPF), (ii) they cannot easily handle discrete variables, and
(iii) they are unsuitable for multi-objective optimization problems, since they cannot easily
handle discontinuous or non-convex Pareto fronts [2,3,5,14].

These shortcomings have inspired researchers to apply metaheuristic techniques
to the OPF problem. Metaheuristics are optimization techniques that are inspired by
processes observed in physics, biology, or sociology [3]. Metaheuristic methods address the
disadvantages of deterministic methods, as they can both escape local optima and converge
to the global optimum, and easily handle discrete variables and discontinuous or non-
convex Pareto fronts [2,3,5,14]. The main drawbacks of metaheuristics stem from their heavy
computational burden and the need for application-specific tuning of various parameters
(called hyper-parameters) to ensure adequate performance [2]. It is also important to note
that LMPs, which have direct implications in market-based applications, cannot be readily
produced by metaheuristics [5].

The first-mentioned drawback (i.e., the computational burden) was a detrimental
factor to the adoption of metaheuristics for OPF when they were first introduced in the
late 1990s, as computer resources were then scarce. Meanwhile, research conducted on
metaheuristics has produced some guidelines on the tuning of the parameters of these
algorithms (e.g., [3,15,16]). While a straightforward method for the extraction of LMPs
from metaheuristics has not been determined, progress to that end has also been made
(e.g., [17]). Thus, the relative abundance of computer resources nowadays and the general
advancements in information technologies, as well as the aforementioned research on
metaheuristics, lift (or at least ease) the barriers that prohibited their adoption in the
past. Having mentioned the added complexity that trends in the industry impose on
OPF, the authors of this paper feel that revisiting the use of metaheuristics in OPF can
potentially provide a viable solution to address the increasing complexity of OPF in the
current landscape.

To this end, this work focuses on the use of two of the most popular metaheuristic
methods, namely the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) in
the context of OPF. Apart from power engineering, GA and PSO have successfully been
applied in various other domains such as image processing, software engineering, speech
recognition, healthcare, machine learning, product design, optimal routing, scheduling
problems, etc. [18,19]. It should also be noted that GA and PSO are not the only meta-
heuristic optimization methods that have been used in the context of OPF. Ant colony
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optimization, artificial neural networks, chaos optimization, differential evolution algo-
rithms, simulated annealing, tabu search, as well as hybrid methods (which combine
elements of the aforementioned methods), have been used in the context of OPF [9]. How-
ever, none of these methods have received as much research interest as GA and PSO.
Therefore, despite their popularity, GA and PSO were chosen as the main focus of this
review due to the depth of the existing literature on their application to OPF, which allows
the extraction of useful conclusions.

1.2. Similar Works & Contribution

The goal of this work was:

1. To perform a comprehensive literature review of the most prominent GA and PSO
OPF works.

2. To pinpoint the best practices from the reviewed works, and, where possible, corrobo-
rate them with literature from other domains.

3. To perform a cross-comparison among the reviewed GA and PSO OPF implementa-
tions (where possible) by analyzing the reported results.

4. To propose promising research directions for the standardization of GA and PSO
OPF algorithms.

There are a few other research papers on this topic in the literature [3,9,12,14,20]. These
works have made good contributions to organizing the existing literature, summarizing
the existing research, and comparing the two methodologies. However, they leave some
knowledge gaps that this work aimed to address. Specifically, the focus of [9,12,14] is
not exclusively on GA and PSO, but rather on the whole topic of metaheuristics in the
context of OPF. Consequently, the extent to which works using GA or PSO are reviewed
is limited, as the authors do not go into detail about their mathematical formulations or
the specific characteristics of each method (e.g., formulation-specific operators, fitness
functions, tuning of parameters, etc.). On the other hand, [3,20] focus solely on PSO and
GA. Yet, both works do not provide a comprehensive literature review on the topic. Instead,
they focus on specific implementations of the GA and PSO and apply them to test cases to
perform a comparison between these two mathematical programming methods. Moreover,
except for [12,14], all the similar works were introduced more than a decade ago, leaving
an important knowledge gap that involves works that were published in the meantime. A
summary of the characteristics of similar works and a comparison with this work can be
found in Table 1.

Table 1. Comparison between this work and similar works.

Reference Literature Review
Extent

Literature
Review Focus

Analysis of
Reviewed GA and PSO OPF

Characteristics

Comparison of
GA and PSO OPF

Date
Published

[3] Limited PSO and GA Yes (limited) Yes (limited) 2005

[9] Extensive Metaheuristics No No 2012

[12] Extensive Metaheuristics No No 2018

[14] Extensive Metaheuristics No Yes (limited) 2021

[20] Limited PSO and GA Yes (limited) Yes (limited) 2007

This work Extensive PSO and GA Yes (extensive) Yes (extensive) 2023

This work aimed to fill all these gaps by performing a comprehensive review of rele-
vant works, focusing on a comparison of the characteristics of the different implementations
of GA and PSO OPF. This work focused on single-objective OPF, but some works featuring
multi-objective OPF are also presented, for the sake of completeness. For the first time,
the traits of GA and PSO OPF were standardized along several axes and analyzed. The
practices used in GA and PSO OPF were compared to examine the best practices used in
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other domains. Where possible, the results of the reviewed works were cross-compared
with each other, both in terms of accuracy and performance, to pinpoint the best practices
of the reviewed works. Finally, the choice of hyper-parameters in the reviewed works is
discussed, as a first step towards standardizing GA and PSO OPF.

The remaining sections of this paper are organized as follows: in Section 2 the OPF
formulation is introduced. Section 3 presents the GA and a literature review on works using
the GA OPF, and analyzes and discusses their characteristics. Section 4 presents the PSO and
a literature review on works using PSO OPF, and analyzes and discusses their characteristics.
In Section 5, GA OPF and PSO OPF are cross-compared, the relative performance and
accuracy of each approach is discussed, and the choice of hyper-parameters of the reviewed
works is analyzed. In Section 6, conclusions are drawn and potential directions for further
research are identified.

2. The Optimal Power Flow Problem

The OPF problem contains a set of optimization problems that seek to optimize a given
objective of the power system subject to its physical constraints. Physical constraints can
be imposed either by electrical lows (e.g., power balance in the system) or the engineering
limits of its components (e.g., thermal limits of line flows). OPF can be used by stakeholders
to make informed decisions at any planning horizon. For example, OPF can be formulated
for long-term transmission network capacity planning to minimize investment costs in
network reinforcement, or in close to real-time to optimize the active and reactive power
dispatch [21]. The goal of OPF is to calculate the values of the control variables (i.e., the
variables whose values can be controlled) that result in the optimal value of the objective
function. Therefore, in the example of long-term planning, the control variables could in-
clude the location of the installation of new lines, and in the example of dispatch, they could
include the active and reactive power dispatch of generators. Then, using these values, the
stakeholders can make informed decisions to optimize the operation of the power system.
For an introduction to OPF, the reader is referred to [22], or academic textbooks such as [21].
More information regarding the solution to the OPF problem using mathematical methods
can be found in [2,10,11], while information regarding more recent OPF solution techniques
(such as intelligent algorithms and metaheuristic optimization methods) can be found in [9]
or [12]. Other recent developments, such as the co-optimization of power-gas coupled
systems are discussed in [23].

The OPF problem can be formulated as a mathematical optimization problem as follows:

min f (z) (1)

subject to,
g(z) = 0, (2)

h(z) ≤ 0, (3)

z ∈ Z. (4)

Equation (1) defines the objective function of OPF, which represents the power system
optimization goal. The objective function f can either be a scalar function (in single-
objective OPF) or a vector function (in multi-objective OPF). Equations (2)–(4) define
the OPF constraints. The equality constraints (2) represent the system’s PF equations.
Inequality constraints (3) represent the functional operating constraints, such as branch
flow limits, voltage magnitude limits, etc. Constraints (4) define the feasibility region of the
problem control variables, such as the active power output limits of the generating units,
the transformer tap settings, etc.

The electrical state of the system is represented through the state variables. The state
variables are continuous. Usually, they include nodal voltage magnitude and angle, and
the nodal active and reactive power injections (although alternative formulations that use
current instead of power injections have also been proposed). Control variables are a subset
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of the state variables, whose values can be controlled by the system operator to achieve the
goal of optimization. Typically, in the context of OPF, control variables include the active
and reactive power injection of generating (and sometimes also of demand-side) assets.
However, depending on the objective function, control variables can also include regulated
bus voltage magnitude [24], transformer tap settings [25], loads to shed [26], flexibility
activation [27], etc. Control variables may be continuous or discrete.

The objective function (1) is typically the minimization of generation costs or the maxi-
mization of social welfare. Other objective functions include loss minimization, investment
cost minimization¸ optimal voltage profile, minimization of environmental impact, mini-
mization of load shedding, etc. [2]. The most common objective functions are presented in
Table 2.

Table 2. Common OPF objective function categories.

Objective Function Abbreviation Example

(Linear/Quadratic) Generation
Cost Minimization (L/Q)GCM Fuel cost minimization

Welfare Maximization WM Market-based applications

Losses Minimization LM Minimization of active power losses

Reactive Power Dispatch Optimization RPDO Minimization of reactive power dispatch

Investment Cost Minimization ICM Minimization of cost of capacitor banks

Post-Contingency Security Maximization PCSM Minimization of post-contingency
loading

Minimization of Voltage Deviation MVD Voltage profile improvement

Minimization of Environmental Impact MEI Minimization of emissions

Congestion Minimization CM Overload alleviation

The choice of functions f , g, and h plays a pivotal role in determining the nature of the
resulting OPF problem. For example, if linear approximations for all three functions are
used, the resulting OPF will be a linear or mixed-integer linear problem, whose solution
is relatively straightforward using mathematical methods such as simplex, the IPM, or
SLP. Simplex exploits the convexity of linear problems to efficiently explore the feasible
region and find the global optimum [2]. The most prominent linearization methodology
is the DC approximation. SLP iteratively solves a series of LP subproblems [7], taking
advantage of the desirable properties of the simplex method during the solution of each
LP subproblem (e.g., [7,28]). The robustness, solution speed, simplicity, and efficiency of
the simplex method make these methods some of the most popular OPF solution methods,
even in real-life applications. However, because of the employed linearizations, some
accuracy is sacrificed.

In the general case, f , g, and h are non-linear and non-convex functions, therefore the
resulting OPF is a non-linear or non-linear mixed-integer optimization problem, whose
solution is challenging. Mathematical methods used to solve the non-linear OPF include
gradient methods, SQP, Newton’s method, and the IPM. Gradient methods were amongst
the first practical approaches (e.g., [29]) used to solve the OPF problem. However, even
though they are easy to implement and reliable, they exhibit a slow rate of convergence [3]
and can guarantee global optimality only for convex optimization problems [2]. SQP
approaches (e.g., [30]) improve the rate of convergence of gradient methods by using
second-order derivatives; however, their performance is not satisfactory, especially as the
number of control variables increases [3]. Newton’s method has been extensively studied
in the context of OPF (e.g., [31]), mainly due to its quadratic convergence properties. Its
shortcomings include difficulty in the identification of binding inequality constraints and
its time-consuming solution process [3]. In recent years, IPMs have emerged as the most
promising deterministic method for solving the non-linear (as well as the linear) OPF
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problem. It has been shown that IPMs provide the fastest and most efficient mathematical
algorithms for many OPF applications [2]. Challenges of IPMs include efficient parameter
selection and the assurance of convergence [2]. Research on IPMs and their variants (e.g.,
primal-dual IPMs, trust-region IPMs, etc.) is ongoing.

Since, to date, no single solution approach is deemed suitable for all the different
forms of OPF problems [2,12], practitioners often have to perform a trade-off between
accuracy, efficiency, and robustness, depending on the OPF problem they are facing. When
robustness and solution speed are more important than accuracy and realistic reflection
of the physical constraints, the linear OPF is an attractive formulation, with many real-
life use-cases. Although, in cases where accuracy is desired, the choice of a solution
method is more complex. Therefore, the metaheuristic methods that are presented in
the following sections should be considered as alternatives for non-linear mathematical
techniques, as the efficiency and convergence properties of linear mathematical methods
are well-documented.

3. Optimal Power Flow Using the Genetic Algorithm
3.1. The Genetic Algorithm

GAs are general-purpose, robust optimization algorithms that were invented by
Holland in the early 1970s [32]. Their operational principles are based on the Darwinian
laws of genetics, natural selection, and evolution. They use chromosomes to represent
the control parameters of a given problem. Chromosomes are composed of genes. GAs
start from a random initial population of candidate solutions, and rely on the biologically
inspired operators to iteratively evolve towards fitter (i.e., better) solutions [33]. The fitness
of each solution is evaluated using the Fitness Function (FF), which assigns a quality value
to each solution. The process is repeated for each generation g, until the maximum number
of generations gmax is reached. The process is outlined in Figure 1.
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The formulation of the FF is the most crucial step in GA (and PSO). To formulate
the FF, the objective function (1) of the original problem is used (if the original problem
is a minimization problem, it has to be transformed into a maximization problem). By
only using (1) as the FF, the problem is unconstrained as GA and PSO do not have any
knowledge of the problem’s search space. Therefore, the FF must also penalize violations
of the search space’s constraints (2)–(4), so that they are respected. Thus, the general form
of the FF in GA and PSO OPF is:

FF = Objective Function− Penalties o f Constraints. (5)

There are no straightforward rules for the penalties that must be introduced for the
violations of the problem’s constraints in the FF. Usually, the specific characteristics of each
problem determine the choice of penalties in the FF. The most popular way of penalizing vi-
olations of the problem’s constraints is through the use of linear or quadratic distance-based
penalties. These methods introduce penalties using the distance from the constraint limit as
a measure of “severity” of the constraint violation. Linear distance-based penalties attribute
the same weight to all violations, while quadratic distance-based penalties penalize more
heavily “large” violations of the problem’s constraints. Additionally, some practitioners
may use coefficients to attribute weights to violations of specific constraints of the problem.
These penalties can be static or dynamic. Usually, when penalty coefficients are dynamic,
they are small in the first generations (allowing for better exploration of the search space),
and they become larger in the later generations (emphasizing the feasibility of the candidate
solutions). An introduction to penalty selection can be found in [33].

The biologically inspired operators at the core of GA are parent selection, crossover,
and mutation. In parent selection, two chromosomes from the population are selected to
produce an offspring for the next generation. Bias is introduced so that chromosomes with
a high fitness have more chances of being selected to produce offspring [33]. Crossover is
responsible for the exchange of genetic information between mating chromosomes. During
crossover, the chromosomes that were selected during parent selection are recombined
from new chromosomes that combine the genetic information of the two parents. The
crossover probability is defined as the probability that two chromosomes exchange genetic
information. A high crossover probability should be applied to improve the convergence
speed [33]. Mutation is responsible for introducing new information in each generation by
randomly perturbing the values of some genes of some chromosomes. A small mutation
probability should be applied, to prevent the GA from converging in local optima [33].
According to [33], application-specific operators that leverage the characteristics of each
problem can be applied to enhance the efficiency of the GA. A comprehensive description
of the GA can be found in [33].

As discussed earlier, there are three main differences between GAs and mathematical
optimization techniques. First, GAs operate on the encoded string of the control variables,
and not the actual control variables of the problem. Secondly, GAs are population-based
optimization techniques and use several points rather than a single point in their search.
Finally, GAs do not require any prior knowledge regarding the objective function, such as
smoothness, convexity, linearity, continuity, etc. The only requirement is the calculation
of the FF, which assigns the quality value to each solution (and presupposes knowledge
of the status of the system’s non-controllable elements, which is a given). The latter two
advantages also apply to PSO. Research on the use of GAs in the context of the OPF has
been extensive, as is analyzed in the following subsection.

3.2. Genetic Algorithm Optimal Power Flow

The seminal work on the use of GA to solve the OPF is [25]. In [25] the authors intro-
duced the so-called Enhanced Genetic Algorithm (EGA), which demonstrates remarkable
performance enhancements compared to other GA implementations. In the EGA, parent
selection is carried out through roulette-wheel selection and uniform crossover is applied
between the mating chromosomes. Chromosomes are encoded using binary digits. The
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authors of [25] introduced some “advanced” features and some problem-specific operators
in their implementation that enhanced its performance. Specifically, the advanced features
of fitness scaling, elitism, and hill-climbing were introduced. Fitness scaling aims to avoid
encourage healthy competition among equals and avoid the domination of extraordinary
solutions during the first few iterations. Elitism and hill climbing aim to enhance the
convergence speed of the algorithm. Five problem-specific operators were used to intro-
duce random modifications to the chromosomes of each new generation. Additionally,
population statistics were calculated to adaptively change the crossover and mutation
probabilities of each generation. To improve the efficiency of the EGA, the Fast-Decoupled
Load Flow (FDLF) algorithm was used for the execution of the required PF analyses.

In [25] the EGA was compared with the Improved Genetic Algorithm (IGA) introduced
in [34]. IGA also uses binary encoding, roulette-wheel selection, and uniform crossover.
The main difference between EGA and IGA (beyond the advanced features and operators
introduced in [25]) lies in the choice of the FF. EGA uses fitness scaling and linear penalties
for constraint violations, while IGA does not use fitness scaling and uses quadratic penalties
for constraint violations. According to [25], the performance of EGA is superior to that of
the IGA, as demonstrated through various test-cases.

Ref. [35] proposed a GA consisting of two parts to solve the OPF. The first part aimed
at finding feasible solutions, while the second part aimed at accelerating the convergence to
the optimal solution. To this end, [35] combined the concepts of co-evolution and solution
repairs (for the first part of the algorithm) and elitism (for the second part). The repair of
infeasible solutions was carried out through the use of a repair function, which co-evolves
the infeasible individuals until they become feasible. The proposed algorithm used binary
encoding, roulette wheel selection, and single-point crossover. The proposed algorithm
was demonstrated in 6-bus system.

The Adaptive GA with Adaptive Population size (AGAPOP) was introduced in [36].
The main idea of the AGAPOP was to flood the high-dimensional solution space with solu-
tions that cover the entire search space, then decrease the population size when a direction
that increases the elite FF was found. To achieve this, mutation, crossover probabilities,
and the population size were all adaptively changed based on the FFs of the population.
The AGAPOP also used binary encoding and roulette-wheel selection. The choice of
crossover methods and penalization of constraint violations in the FF are not discussed.
The application of the AGAPOP was demonstrated using the IEEE 30-bus network for
three objective functions (fuel cost minimization, minimization of voltage deviations, and
fuel cost minimization with quadratic cost functions). According to [36] the simulations
with AGAPOP yielded more accurate results and required fewer generations compared
with other optimization methods, including the IGA introduced in [34].

In [37] the GA was applied for the minimization of the severity of a post-contingency
state in power systems. The proposed GA used real encoding, tournament selection,
and blend crossover (for continuous variables), and single-point crossover (for integer
variables). Real-encoding was used, as it is argued that the resulting GA is more efficient,
as the encoding-decoding procedures are eliminated, and more accurate, as no accuracy is
lost due to the discretization of binary variables. To calculate the FF, PF analyses using the
Newton-Raphson (NR) method were executed. Violations of the system’s constraints were
penalized with quadratic penalties. The proposed algorithm was successfully applied in
the IEEE 30-bus and 118-bus power systems.

Ref. [38] introduced the Refined Genetic Algorithm (RGA). The RGA uses binary
encoding, roulette-wheel selection, and uniform crossover. The main contribution of the
RGA lies in dynamically (exponentially) varying the mutation and crossover probabilities,
in order to achieve faster convergence and better exploration of the search space. The
required PF analyses were solved using the Decoupled PF, to achieve better performance.
In [38] cost-minimization was used as the objective function of the OPF, and violations of
the power system’s constraints were penalized with quadratic penalties. The effectiveness
of the proposed method was demonstrated in 6-bus and the IEEE 30-bus power system.
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The EGA introduced in [25] was modified to tackle multi-objective OPF in [39]. To this
end, different combinations of the following objectives were considered: generation cost
minimization, minimization of losses, and maximization of voltage stability. The work used
the penalties introduced by [34] to punish the violations of the network’s constraints. The
strength Pareto Evolutionary Algorithm was introduced, which finds the best compromise
solution that satisfies all the objectives, using the EGA. Decoupled Quadratic Load Flow
(DQLF) was used to solve the necessary PF analyses. The effectiveness of the proposed
algorithm was demonstrated in the IEEE 30-bus power system, where its performance was
found to be superior compared to a PSO-fuzzy algorithm.

The authors of [40] argue that the selection of the initial population plays a crucial
role in the performance of the GA. Therefore, their work focused on the selection of an
initial population, which resulted in increased performance of the GA. To this end, a
methodology to select the active power generation and voltage magnitudes in generator
buses was developed. The proposed initialization methodology was then used in a real
encoded GA, which used roulette wheel selection (based on relative fitness), and single-
point crossover. A FF of cost minimization was chosen, where violations were penalized
with quadratic penalties. Penalty coefficients were initially small but were dynamically
increased in each generation, to better control the exploration of the search space. The FDLF
and the methodology introduced in [41] were used to solve the required PFs. The proposed
GA was applied in 4 test cases, where it was proven that the proposed initialization
methodology drastically reduced the required solution time and improved the performance
of the proposed GA-OPF.

Ref. [42] used GA to choose optimal locations and sizes for both shunt capacitors and
series voltage regulators in three-phase unbalanced distribution systems. The proposed
GA used a binary encoded GA, roulette wheel selection, and dispersed crossing. The OPF
was formulated as a multi-objective problem with the objectives of active power loss mini-
mization, minimization of voltage limit violations, minimization of voltage drop violations,
minimization of cost of capacitor banks, and minimization of cost of voltage regulators. Dif-
ferent penalties were introduced in each objective function, and the problem was converted
from a multi-objective to a single-objective function using the global criterion method. The
effectiveness of the method was demonstrated via its application in a 70-bus system.

In [17] the GA with Generating Scaling Factors (GA-GSF) was introduced, which aimed
to address a major shortcoming of GA-OPFs: to determine a framework for the extraction of
LMPs from GA-OPFs. In the case of uncongested lines, the proposed framework used the
price of the marginal unit as the LMP. In case congested lines existed, the inverse Jacobian
matrix was used to calculate the sensitivity of active power injection with regards to voltage
magnitude and angles, and of active power injection with regards to line loading (a detailed
analysis of this methodology can also be found in [43], albeit in a different context). This
sensitivity, in essence, expresses the per megawatt increase of the cost of production, while
respecting (the linearized) network constraints. The GA-GSF was then demonstrated in a
14-bus network and was capable of successfully calculating the LMPs of each node.

The authors of [44] explored the capabilities of GA in fuzzy goal programming. Specifi-
cally, they developed a GA algorithm in order to solve the congestion management problem,
in the presence of priority-based fuzzy goals. The problem was multi-objective, with the
following objective functions considered: minimization of overloading, minimization of
system losses, and minimization of operational costs. To solve this problem, a GA algo-
rithm with binary encoding, roulette wheel selection, and single-point crossover was used.
The multi-objective optimization problem was converted to a single-objective problem by
associating numerical weights relative to the importance of each objective. The proposed
GA is applied in the IEEE 30-bus system to demonstrate its effectiveness.

One of the most recently introduced works to explore GA in the context of OPF is [45].
This work aimed to formulate a multi-objective OPF, which considered the stochastic
nature of wind and solar power. The objectives that were considered by this work were:
minimization of generation cost, minimization of real power losses, minimization of voltage
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deviations, and minimization of emissions. To solve the problem, the authors used an
adapted version of the well-established NSGA-II algorithm [46]. Specifically, they used
adaptive crossover, mutation, and selection based on differential evolution to ensure better
exploration of the search space. The proposed method was compared with NSGA-II in
several test cases, and was found to perform better.

3.3. Discussion on GA OPF

In Table 3 a summary of the reviewed works is presented. The analysis of the reviewed
works focused on seven axes:

1. Encoding: The choice of encoding is an important factor in GA applications. Most
early works use binary encoding, as it lowers the memory requirements. More recent
works usually adopt real encoding, as it circumvents the encoding-decoding steps of
the GA, increasing the overall efficiency.

2. Parent selection: Almost all works use roulette wheel selection, as it is easy to imple-
ment and leads to good results. A few exceptions also exist, e.g., [37] which uses
tournament selection. According to [16], tournament selection allows for better explo-
ration of the search space, but it leads to slower convergence. It should be noted that
using roulette wheel selection requires special transformations, in case particles with
negative fitness values exist amongst the population.

3. Crossover: Single-point crossover is the most popular choice amongst the reviewed
papers, as it is one of the first and easiest ways to implement crossover methods. The
uniform crossover has also been used, which is considered suitable for large-scale
problems [16]. Other crossover methods, such as blend and dispersed crossing, have
also been explored in the context of GA OPF.

4. Adaptiveness: In this work, adaptiveness is defined as the dynamic tuning of coeffi-
cients over the generations. Many works adaptively change mutation and crossover
probabilities, using each generation’s population statistics, to keep the diversity within
the population and allow for better exploration. Other works dynamically change
coefficients for the penalization of constraint violations. These coefficients are usually
small during the first generation (i.e., violations are not heavily penalized), which
allows for better explorations of the edges of the search space. In later generations,
violations are heavily penalized, to keep the population within the search space. Some
works omit the use of adaptive coefficients and rely on static values.

5. Power flow formulation: To calculate the FF for each member of the population, a
PF analysis must be executed. Due to the volume of the required calculations, this
is the most time-consuming step of the GA OPF. Most works use a full PF, i.e., no
approximations are used and the PF is solved, e.g., with the Newton-Raphson method.
Other methods used to solve the required PFs include FDLF, DQLF, and the method
introduced in [41]. While these methods can ease the computational burden, they
can lead to some loss of accuracy and pose some limitations to the applicability of
each algorithm (e.g., FDLF is not accurate in the distribution network due to its
line characteristics).

6. Objective functions: As presented in Table 2, many different objectives can be applied
to OPF. While cost minimization is the most popular amongst the reviewed works, a
wide array of other objectives has also been used, which is a testament to the versatility
of the GA OPF.

7. Constraint violation penalties: As earlier discussed, to include the constraints in the GA
OPF, penalties for the violation of each constraint are added to the FF. Most works use
quadratic penalties to penalize the violations. Quadratic penalties penalize heavily
large deviations from the search space limits and lightly smaller deviations. This way,
they allow for better exploration of the search space, as points close to the bounds of
the search space are not penalized too much, but points far off are. On the contrary,
linear penalties place the same weight on smaller and larger violations of constraints.
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Table 3. Summary of the reviewed GA OPF works.

Ref. Encoding Parent
Selection Crossover Adaptiveness Power Flow

Formulation
Objective

Functions *
Constraint Violation

Penalties

[25] Binary Roulette wheel Single-point Mutation, crossover
probabilities FDLF QGCM Linear

[34] Binary Roulette wheel Uniform Static Full PF QGCM Quadratic

[35] Binary Roulette wheel Single-point
Constraint
violation
penalties

Full PF QGCM Quadratic

[36] Binary Roulette wheel N/A
Mutation, crossover

probabilities,
population size

Full PF LGCM,
QGCM, MVD N/A

[37] Real Tournament Blend Static Full PF PCSM Quadratic

[38] Binary Roulette wheel Uniform
Mutation, crossover

probabilities
(exponential variation)

FDLF QGCM Quadratic

[39] Binary Roulette wheel Single-point Mutation, crossover
probabilities DQLF QGCM, LM,

MVD Quadratic

[40] Real Roulette wheel Single-point

Constraint
violation
penalties
increase

FDFL, [41] QGCM Quadratic

[42] Binary Roulette wheel Dispersed
crossing Static Full PF LM, MVD,

ICM Quadratic

[17] Real N/A N/A Static Full PF QGCM Linear

[44] Real Roulette wheel Single-point Static Full PF CM, QGCM,
LM N/A

[45] Real N/A N/A Crossover, mutation,
probabilities Full PF QGCM, LM,

MVD, MEI N/A

* Italics indicate multi-objective OPF.

Other common traits found in most works are elitism, hill climbing, and fitness scaling.
Elitism makes sure that the solution with the best FF value is passed to the next generation.
Hill climbing is closely related to elitism, as it involves randomly perturbing the value
of a randomly selected gene in the elite chromosome. Its FF is then re-calculated, and if
the disturbance results in an increased FF value, the modified chromosome is accepted;
otherwise, the change is reversed. Hill climbing and elitism improve the convergence
rate of the GA. Fitness scaling is used to avoid the early domination of extraordinary
solutions in the early stages and involves scaling the FF values of the entire population to
foster competition.

Surprisingly, the only work that features problem-specific operators is [25]. The
use of problem-specific operators is recommended to increase the performance of the
GA, regardless of the domain [33]. These operators can be based on simple heuristics or
observations based on the knowledge of the problem at hand. For example, in [25] five
operators were introduced, each aiming to exploit the specific characteristics of OPF, and
successfully increased the proposed method’s performance.

The important issue of the initial population choice for the GA OPF was addressed
in [40]. Literature suggests that initial populations may have a significant effect on the best
objective function value over several generations [47]. According to [40], this is also the
case in the context of OPF. Importantly, the authors of [40] also suggest a framework for
creating an initial population for the GA OPF that leads to an increase in performance.

The main gap in GA OPF is the lack of a systematic way to choose the hyperparameters
(e.g., population size, number of generations, crossover probability, etc.) of the GA OPF.
All the reviewed works relied on rules of thumb or repeated simulations and observations
to fine-tune the GA OPF.



Energies 2023, 16, 1152 12 of 25

Regarding the population size and the number of generations, [48] suggests that a
larger population size should be preferred over a greater number of generations (if the
available memory suffices). Ref. [49] was one of the first to give guidelines on the optimal
population size of the GA. Adjusting the population size can lead to a reduction of the
computational burden, without loss of accuracy [50]. This was also demonstrated in the
context of OPF in [36].

The choice of mutation and crossover probabilities also play a crucial role in the per-
formance of the GA. The consensus is that crossover probability should be high (i.e., greater
than 0.8), and mutation probability should be low (i.e., about 0.0001 for every bit) [33].
Research suggests that these probabilities should change as the number of generations
increases, for better exploration of the search space and better overall performance of the
GA [19]. This has also been demonstrated in a number of the reviewed works on OPF.

In our opinion, for applications with critical performance requirements, practitioners
should look into the more “advanced” GA features, such as problem-specific operators,
population initialization strategies and dynamic population size, mutation, and crossover
probabilities adjustment. The literature suggests that these features can increase the per-
formance and accuracy of the GA OPF. For more trivial GA OPF applications, simpler GA
OPF implementations can lead to satisfactory results and are easier to implement.

4. Optimal Power Flow Using Particle Swarm Optimization
4.1. The Particle Swarm Optimization Algorithm

PSO is an iterative, general-purpose, population-based, robust optimization algorithm,
which was introduced by Kennedy and Eberhart in 1995 [51]. The method was broadly
inspired by the swarm behavior of animals (e.g., schools of fish or birds flocking), as
stated by its inventors [51]. In PSO, the search is conducted by using a population (or
swarm) of particles (candidate solutions) to look for the optimal solution. Each particle
moves in the multi-dimensional search space. The behavior of each particle is described
by two parameters: its position and velocity (stored in the X and V matrices, respectively).
According to [51], the movement of the animals that inspired PSO is inspired by two
components: the cognitive (individual) and the social components. In the context of animal
behavior, the social component suggests that individuals disregard their own behaviors
and adjust to the behavior of other individuals in their proximity. On the other hand,
the cognitive component suggests that individuals are isolated beings and disregard the
behavior of individuals in their proximity, and adjust their behavior based on their own
experiences. PSO combines the social and the cognitive components to adjust the behavior
(i.e., change the position in the search space) of each individual particle. Even though PSO
is more geared towards using continuous variables, a discrete binary version of PSO has
also been introduced by Kennedy and Eberhart [52]. The overall performance of PSO in
mixed-integer programming has been thoroughly verified (e.g., [53]).

The basic elements of PSO according to [54] include particles, time, the population,
particle velocity, inertia weights, fitness, individual best, and global best. A particle j is a
candidate solution, presented by the m-dimensional vector Xj(t) =

[
xj,1(t), . . . , xj,m(t)

]
,

where m is the number of optimization variables, and xj,k(t) is the position of the j-th
element with respect to the k-th dimension (k ∈ {1, . . . , m}) at time t. The parameter t is
used as a counter to count the elapsed time (or epochs) of the PSO and is incremented in
each generation (similar to the generation counter in GA). The population Pt includes all n
particles (n is the number of particles) at time t: Pt = [X1(t), . . . , Xn(t)]

T . Particle velocity is
represented for each particle j with the m-dimensional vector Vj(t) =

[
vj,1(t), . . . , vj,m(t)

]T ,
where vj,k(t) is the velocity of the j-th particle with respect to the k-th dimension at time t.
Inertia weights are used to control the effect of previous velocities on the current velocity.
This is an important parameter in PSO, as it balances the trade-off between the local and
global exploration of the process. The concept of fitness in PSO is the same as that in GA,
i.e., a FF is used to assign a fitness value to each particle, which is used as a measure of
the quality of each solution. The individual best position X∗j of a particle is defined as its
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position where the individual encounters its best fitness score. The global best position X∗∗j
is the position amongst all individuals where the best fitness score was encountered. The
individual and global bests are stored in each iteration, and along with the inertia weights,
they are used to update each particle’s velocity in each iteration. An outline of PSO can be
seen in Figure 2.
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4.2. Particle Swarm Optimization Optimal Power Flow

The seminal work on PSO in the context of OPF is [54]. In [54] PSO was used to
solve a single-objective OPF. The effectiveness of the method in four different objective
functions was examined: fuel cost minimization, voltage profile improvement, voltage
stability enhancement, and cost minimization with quadratic cost curves. An annealing
procedure was introduced to fine-tune the search procedure. The annealing procedure
decreased the value of inertia weights as time progressed. This allowed for a more uniform
search in the initial stages and a more local search in the final stages. Infeasibilities in the
FF were punished with the use of quadratic penalties. Each particle position was checked
for feasibility. If infeasibilities were detected, the corresponding limit on each direction was
imposed. Finally, a maximum particle velocity was enforced, to enhance local exploration.
The proposed PSO was successfully demonstrated in the IEEE 30-bus test system, for all
four objective functions.

Ref. [55] introduced a Modified PSO (MPSO) for the OPF. According to the authors, the
fact that particles in PSO update their position only based on the individual and personal
bests can lead to early domination of the swarm by the personal best. To mitigate this, in
MPSO, the individual best position and the position of another random particle are used
to update each particle’s position. MPSO was demonstrated in a 5-bus test case, with the
objective of cost minimization.
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The authors of [56] introduced an Improved PSO (IPSO) to solve the OPF. The main
contribution of [56] lies in introducing the so-called non-stationary multi-stage assignment
penalty function to their formulation. According to the authors, the use of proper values of
static penalties to punish constraint violations is challenging and can cause poor perfor-
mance. To mitigate this, they introduced a non-stationary multi-stage assignment penalty
function that dynamically altered the penalties in each iteration, depending on the iteration
counter and the penalty factor. The maximum velocity limit and feasibility restoration used
in [54] were also used in this work. The proposed IPSO was successfully demonstrated in
the IEEE 30-bus test system, using cost minimization, reactive power optimization, and
optimal active and reactive power dispatch as the objective functions. The same authors re-
visited and further improved the IPSO OPF in [57]. The required modifications in the IPSO
for the accommodation of integer variables were introduced, and the IPSO was applied in
two test cases with the objective of reactive power dispatch optimization.

In [58] the concepts of aggregation and congregation were used. Aggregation refers
to the swarming of particles by external forces, and congregation to the swarming of
particles by social forces. Both concepts can be expressed actively or passively. In [58] active
aggregation and passive congregation were considered, and to this end, the Local Passive
Congregation (LPAC) and the General Passive Congregation (GPAC) PSO algorithms
were developed. Moreover, the concept of Coordinated Aggregation (CA) was explored,
according to which particles consider moving towards particles with better achievements
than their own. The CA PSO algorithm was developed to examine its effectiveness. All three
proposed PSO algorithms were compared to an IPM solver and a simple PSO algorithm
for three test cases and two objective functions. The proposed algorithms were found to
outperform their counterparts in terms of accuracy but required more solution time. While
the performance of LPAC was the best, the authors argue that the use of CA should be
preferred, as it requires the tuning of fewer parameters. The CA PSO algorithm is also
discussed by the same authors in [59].

The concept of passive congregation was also used in [60], where PSO with Passive
Congregation (PSOPC) was introduced. The authors argue that without the extra infor-
mation passive congregation provides, the population is likely to lose diversity and be
confined to local minima. The maximum velocity in this work was set to half the length of
the search space. PSOPC was subsequently used to optimize fuel consumption, voltage
profile, and voltage stability in the IEEE 30-bus test system.

The focus of [61] lies in using PSO to solve the OPF subject to security constraints.
The main contribution of [61] was the introduction of the Reconstruction Operators (RO)
that allowed particles to satisfy the units’ operating constraints, while only searching the
feasible space, reducing the computing time. Moreover, a penalty dynamic coefficient
for the punishment of constraint violations was introduced. The proposed RO PSO was
applied in two test cases.

Ref. [62] focused on the integration of integer variables in the PSO, and introduced the
Mixed-Integer PSO (MIPSO) algorithm. According to the MIPSO algorithm, for discrete
variables, trajectories can be interpreted as probabilities, not as the values of the variables
themselves. Thus, the trajectories are changes in the probability that a coordinate will take
on a discrete value. The effectiveness of the MIPSO algorithm was demonstrated in two
test cases, for three different objective functions.

Another work that focused on the integration of integer variables is [63]. This work
encoded integer variables using 8-bit encoding. Moreover, Ref. [63] explored the use of
the constriction factor to ensure the convergence of the proposed method and control its
convergence speed. The proposed method was demonstrated in the cost minimization of
the IEEE 30-bus and 96-bus networks and was compared with a simple GA implementation,
which it outperformed.

The authors of [64] focused on the impact of time-varying inertia weights on the
performance of PSO. To this end, they examined three algorithms: a PSO with static weights,
a Time-Varying Inertia Weight (TVIW) PSO where weights linearly decreased with respect



Energies 2023, 16, 1152 15 of 25

to time, and their proposed algorithm, GLbest Inertia Weight (GLbestIW) PSO. According
to the GLbestIW PSO, inertia weight is defined as a function of the local best and global
best values of the particles in each generation. GLbestIW PSO outperformed the other two
examined PSO implementations in the cost-minimization of the IEEE 30-bus network.

The choice of a time-varying inertia weight strategy was the focus of [65]. To this end,
the Weight-Improvement (WI) PSO algorithm was introduced. The WI PSO combined
the linear reduction of the weights with respect to time with a stochastic element it intro-
duced. The WI PSO led to more accuracy and faster convergence than traditional PSO, as
demonstrated in the cost-minimization of the IEEE 30-bus network.

Ref. [66] introduced PSO with Aging Leader and Challengers (PSO ALC). PSO ALC
was inspired by the law of nature that every organism on earth has a limited lifespan.
Therefore, in the context of PSO, the leader of the swarm becomes older with the passage
of time, and gradually losses its ability to lead the swarm by being challenged by new
and younger challenges. A framework for dynamically tuning the lifespan of the leader is
introduced, based on the leading power of the leader. If the leader shows strong leading
power, its lifespan is extended; otherwise, if the leader fails to improve, challengers claim
the leadership, bringing diversity to the swarm. The PSO ALC was demonstrated in the
IEEE 30-bus and IEEE 118-bus networks, with objectives of fuel cost minimization, active
power loss minimization, and voltage deviation minimization. The same authors used PSO
ALC to tackle OPF with FACTS devices in [67].

The Fuzzy-Based Improved Comprehensive-Learning PSO (FBICL PSO) algorithm
was introduced in [68]. Firstly, the authors of [68] were concerned with introducing some
less common practical generator constraints in the OPF problem, such as the valve-point
effect, multi-fuel option, prohibited operating zones, and the modeling of FACTS in the
formulation. Regarding the FBICL PSO, its first novelty lies in using the Comprehensive
Learning (CL) framework in the context of OPF. CL was used as a counter-measure to the
dominance of the global best position in the updated positions of the particles. So, instead
of using the global best position, in the CL framework, the personal best positions of other
particles were used, which according to the authors, improved the diversity of the swarm.
In [68], the CL framework was improved by introducing an iterative mutation strategy,
which randomly selected three mutant vectors from the initial population and applied them
to the current population. Another contribution of [68] lies in introducing fuzzy logic using
Mamdani-type fuzzy rules to adapt the inertia weights in each iteration. The fuzzification
and de-fuzzification processes were thoroughly described. The authors argue that the
introduction of fuzzy logic improves the search ability (and hence the performance) of the
proposed algorithm. The effectiveness of the FBICL PSO was demonstrated in various test
cases on the IEEE 30-bus network and was compared against other techniques.

In [69], PSO was used in a relatively new problem, the estimation of the Feasible
Operating Region (FOR) of a distribution network. As the exploration of points close to
the operational limits of the network is important in this problem, emphasis was given
to the penalty coefficients used in the FF. Linear penalties were used, that were scaled
dynamically depending on the elapsed time (i.e., initially penalty coefficients were small,
to allow for exploration of the search space, and towards the end, penalty coefficients were
high to encourage feasible solutions). Two operators to balance the trade-off between the
exploration of feasible and infeasible points were also introduced. The proposed algorithm
was successfully applied in a benchmark CIGRE distribution network.

Finally, Refs. [70,71] are two of the seminal works that use PSO to tackle multi-objective
OPF. In [70], the Multi-Objective PSO (MO PSO) algorithm was introduced to solve an OPF
that co-optimizes fuel and wheeling costs. The authors extended the single-objective PSO
by proposing new definitions of the local and global best individuals for multi-objective
optimization problems. Emphasis was also given on the use of clustering techniques to
reduce the size of the Pareto Set, to improve the algorithm’s performance. The effective-
ness of MO PSO was demonstrated for two cases in the IEEE 30-bus network. Ref. [71]
introduced a fuzzy decision-based multi-objective PSO to solve the OPF problem. The
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combination of cost, losses, voltage stability, and emission reduction was considered as
the objective function. A self-adaptive method for the factors that determine the influence
of personal and global bests was used, which according to the authors, had a significant
effect on the rate of convergence. Moreover, inertia weights were tuned dynamically using
a chaotic formula to balance global and local exploration. Similar to [68], a mutation factor
was also used to avoid trapping the proposed algorithm in local optima. The proposed
algorithm was applied in the IEEE 30-bus network for two test cases.

4.3. Discussion on PSO OPF

In Table 4 a summary of the reviewed works is presented. The analysis of the reviewed
works focused on four axes:

1. Adaptiveness: Similar to the GA OPF analysis, adaptiveness is defined as the dynamic
tuning of parameters as time elapses. Most reviewed inertia weights adapt dynami-
cally, as time elapses. The simplest form of adaptation is to linearly reduce the weights
as time elapses. However, more sophisticated techniques have also been proposed,
such as the GLbest and WI algorithms (in [64,65] respectively) or fuzzy rules [68].
According to all researchers, the use of adaptive weights allows for a more uniform
search of the search space. Apart from inertia weights, penalty coefficients are also
commonly adapted dynamically. These works use small penalty coefficients at the
beginning of the process, to allow for better exploration of the search space. Penalty
coefficients are subsequently increased in the latter stages, to confine the swarm
within the feasible search space. An interesting concept is presented in [66], where the
leader’s leading power was dynamically adapted.

2. Maximum velocity: Many works use an upper limit on the velocity of each particle for
each dimension. The use of such a limit can enhance the local character of the search,
and better resembles the incremental process of the human learning process [54].

3. Objective functions: The PSO OPF has been applied for many different objective
functions, showcasing its versatility.

4. Constraint violation penalties: Similar to the GA OPF analysis, quadratic penalties
penalize heavily large deviations from the search space limits and lightly smaller
deviations. This way, they allow for better exploration of the search space, as points
close to the bounds of the search space are not penalized too much, but points far
off are. On the contrary, linear penalties place the same weight on smaller and larger
violations of constraints.

First of all, it is worth mentioning that only four axes were used for the analysis of
PSO OPF, while seven were necessary for the analysis of GA OPF. This is indicative of
the relatively simpler implementation of PSO compared to GA, as also noted by other
researchers (e.g., [14]). This is also evident by the smaller number of hyperparameters that
need to be tuned in the case of PSO, as is discussed later in this paper. In addition, PSO OPF
generally requires less computational burden, thus all works used a full PF formulation.

Another typical method that was used throughout the various works that were re-
viewed (e.g., [63,69]) is the so-called constriction factor method. The constriction factor
was first introduced in [72], where it was demonstrated that its use may be necessary to
insure the convergence of PSO. The constriction factor is used as a coefficient that controls
the rate of change of speed between time intervals. Typically, the constriction factor K is
expressed as:

K =
2∣∣2− ϕ−
√

ϕ2 − 4ϕ
∣∣ , where ϕ = c1 + c2, ϕ > 4 (6)

and c1, c2 are the cognitive and social accelerator coefficients, respectively. In [72], it is
demonstrated that the convergence characteristics of the system can be controlled by ϕ. A
ϕ value greater than 4 is required for convergence. The smaller the constriction factor, the
slower the convergence. A thorough analysis of the stability of PSO can be found in [73].
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Table 4. Summary of the reviewed PSO OPF works.

Ref. Adaptiveness of Inertia Weights Maximum Velocity Objective
Functions *

Constraint Violation
Penalties

[54] Annealing to reduce inertia weights Yes LGCM, QGCM, MVD Quadratic

[55] Dynamic inertia weights
adjustment N/A LGCM Linear

[56,57] Dynamic penalty coefficients Yes LCGM, RPDO Linear

[58,59] Dynamic inertia weights
adjustment Yes LM, MVD Linear

[60] No Yes GCM Quadratic

[61] Dynamic penalty coefficients,
inertia weights adjustment N/A GCM Quadratic

[62] Dynamic inertia weights
adjustment Yes GCM, MVD Linear

[63] Dynamic inertia weights
adjustment Yes GCM Quadratic

[64] Dynamic inertia weights
adjustment (GLbest algorithm) N/A GCM N/A

[65] Dynamic inertia weights
adjustment (WI algorithm) N/A GCM N/A

[66,67] Dynamic adjustment of leader’s
leading power N/A GCM, LM, MEI Linear

[68] Dynamic inertia weights
adjustment (Mamdani-type fuzzy rules) Yes GCM Quadratic

[69] Dynamic penalty coefficients Yes FOR estimation Linear

[70] No N/A GCM, wheeling cost
minimization N/A

[71]

Dynamic inertia weights
adjustment (chaotic formula), influence of

the personal and global bests
(self-adaptive)

N/A GCM, LM, MEI N/A

* Italics indicate multi-objective OPF.

The simplicity of PSO stems largely from the fact that a particle uses only two reference
points to update its position: the individual and global bests. Some of the reviewed works
(e.g., [58–60]) argue that this causes the premature convergence of PSO. Hence, method-
ologies based on congregation are used to mimic the social interactions of animals [74] to
enhance the diversity of the swarm. An analysis of the available congregation methods
and their usefulness in the context of OPF is presented in [58]. According to the works that
use congregation, the use of congregation increases overall PSO performance but comes at
the expense of requiring tuning of more parameters. These findings are in accordance with
relevant work in other fields (e.g., [75]).

As previously discussed, PSO has been introduced as an optimizer of continuous
variables [51], but later a version of PSO that also supported discrete variables emerged [52].
This led to the introduction of several different methodologies for the incorporation of
discrete variables in the context of PSO OPF. For example, Ref. [57] simply truncated
discrete variables to transform them into integers, and [62,63] used binary encoding for
discrete variables, and interpreted the trajectories of particles as probabilities, not as the
values of the discrete variables themselves (which is the approach suggested by [52]). In
both cases, the PSO handled the mixed-integer problem with remarkable accuracy, but
generally, the second approach is more broadly accepted. The effectiveness of PSO in
mixed-integer problems has been extensively verified (e.g., [53,76]).
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Surprisingly, none of the reviewed works tackled the effect of a population initializa-
tion strategy on the performance of PSO OPF, as the topic has been studied in GA OPF.
The literature suggests (e.g., [77]) that the choice of a good initial population can increase
the performance of PSO. Therefore, this is a gap in the literature of PSO OPF that could
be the focus of future research. Moreover, the discussion in the reviewed works on rules
of thumb regarding swarm size, adaptive population size, or the number of iterations, is
very limited. These are also gaps in the PSO OPF literature. The literature on PSO with
adaptive population size gives promising results regarding the increase of the efficiency of
PSO (e.g., [78]). Regarding the swarm size, the traditional rule of thumb suggests choosing
a swarm size consisting of 20 to 50 particles. Recent research, however, suggests that this
number is too conservative, and a swarm size of 70 to 500 particles should be preferred [79].

For practitioners looking to develop their own PSO OPF algorithms, we offer similar
advice to that offered for practitioners looking to develop their own GA OPF algorithms.
For applications with critical performance requirements, practitioners should look into
the more “advanced” PSO features, such as dynamic penalty coefficients, congregation,
or coordinated aggregation. For more trivial PSO OPF applications, simpler PSO OPF
implementations can lead to satisfactory results and are easier to implement.

5. Cross-Comparison of GA OPF and PSO OPF

Cross-comparison amongst the different GA and PSO OPF implementations is a
daunting task. Due to the volume of published works, the omission of information regard-
ing some details of the exact implementation of each algorithm (see the N/A values in
Tables 3 and 4), and the lack of standardized benchmark tests, the exact replication of the
published works is, in some cases, impossible. Instead of trying to replicate the results,
this work focuses on using the reported results of each work and comparing them with
other works that have been applied in a similar setting. While a definitive benchmark for
assessing the performance of a metaheuristic algorithm does not exist, the most popular
test bed amongst the reviewed works is the IEEE 30-bus network. Indeed, 10 of the 12
reviewed GA OPF works and 14 of the 18 PSO OPF works were demonstrated on the IEEE
30-bus network.

In this work, we compile the reported results of the algorithms that were applied in
that network and cluster them by the same objective function. The most popular objective
function for both PSO and GA OPF is quadratic fuel cost minimization. Thus, we focused
on GA and PSO OPF applications that were applied in the 30-bus IEEE network and
used quadratic fuel cost minimization as their objective function, as this was the only
combination of topology and objective function with an adequate number of works to allow
for the extraction of useful conclusions regarding the accuracy of the proposed methods.
Filtering the reviewed works for this objective function and this topology yielded five GA
OPF works and eight PSO OPF works, which are presented in Tables 5 and 6, respectively.

Table 5. Reported results of the reviewed GA OPF works for the IEEE 30-bus network and cost
minimization objective function.

Ref. Number of
Generations

Population
Size NFFEs Crossover

Probability
Mutation

Probability Cost [$]

[25] 200 80 16,000 0.9 (initial) 0.001/bit (initial) 802.06

[36] 50 400 (initial) ~17,000 dynamic dynamic 799.84

[34] 200 50 10,000 0.9 1 (initial), 0.005 (final) 801.49

[40] 500 200 12,000 0.9 0.01 801.05

[17] - - - 0.85 - 796.22
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Table 6. Reported results of the reviewed PSO OPF works for the IEEE 30-bus network and cost
minimization objective function.

Ref. Number of
Epochs

Population
Size NFFEs Cognitive

Coef. Social Coef. Inertia Weight Cost [$]

[54] 500 50 25,000 2 2 - 800.41

[60] 500 50 25,000 0.5 0.5 0.9 (initial), 0.4 (final) 802.04

[56] 100 50 5000 2.05 2.05 - 4389 *

[63] 150 20 3000 2.1 2.1 1 (initial) 800.74

[66]
- 60 5000 2.05 2.05 0.9 (initial), 0.4 (final)

825.89 *

[67] 797.14

[68] 50 200 10,000 - - 0.9 (initial), 0.4 (final) 800.4

[64] 20 200 4000 2 2 - 801.84

* Use modified versions of the IEEE 30-bus network.

The comparison of the efficiency of the various algorithms was not as straightforward.
Most reviewed works focused on the elapsed CPU time when reporting the results. This,
however, is not a representative performance metric, as the release dates of the reviewed
works span almost three decades. So, due to the vast technological advancements that
have occurred in this period, this metric could not be used. Thus, as a proxy metric for the
computational efficiency of each of the reviewed works, the Number of Fitness Function
Evaluations (NFFE) was used. As a PF was run in each FF evaluation, most of the execution
time of a GA or PSO OPF was consumed in this step; therefore, the choice of this metric was
justified. Additionally, the only other work [14] that attempted a similar cross-comparison
of metaheuristics used the same metric.

The results of the cross-comparison of works that used the IEEE 30-bus network
and QFCM objective function can be seen in Tables 5 and 6 for GA OFP and PSO OPF,
respectively. It should be noted that [56,66] used modified versions of the IEEE 30-bus
network, but were included in the cross-comparison for the sake of extracting conclusions
regarding the efficiency and choice of PSO OPF hyper-parameters.

Ref. [17] yielded the best results overall, and [67] was the best-performing formulation
amongst the PSO OPFs. Unfortunately, Ref. [17] omitted to report several key GA OPF pa-
rameters, such as the number of generations, population size, etc. The overall performance
of both GA and PSO OPF was excellent, as the worst reported solution (802.06 $ of [25])
was only 0.733% worse than the best-reported solution. Therefore, the general accuracy of
GA and PSO in the context of OPF was reaffirmed by this cross-analysis.

A large variation in the choice of hyper-parameters was observed in GA OPF. The
number of generations ranged from 50 to 500, and the population size from 50 to 400. This
was not in accordance with the guidelines presented in [48] which suggests that a larger
population size should be preferred over a large number of generations. Regarding the
choice of crossover and mutation probabilities, the general guidelines suggested by [33]
were followed: the reported crossover probability was greater than 0.8 in all works, and
the mutation probability stayed sufficiently low. Definitive conclusions cannot be drawn
regarding the relative performance of GA OPFs that dynamically alter their crossover and
mutation probabilities versus GA OPFs that use static values, as only [40] belonged in the
latter category. The literature suggests that the performance of GA OPF with dynamic
probabilities outperforms GA OPF with static probabilities [19].

The choice of hyper-parameters in PSO OPF was more consistent compared to GA
OPF, a well-known advantage of PSO over the GA [9,14]. Rules of thumb about PSO
suggest that the PSO swarm size should consist of 20 to 50 particles, and most reviewed
works adhered to this rule of thumb. However, some works chose larger swarm sizes, and
research suggests that this might lead to better performance [79]. Some variability, on the
other hand, could be spotted in the number of epochs in the PSO OPF, which spanned from
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as low as 20 to as high as 500. It should be mentioned that works that used many epochs
(e.g., [54]) usually included a stopping criterion to limit the NFFEs once a certain level of
accuracy was obtained. Refs. [66,67] adopted a slightly different approach, and instead
of defining the number of epochs, they defined the maximum number of NFFEs, which
was set to 5000. The values of the cognitive and social coefficients were within the range
suggested by rules of thumb (i.e., around 2), with the exception of [60], which claimed
to have achieved better performance by setting the values to 0.5. Moreover, the choice
of inertia weights was also relatively consistent, with most works using an initial inertia
weight of 0.9, and a final of 0.4.

The comparison of the computational efficiency of GA and PSO OPF seemed to be
slightly in favor of PSO OPF. PSO OPF generally required fewer NFFEs and achieved
on-par (if not better) results in terms of accuracy, and, remarkably, several PSO OPF works
required fewer than 5000 NFFEs to yield very accurate results. This observation was in
accordance with the findings of [9,14]. The relationship between the objective function
and NFFEs for the works included in Tables 5 and 6 is illustrated in Figure 3. As shown
in Figure 3, a greater NFFE does not necessarily lead to more accuracy (especially in
PSO OPF), suggesting that the proper implementation of a method (e.g., proper choice of
hyper-parameters, etc.) cannot be offset by increasing its number of generations or epochs.
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Our findings can also be compared with the findings of [3,20]. These works directly
compared specific GA and PSO OPF implementations, finding that GA OPF implemen-
tations were generally more accurate. This can also be argued from the findings of this
work, but the gap is much smaller than the reported gap described in [3,20]. A plausible
explanation for this is that these works were published in the mid-2000s, when research on
PSO was still in its early stages and GA was more established (for example, [67], which
yielded the best results amongst PSO OPFs, was published much later, in 2015).

6. Conclusions

This work focused on a literature review and cross-comparison of GA and PSO
OPF implementations. In the first part of this work, the OPF problem and its sources
of complexity were described. The deterministic optimization methods that can be used
to solve the OPF were briefly discussed, and their shortcomings were highlighted. The
shortcoming of deterministic optimization methods can be mitigated through the use of
metaheuristic optimization methods. Two of the most popular metaheuristic optimization
methods are GA and PSO.

Many works that use GA or PSO to solve the OPF problem exist in the literature.
This work performed a thorough literature review of the most prominent of these works,
presenting their contributions and main characteristics. To the best of our knowledge, this
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is the first time a thorough literature review that focuses exclusively on GA and PSO OPF
has been carried out.

Both GA and PSO OPF can handle OPF for all the objective functions shown in Table 2.
A significant advantage of GA and PSO OPF is that in order to handle a different objective
function, the only necessary modification is the change of the FF. As already mentioned,
these methods do not require any prior knowledge of the characteristics of the objective
function or the search space, as they only calculate the FF and assign a quality value to
each solution. Importantly, as shown in works that use GA or PSO OPF to solve the OPF
problem for different objective functions (e.g., [36,39,42,54,66,67]), the hyper-parameters of
these methods do not change as a result of a change in the FF. It should also be noted that
GA and PSO OPF methods are able to handle both deterministic and stochastic (e.g., [45,65])
OPFs, which is crucial in the current landscape, where the uncertainty caused by stochastic
generation should be considered.

The GA OPF works that were reviewed here were analyzed along seven axes: encoding,
parent selection, crossover, adaptiveness, power flow formulation, objective functions, and
constraint violation penalties, as can be seen in Table 3. The implications of choosing
different values along these axes were discussed, and where possible, were corroborated
with the best practices from other domains.

Similarly, the PSO OPF works that were reviewed were analyzed along four axes:
adaptiveness of inertia weights, maximum velocity, objective functions, and constraint
violation penalties, as can be seen in Table 4. Again, the implications of choosing different
values along these axes were discussed, and where possible, were corroborated with the
best practices from other domains.

Additionally, a cross-comparison between the reviewed GA and PSO OPF works was
carried out. Since replication of some of the reviewed works is sometimes impossible
(due to the lack of some implementation details), the reported results were used for the
cross-comparison. Most of the reviewed works were demonstrated on the IEEE 30-bus
network and used fuel cost minimization as their objective function. Thus, these works
were clustered, and their reported results are presented in Tables 5 and 6 for GA OPF and
PSO OPF, respectively. The goal of the cross-comparison was to compare GA and PSO
OPF both in terms of accuracy and computational performance. To compare accuracy, the
reported objective function values were used, and to compare computational performance,
the NFFEs metric was used. The results of the cross-comparison suggest that GA OPF is
slightly more accurate; however, PSO imposes much less computational burden. It should
be noted, however, that the accuracy of all reported works was very satisfactory.

Finally, clustering the reported results also allowed for the comparison of the chosen
hyper-parameters in GA and PSO OPFs. According to the reported results, it was observed
that GA OPF approaches have more variability in the choice of hyper-parameters compared
to PSO OPF approaches. Moreover, PSO OPFs adhere more to the rules of thumb that exist
in the literature, potentially making their tuning process easier.

Our hope is that the clustering of the hyper-parameters of GA and PSO OPF can act as
a first step towards the development of standardized GA and PSO OPF algorithms, which,
in our opinion, is still the major barrier to the widespread adoption of GA or PSO OPF.
Even though the emergence of competitive mixed-integer non-linear solvers has somewhat
decreased the interest in metaheuristics, they can still offer many advantages. Apart from
the benefits that are discussed in Section 1 (e.g., the accurate capture of non-convexities
of the system, etc.), two more benefits are relevant. Firstly, GA or PSO OPF algorithms
can be easily created for free by practitioners using open-source tools that are available
online, while most mixed-integer non-linear solvers are commercial and come with a hefty
cost. Secondly, as suggested by [80], deterministic optimization techniques require the full
topology of the network to be available. With the proliferation of distributed generation
and the need to run OPF analyses in the distribution network, where the observability of
the network is more often than not limited, practitioners may need to rely on measurements
to infer the topologies (e.g., use “black-box” neural network approaches). Metaheuristics
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are readily compatible with these approaches, while mathematical approaches will require
special transformation to be compatible.

Therefore, since the performance of all reviewed works is adequate, further research
should concentrate on the standardization of GA and PSO OPF methodologies, focusing
on the following three directions:

1. The development of frameworks for the systematic tuning of the hyperparameters
of GA and PSO OPF. This could entail providing generic rules for the tuning of the
hyper-parameters depending on the parameters of each specific OPF (e.g., size of the
problem, number of constraints, desired accuracy, etc.).

2. Future works should provide more transparent details regarding their implementation
(e.g., reporting of the values of all hyper-parameters should be done explicitly). This
would allow easier comparison of different methodologies and the replication of the
work by other researchers.

3. The results reported in each work should also be standardized. Apart from the values
of objective functions in each case, a useful metric that should be reported is the
NFFEs. As discussed in this work, the NFFE metric allows the extraction of useful
conclusions regarding the computational efficiency of each method.

4. Finally, standardization is also desired in the topologies used for benchmarking the
proposed methods. The IEEE 30-bus network is a good benchmark for proof-of-
concept experimentation. However, since practical networks are much larger, and
as the scalability of GA and PSO OPF has not been extensively researched, larger
benchmark networks should also be introduced and used. Additionally, future works
should use distribution network topologies to benchmark the proposed methodology,
as the application of GA or PSO OPF in the distribution network has not yet been
adequately researched.
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