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Abstract: As forced-air cooling for heat sinks is widely used in the cooling design of electrical and
electronic equipment, their thermal performance is of critical importance for maintaining excellent
cooling capacity while reducing the size and weight of the heat sink and the equipment as a whole.
This paper presents a method based on the combination of computational fluid dynamics (CFD)
simulation and surrogate models to optimize heat sinks for high-end energy storage converters. The
design takes the thermal resistance and mass of the heat sink as the optimization goals and looks for
the best design for the fin height, thickness and spacing, as well as the base thickness. The analytical
and numerical results show that the thermal resistance and mass of the heat sink are reduced by
the proposed algorithms, as are the temperatures of the heating elements. Test results verify the
effectiveness of the optimization method combining CFD simulation with surrogate models.

Keywords: computational fluid dynamics (CFD); energy storage; surrogate model; design
optimization; heat sinks; power converters

1. Introduction

In the face of global warming and the rapid depletion of fossil-fuel resources, the uti-
lization of renewable energy has become a general trend across the world. With the
large-scale and high penetration of renewable energy in power grids, the stable supply
of electricity and energy-storage technologies have become technical concerns. Power
Conversion Systems (PCS) can improve the utilization quality of clean energy and stabilize
the load fluctuations of the power grid. In some cases, PCS can be used as an energy source
where power grids are not available (i.e., power islands). Because of these advantages, PCS
are gaining in popularity in industrial, as well as domestic, applications. In PCS power
electronics converters, switching devices such as metal-oxide-semiconductor field-effect
transistors (MOSFETs) and insulated gate bipolar transistors (IGBTs) are major heat sources
and the heat is removed typically by heat sinks, which can be of natural cooling or forced-air
cooling. The thermal performance of components such as IGBTs is directly related to the
reliability of the whole converter. Recognizing that the main cause of electronic equipment
failure is overheating [1], heat sink design for converters is a key focus of this work.

In the literature, quantitative analysis of the key parameters is considered useful.
Typically, the analysis is based on calculating the thermal resistance of the heat sink, which
is related to the thickness of the substrate, and the number and thickness of the heat sink
fins. However, this does not give an optimization method for the structural design of the
heat sink [2]. In some cases, the geometric parameters that affect the thermal resistance of
the heat sink are optimized by using a genetic algorithm method [3]. Ref. [4] studies the
influence of a single parameter of the heat sink on the performance and then develops the
orthogonal method to assess the influence of different parameters on the performance of the
heat sink. However, the design cycle is tedious, and the experimental cost is relatively high.
Generally, when studying the heat dissipation performance of a heat sink, it is necessary
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to consider not only the thermal resistance but also the volume and the cost of the heat
sink. There are several parameters that affect the heat dissipation performance of the heat
sink, such as the thickness of the base, and the length, thickness and number of fins. The
optimization in this paper considers the influence of multiple parameters for multiple
optimization targets. In this paper, the heat sink and forced air cooling are used in an
IGBT-based energy storage converter where IGBTs are considered the main heat sources for
cooling design. CFD simulation and surrogate model algorithms are combined to realize
the double objective optimization (the thermal resistance and mass of the heat sink). The
optimal parameter design can be obtained by bringing the optimized results into the CFD
model to verify the correctness of the designs.

2. Mathematical Model

This work carries out a thermal analysis of a high-end PCS converter which involves
an extensive understanding of heat transfer within a heat sink.

2.1. Design Variables

In this work, there are four independent variables: the thickness of the base, and fin
height, thickness and spacing. The structural diagram of the optimized forced-air-cooled
heat sink is shown in Figure 1.
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Figure 1. Structural diagram of the forced-air-cooled heat sink.

Where B is the thickness of the base, and H, T and X are the height, thickness and
spacing of the fins, respectively, all of which taken together are defined as x1, x2, x3, x4, W is
the width of the heat sink, L is the length of the heat sink and H is the height of the heat
sink. Based on these variables, the thermal resistance and mass of the heat sink can be
obtained and used as the objective functions of the optimization design.

2.1.1. Boundary Conditions

The optimization variables of the heat sink are associated with IGBT size, fan size,
model and airflow rate. For effective heat transfer, the height of the fins shall not be
greater than that of the fan, otherwise, airflow misses part of the fins and reduces the heat
dissipation performance. Similarly, the spacing between fins shall be greater than 1 mm.
The thickness of the heat sink fin shall be greater than 1 mm for easy manufacture. In
summary, the constraints of design optimization are given by:

1mm ≤ x1 ≤ 20mm
50mm ≤ x2 ≤ 100mm
1mm ≤ x3 ≤ 4mm
1mm ≤ x4 ≤ 8mm

(1)

2.1.2. Objective Functions

Considering the heat dissipation in the heat sink, the optimization objectives of the
heat sink are low thermal resistance, low mass, high heat transfer efficiency and overall
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cost. In this paper, the thermal resistance and mass of the heat sink are selected as the
design targets, and the entropy weight method [5] and linear weighting method [6] are
combined to process the numerical data. This processing method can not only solve the
problem of different variable units but also eliminate the influence of different variable
values on the optimization results, making the data dimensionless for comparison [7]. The
specific process of data processing has five steps:

• Standardize the data;

Tij =
max(x1j, . . . , xnj)− xij

max(x1j, . . . , xnj)−min(x1j, . . . , xnj)
+ 0.0001 (2)

• Calculate the entropy value of the jth index, which ranges between 0 and 1;

ej = −(
1

ln n
)

n

∑
i=1

Tij
n
∑

i=1
Tij

ln
Tij

n
∑

i=1
Tij

(3)

• Calculate the weighting of each data set (I = 1,2 . . . ,n; j = 1,2 . . . ,m);

wj =
1− ej

m
∑

j=1
(1− ej)

(4)

• Establish the priority function of the targets, based on the linear weighting method;

Pi =
m

∑
j=1

wjxij (5)

• Obtain the multi-objective optimization function of the heat sink;

min F(x) = min[w1R(x) + w2M(x)] (6)

From the above calculations, the weightings of the thermal resistance and the mass are:

w1 = 0.588,
w2 = 0.412.

2.2. Thermal Resistance Model

The thermal resistance of the heat sink consists of four parts [8], the thermal resistance
between the junction and the device case, the thermal resistance between the shell and the
environment, the thermal resistance between the shell and the heat sink, and the thermal
resistance between the heat sink and the environment [9]. Figure 2 shows the equivalent
thermal resistance network diagram of the heat sink.
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In Figure 2, PV is the total heat loss of the IGBT, Rjc is the thermal resistance between
the junction and shell, Rca is the thermal resistance between the shell and the environment,
Rcs is the thermal resistance between the shell and heat sink and Rsa and is the thermal
resistance between the heat sink and the environment. Rb is the heat conduction resistance
of the heat sink base, Rfin is the heat conduction resistance of the fins and RA is the heat
convection resistance of the fins. Similar to electrical resistances in electrical circuits, the
thermal resistance can be calculated by adding up the component resistances according
to their series or parallel connections. The heat transfer in the forced-air-cooled heat sink
follows Ohm’s law for thermal circuits. Compared with Rcs and Rsa, Rca is very large and
can be ignored in parallel connection; then:

∆T = P
(
Rjc + Rcs + Rsa

)
(7)

According to Equation (7), the temperature rise of the device is determined by the
loss and thermal resistance of the power device. The losses of power devices and the
thermal resistance of the junction–shell are mainly determined by the production process,
packaging materials and performance index. These two parameters are constant values [10].
The thermal resistance between the shell and heat sink is very small and can be ignored.
The thermal resistance between the heat sink and the environment can be reduced by
optimizing the geometric structure, materials and external environment of the heat sink.
Compared to other parameters, the thermal resistance between the heat sink and the
environment is also relatively simple and convenient to optimize. For this reason, the
thermal resistance between the heat sink and the environment is the objective that majorly
corresponds to the total thermal resistance.

2.3. Optimization Model

The thermal resistance of the heat sink in this design is mainly composed of the heat
convection thermal resistance and the heat conduction resistance of the heat sink base and
fins, which can be calculated by Equations (8)–(10). The total thermal resistance of the heat
sink can be calculated by Equation (11).

Rb =
B

ksWL
(8)

Rfin =
H

ksTL
(9)

RA =
1− 0.152(vL)−

1
10

5.12(vL)
4
5 (H + S)·2N

(10)

Rsa = Rb +
Rfin
2N

+ RA (11)

where N is the number of air ducts, ks is the thermal conductivity of the heat sink material
and v is the airflow velocity.

In this design, the size of the heat sink is 230 × 420 mm and the height is variable.
According to Equations (8)–(11), the optimization model of the heat sink resistance is:

minF1 =
x1

ks ∗ 420 ∗ 230
+

x2

ks ∗ x3 ∗ 230
8 +

1− 0.152(230v)−
1
10

5.12(230v)
4
5 (x2 + x4) ∗ 2 ∗ {

[
420 − x3
x3 + x4

]
+ 1}

(12)

From Figure 2, the heat sink mass optimization model is:

min F2 = 420 ∗ 230 ∗ x1ρm + 230 ∗ x2x3x5ρm (13)

where ρm is the density of the heat sink material, which is aluminum in this case.
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3. The Proposed Optimization Methods

In the literature, surrogate model algorithms are adopted, which do not rely on actual
models, thus reducing computational time and cost. The surrogate model algorithms use
a Kriging algorithm to establish a simplified model by using basic parameters such as
independent variables, objective functions and limiting conditions [11]. The success of
the surrogate model depends on its sampling strategy and the number and location of
sampling points [12]. The generated sample points should accurately reflect the distribution
characteristics of sampling points [13,14]. A Kriging algorithm is then applied to search for
the optimization point.

3.1. Kriging Models

At present, the methods of establishing models are divided into two categories: one is
a parametric model, and the other is a non-parametric model. The former is based on the
assumption that the known parameters obey a given population distribution. The latter
model does not assume any particular distribution of the population. In the case of a given
sample, it is calculated according to non-parametric statistics [15].

In the optimization, a Kriging model based on a parametric model is selected, which
is also an alternative model widely used at present. The Kriging model is given by [16–18]:

y(x) = µ+ z(x) (14)

where y(x) is the response function, µ is the constant, z(x) is the random process, respec-
tively. Its expectation, variance and covariance are:

E[z(x)] = 0

Var[z(x)] = σ2

cov[z(xj), z(xk)] = σ2R[R(xj, xk)]

(15)

where R is the symmetric correlation matrix on the diagonal, R(xi, xj) and is the correlation
parameter between sample points xj, xk. In this optimization, a Gaussian correlation
function is selected, then

R(xj, xk) = exp[−
n

∑
i=1

θi

∣∣∣xj
i − xk

i

∣∣∣2] (16)

where n is the number of groups of design variables. In this optimization, n = 50.
∣∣∣xj

i − xk
i

∣∣∣
is the distance between the kth components of sample points xj and xk, and θi is the
unknown related parameter used to fit the model, which can be solved by Equation (17).

max F(θi) = −
[ns ln(

_
σ

2
) + ln|R|]
2

(17)

Then, the estimated value at sample point x is:

_
y (x) =

_
µ + rT(x)R−1(y−_

µm) (18)

rT(x) = [R(x, x1), R(x, x2), . . . R(x, xns)]
T

(19)

where y is the column vector with length ns and m is the unit vector.
Figure 3 shows six Kriging models constructed with different variables and target

parameters. It can be seen that the Kriging models differ from their 2D parameters and
objectives. Considering different two-dimensional parameters and the minimum value of
the objective function, a set of optimization values can be generated. This design needs
to consider that the target value is the lowest in the case of four-dimensional parameters,
which requires a search algorithm to find the target minimum value [19].
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Figure 3. Kriging model constructed with different variables and target parameters. (a) Kriging
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3.2. Particle Swarm Optimization (PSO) Algorithm

In the literature, particle swarm optimization (PSO) algorithms are favored due to
their advantages of easy programming, high efficiency and fast convergence [20], the op-
timization in this paper selects PSO as the search algorithm. Each particle in the particle
swarm itself can find the optimal solution of its current position and record it as an indi-
vidual extreme value. Particles can share an individual extremum with other particles,
and the optimal individual extremum is regarded as the global optimal solution of the
whole particle swarm [21]. Then, the particle adjusts its speed and position according
to its individual extreme value and the current global optimal solution, and constantly
approaches the optimal solution [22]. The PSO algorithm is shown in Equation (20).{

Vk+1
i = wVk

i + C1r1(Pk
i − Xk

i ) + C2r2(Pk
g − Xk

i )

Xk+1
i = Xk

i + Vk+1
i

(20)

where Vk
i and Xk

i are the velocity and position of the ith particle at the kth iteration, Pk
i

represents the individual extreme value of the ith particle at the kth iteration, Pk
g represents

the global optimal solution of the ith particle at the kth iteration, C1 and C2 are individual
learning factors and global learning factors of particles, r1 and r2 are random constants
between [0, 1] and w is the inertia weight, respectively. In this design, the value of w
decreases linearly according to the number of iterations k. The equation is given by [23]:

w(k) = wmax −
wmax −wmin

kmax
× k (21)

where wmax, wmin are the upper and lower limits of the inertia weight and kmax is the
maximum number of iterations, respectively.

3.3. Process of Surrogate Algorithms

The whole optimization process is shown in Figure 4. First, design the variables and
determine the range of independent variables, and then take Latin hypercube sampling [24].
After obtaining a limited number of sample points, choose whether to supplement points
in some areas or redesign the design according to the sampling conditions of the sample
points [25]. The sampling condition of this design is good, so the supplement of sample
points is not considered. The second step is the selection of target parameters. This can
choose single objective optimization or multi-objective optimization according to the design
requirements. In general, the objectives of multi-objective optimization are in conflict with
each other. The improvement of one sub-objective may cause the reduction of another
sub-objective, and the solution result cannot make all sub-objectives optimal. This requires
that, when carrying out multi-objective optimization, the weight proportion between
different objectives should be considered [26]. In the multi-objective optimization problem,
the solution is not unique, which requires specific analysis of specific problems in the
optimization design to find solutions that meet more sub-objectives as much as possible. In
this process, the optimal design should meet the requirements of independent variables,
constraints and target parameters at the same time. The third step is to establish a finite
element model and use the finite element model to obtain relevant parameters. Then, the
Kriging model is established using 80% of the sampled data for an approximate model,
which is used to replace the established finite element model. The remaining 20% is used for
error detection. If the error between the data obtained from the approximate model and the
simulation is within the 20% threshold, the surrogate model is considered successful. After
error detection, the PSO algorithm is used to obtain the optimal solution, which is finally
brought into the finite element model to verify the results, to complete the optimization
design [27].
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4. Simulation Results

The structure of the PCS converter is complex for 3D thermal modeling and analysis.
In this work, a simplified model is developed for design optimization, and the 3D finite
element model only includes key components, as shown in Figure 5.
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Figure 5. 3D finite element model.

In this converter, four heating element IGBTs are installed on the base of the heat
sink, and the three fans blow air to the fins of the heat sink through the air deflector. In
the model, the size of the cabinet is 450 mm × 400 mm × 114 mm, the radius of the fan
is 44 mm, the size of the IGBT is 122 mm × 62 mm × 14 mm, and the spacing between
IGBTs is 38 mm. The length and width of the heat sink base are 420 mm and 230 mm,
the height of the base is 12 mm, the height and thickness of the fins are 64 mm and 3.4
mm, and the spacing between heat sinks is 7 mm, respectively. The power loss of each
IGBT is 800 W, and the total power loss is 3200 W. The ambient temperature is 50 ◦C. The
simulation results are plotted in Figures 6–9. It can be seen that the maximum temperature
of the heating element can reach 133.43 ◦C. The calculated results are brought into the finite
element model for verification. The finite element simulation and optimization results are
shown in Figures 6–9, respectively.
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Figure 9. Airflow speed vector results after optimization.

It can be seen that the maximum airflow velocity after optimization is significantly
reduced. The changes in the heat sink ducts and the relative positions of the heat sink and
fans can vary the airflow path and contact surface of the heatsink, which is confirmed by
Figures 6 and 8.

In contrast, a traditional method with response surface optimization in ANSYS adopts
an optimization algorithm, as illustrated in Table 1. The proposed surrogate optimization
results with the surrogate model are better. After the optimization design, the thermal
resistance and mass are reduced from 0.025 ◦C/W and 7.562 kg to 0.017 ◦C/W and 7.312 kg,
respectively. From the temperature cloud diagrams in the 3D finite element simulation,
it can also be seen that the hot-spot temperature is reduced from the 133.430 ◦C value to
107.053 ◦C, proving the effectiveness of the proposed surrogate optimization algorithms.
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Table 1. Optimum design of the heat sink.

B H T S Thermal Mass Temperature

Base design 12.0 mm 64.0 mm 3.4 mm 7.0 mm 0.0253 ◦C/W 7.562 kg 133.430 ◦C
Traditional design 8.0 mm 80.0 mm 2.0 mm 4.4 mm 0.0194 ◦C/W 7.423 kg 114.733 ◦C

Optimization design 10.8 mm 65.6 mm 1.1 mm 2.3 mm 0.0171 ◦C/W 7.312 kg 107.053 ◦C
Reduction (%) 10.0 −2.5 67.6 67.1 32.4 3.3 19.8

5. Gray Correlation Analysis

Gray correlation analysis can evaluate the importance of input parameters, calculate
the impact of different parameters on multiple objectives, and verify the selection of
parameters in the design [28]. After all data are made dimensionless [29], the correlation
coefficient is calculated by Equation (22). Then the average value is calculated to obtain the
gray correlation degree of each parameter with the target [30]. rk

i = ∆min+λ∆max
∆k

i +λ∆max

∆k
i =

∣∣yk
0 − yk

i

∣∣ (22)

where rk
i represents the correlation coefficient of the kth component of the ith parameter, yk

0
and yk

i represents the results of dimensionless processing of the reference sequence and the
comparison sequence, ∆k

i represents the deviation sequence, ∆min and ∆max represents the
minimum and maximum deviation, and λ is the resolution coefficient, respectively. In this
design, the resolution coefficient is taken as 0.5. The gray correlation degrees of the four
variables relative to thermal resistance, mass and weighted multi-objective are shown in
Table 2.

Table 2. Summary of Gray correlation analysis.

Dimensionless Base Height Thick Space

Temperature 0.637699 0.590268 0.668855 0.697728
Mass 0.622044 0.673455 0.698375 0.605095

Multi-objective 0.639337 0.586499 0.672616 0.726296

Within the given range of variables, the four design variables have a high degree
of correlation with the target parameters, and the correlation degree can basically reach
0.6, which also proves the rationality of the design variables selected. Of these, for the
temperature single target, the spacing of the heat sink fins has the greatest influence, and
the correlation degree is as high as 0.7. The correlation degree of the thickness of the fins
is the second, which is 0.67. Compared with other parameters, the correlation between
the thickness of the fins and the temperature is the smallest, but it can also reach 0.59.
It can also be seen that the airflow path is very crucial for the heat dissipation optimization
design, while the influence of the surface area of the fins is less obvious. For the mass
in the target parameters, the parameter with the greatest correlation is the thickness of
the fins, and the correlation reaches 0.7. For the dual objectives of thermal resistance and
mass, the most relevant parameter in this optimization is fin spacing, which is as high as
0.73, and the second important parameter is fin thickness, with a correlation degree of
0.67. By comparison, fin height has the smallest correlation degree with the double targets,
with a correlation coefficient of 0.59. In this double objective optimization, fin spacing and
thickness are the most significant factors affecting the performance of the heat sink.

6. Conclusions

This paper has presented an optimization method for heat sinks based on the CFD
method and surrogate models. Firstly, the heat dissipation process is simulated by using
the 3D finite element model. Next, using the sampling points selected by Latin hypercube



Energies 2023, 16, 1075 11 of 13

sampling and the simulation results of CFD, a surrogate model is established to assess
the correlation of four design variables (B, H, T, S) and the two design targets (thermal
resistance and mass), according to Kriging models. Then a PSO algorithm is used to obtain
the optimal solution. The test results show that the optimized thickness of the base and
the height, thickness and spacing of the fins can effectively reduce the thermal resistance
of the heat sink and the mass of the heat sink. In turn, the proposed method can reduce
hotspots (such as an IGBT junction) and improve the thermal efficiency of the converters.
The developed technology can provide guidance for heat sink designs and optimize the
energy efficiency of industrial products.
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