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Abstract: Solar photovoltaics (PV) are susceptible to environmental and operational stresses due to
their operation in an open atmosphere. Early detection and treatment of stress prevents hotspots and
the total failure of solar panels. In response, the literature has proposed several approaches, each
with its own limitations, such as high processing system requirements, large amounts of memory,
long execution times, fewer types of faults diagnosed, failure to extract relevant features, and so on.
Therefore, this research proposes a fast framework with the least memory and computing system
requirements for the six different faults of a solar panel. Infrared thermographs from solar panels are
fed into intense and architecturally complex deep convolutional networks capable of differentiating
one million images into 1000 classes. Features without backpropagation are calculated to reduce
execution time. Afterward, deep features are fed to shallow classifiers due to their fast training time.
The proposed approach trains the shallow classifier in approximately 13 s with 95.5% testing accuracy.
The approach is validated by manually extracting thermograph features and through the transfer of
learned deep neural network approaches in terms of accuracy and speed. The proposed method is
also compared with other existing methods.

Keywords: solar panels; fault diagnosis; infrared thermographs; deep networks; shallow classifiers

1. Introduction

With the exponential increase in energy demand due to population growth, and
the United Nations’ sustainable development goal to facilitate the world with affordable
and clean energy in the context of global climate change under the Paris climate accord,
much research has been required, since 73% of greenhouse gas emissions are due to the
energy sector [1–3]. However, the photovoltaic (PV) system’s energy output without stack
emissions reduces the dependence on conventional technologies, effectively mitigating
greenhouse emissions [4]. This has resulted in higher penetration of PV systems into the
main grid globally, as PV, along with wind, is estimated to meet 88% of the global energy
demand by 2050 [5]. The global penetration of PV systems and the increasing volume of
solar PV installed capacity from 2011 to 2021 are depicted in Figure 1.
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Figure 1. Global penetration of PV systems [6].

In the presence of environmental stresses experienced during its operation, the PV
system faces issues like hotspots and faults due to defects arising from natural parameters
such as bird droppings, shading, snow, dust, etc. This decreases the PV system’s perfor-
mance, creates reliability issues, and increases the payback time [4,5,7–15]. These pollutants’
accumulation on the PV panel surface reduces photon transmission, in turn reducing the ac-
tivation energy for valence electrons. The PV cells beneath pollutants operate in the reverse
region (higher resistance), restrict the current coming from healthy PV cells due to their
series connection, and create localized high-temperature areas known as hotspots [4,5,16].
The existence of hotspots for a longer period may lead to irreversible damage to PV panels,
such as wire meltdown, burning, cracks, etc. Therefore, it requires replacing the PV panel
with a new one of a similar rating [16]. Around 18% and 23% of defect sources are hotspots
and cell cracks, respectively [17].

Therefore, PV system health monitoring and identifying defects are of utmost impor-
tance to maintain the system’s performance, reliability, cash flows, and greenhouse gas
mitigation potential [4,5,9,18]. The PV system faces issues at the module level (protection
breakdown, bypass diode failure, hotspots, wiring, shade, mismatches, etc.) and array
level (electrical mismatch, faults, etc.) [18]. Figure 2 shows the protection breakdown of the
PV module. However, all the PV system issues are not identifiable by the naked eye, and
automation is highly desirable, especially in megawatt projects [4,5]. Therefore, multiple ap-
proaches are widely used in the literature to identify and classify based on PV panel health,
such as electrical signals (current and voltage characteristics [I–V]), infrared thermographs,
electroluminescence, fluorescence, photoluminescence, etc. [4,5,11,19–23]. Monitoring PV
systems has its advantages and limitations. For instance, I–V-based measurements are
convenient with instant feedback (sensors) capability for PV condition monitoring [17].
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However, infrared thermographs are widely used due to their cost-effectiveness, speed,
accuracy, low storage requirements, non-invasive approach, etc. [4].

Relevant Previous Studies—PV System Monitoring

Until recently, electrical signal analysis and PV imaging were widely used to identify
and classify PV panels based on their faults and health. Since research on fault diagnosis has
focused on factors such as accuracy, speed, precision of identified faults and so on, artificial
intelligence models (AIM) are widely used, such as backpropagation AIM, generalized
regression AIM, probabilistic AIM, radial basis function AIM, etc. [24]. Lin et al. [25]
investigated faults caused by line-to-line, open-circuit, and partial-shading conditions, as
measured by a decrease in the instantaneous maximum power point current under various
conditions. Garoudja et al. [26] utilized probabilistic neural networks on the DC parameters
of the PV system to detect and diagnose three different faults. Aziz et al. [11] used irradiance,
temperature, short circuit current, open-circuit voltage, PV current, maximum power point
current, maximum power point voltage, and maximum power point power and boost
converter output as data points to evaluate no fault, line-to-line, open circuit, partial
shading, fault in partial shading, and series arc fault cases using fine-tuned AlexNet as
a feature extractor and classifier, and pre-trained AlexNet to extract features and classify
through support vector machine or random forest.

In contrast, Natsheh et al. [16] used tree hierarchy to model PV systems and utilized
fuzzy nonlinear autoregressive networks with exogenous inputs for diagnosis, classification,
and source of fault identification. Moreover, Belaout et al. [27] proposed a multi-class
adaptive neuro-fuzzy classifier for five PV fault classifications and reduced the dimensions
of features to speed up the process. Chen et al. [21] used a random forest ensemble
algorithm to diagnose early faults (line-to-line, degradation, open circuit, and partial
shading) of PV arrays using the voltage and current of PV strings. Chen et al. [22] proposed
using voltage, current, irradiance, and temperature to detect and diagnose faults using a
two-dimensional ResNet structure trained by an adaptive moment estimation algorithm.

Building on this, Tuupke et al. [19] presented photoluminescence imaging advantages
for photovoltaic applications. Through current-voltage and electroluminescence, Eder
et al. [20] investigated the detection proportion for mechanically-induced failures such as
glass cracks, solar cells, microcracks, and defects in cell connection systems, as well as their
propagation in artificially-created stresses and environmental conditions. Moreover, the
failure detection proportion was investigated through ultraviolet fluorescence imaging.
Ahmed et al. [4] used infrared thermographs to monitor the health of the PV system through
an isolated neural network and used a transfer learning approach to detect five different
faults in the PV system. Ali et al. [5] extracted features such as texture, the mean histogram
of an oriented gradient, and the local binary pattern of infrared thermographs to classify
PV panels into three classes based on their health using shallow classifiers. In addition,
Niazi et al. [10] used infrared thermographs to classify PV panels based on health (hotspot,
defective, healthy) using texture features, histograms of oriented gradients, and principal
component analysis to reduce feature dimensionality and feed the features to a naive Bayes
classifier. Niazi et al. [9] used the mean of texture features to classify PV panels as either
healthy or defective using a naive Bayes classifier using infrared thermographs.

Moreover, Pierdicca et al. [18] used augmented infrared data to classify PV panels as
damaged or healthy using a deep convolutional neural network. Ali et al. [28] used a color
image scale-invariant feature transform descriptor to train a shallow classifier k-nearest
neighbors (k-NN) to predict the health of PV panels as healthy, faulty, or hotspots. Ahmed
et al. [29] converted IR thermographs into feature histograms by extracting SURF features,
clustering using k-means, and classifying PV panels into three health-based states. Li
et al. [30] proposed the identification of concurrent faults quantitatively through fault pa-
rameter extraction from the measured voltage/current curve of a PV array. Alves et al. [23]
used CNN to classify anomalies in an unbalanced dataset through data augmentation
techniques, which were able to differentiate between 11 different PV panel states.
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Concisely, deep and shallow classifiers have their respective applications and limi-
tations, such as operating system requirements, memory, complexity, fast and accurate
convergence in multi-dimensional problems, etc. [4,22]. Moreover, relevant feature extrac-
tion from images is the most important, which can be done manually or using convolution
neural network layers [5,31]. Given the limitations, this study employs a deep pre-trained
convolutional neural network’s robust architecture, which is trained to classify images into
1000 different classes to extract deep features of infrared thermographs without backprop-
agation to reduce the high operating system requirements, execution time, memory, and
so on, and fed to shallow classifiers because they require the least training time. More-
over, the proposed approach is compared with classical machine learning and pre-trained
transfer-learned deep convolutional neural networks in terms of accuracy and execution
time requirements.

The rest of the paper is structured as follows. Section II discusses the design approach,
followed by Section III, which represents the features of infrared thermograph visualization.
Section IV presents the results, while Section V discusses the approach in light of the results
and the conclusion. Finally, the future work is presented in Section VI.

2. Design Approach

The infrared thermographs were obtained on 8 PV strings with 22 PV modules per
string, a 42.24 kW PV system in Lahore, Pakistan. On a clear day with 32–40 ◦C ambient
temperature, 6.9 m/s wind speed, and 700 W/m2 irradiance level, a horizontally aligned
FLIR VUE-Pro 640 thermal camera was used. The thermograph has an 8-bit depth with
a spatial resolution of 640 × 512 pixels. The detailed experimental setup is provided by
Niazi et al. [10]. The IR dataset was segregated into six classes based on healthy, single-cell,
patchwork, bird-dropping, block, and string conditions. Details of conditions are provided
at [4,32] and shown in Table 1. Thermographs are converted into grayscale for PV condition
visualization by averaging the RGB channels.

However, it is crucial to consider that each condition on the PV panel is due to a specific
reason, and their occurrence is due to operational (i.e., environmental) stresses. Thus, the
dataset can be imbalanced. For this purpose, a data augmentation approach was utilized to
balance the dataset using the shifting and scaling (0◦: 5◦: 20◦) approach [4]. A 330-image
balanced dataset was constructed, with each class having 55 images. Afterward, each class
dataset was randomly split into training and testing datasets in 80/20 ratios, to ensure
proper training and testing of each class with equal visibility. Finally, features of IR datasets
(training and testing) were extracted from the 22nd layer of pre-trained GoogleNet, 18th
layer of ResNet18, and 18th layer of SqueezeNet neural networks, and shallow classifiers
such as trees, ensemble, k-NN, support vector machine (SVM), and naive Bayes (nB) were
used. Additionally, to validate the concept, two common and widely-used approaches were
used: manual extraction of IR dataset features (such as energy, correlation, homogeneity,
histogram of oriented gradient (HOG), RGB, local binary pattern, etc.); training and testing
with shallow classifiers; and utilizing pre-trained 22-layer GoogleNet, 18-layer ResNet18,
and 18-layer SqueezeNet through transfer learning for comparison.

2.1. Manual Features Extraction

The variables that differ from one class image to the next are referred to as features.
The selection of the most prominent, i.e., highly varying characteristics of images, increases
the classification accuracy. Infrared training and testing datasets’ feature vectors were
calculated separately. To begin, images were pre-processed by removing their backgrounds,
and images were transformed into grayscale, contrast improved, resized for uniformity,
and an averaging filter was applied to remove image noise. Features, i.e., the mean of
HOG and texture features, were calculated (using a grey-level co-occurrence matrix) to
form the feature vector. Energy, contrast, and homogeneity calculations are provided in
Equations (1)–(3). Afterward, feature vectors were utilized for training with a 5-fold cross-
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validation approach, and shallow classifiers such as SVM, k-NN, nB, trees, and ensemble
were trained. The approach is simplified in Figure 3.

Energy = ∑i−1
x,y W2

x,y (1)

Contrast = ∑i−1
x,y |x− y|2Wx,y

(2)

Homogeneity = ∑i−1
x,y

Wx,y

1 + |x− y| (3)

wx,y is the pixel value at the pixel’s x and y coordinates, and i is the gray level number.

Table 1. Faults of PV panels.

Condition Healthy Bird Drop Single Patchwork String Block

Thermograph

Energies 2023, 16, x FOR PEER REVIEW 6 of 18 
 

 

Table 1. Faults of PV panels. 

Condition Healthy Bird Drop Single Patchwork String Block 

Thermograph 

      

Grayscale 

      

Schematic (Probable)  

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

Possible Cause _ Bird drop Shadow due to vicinal objects, dust, etc. 
Undetected hotspot 
leading to complete 

failure 

Energies 2023, 16, x FOR PEER REVIEW 6 of 18 
 

 

Table 1. Faults of PV panels. 

Condition Healthy Bird Drop Single Patchwork String Block 

Thermograph 

      

Grayscale 

      

Schematic (Probable)  

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

Possible Cause _ Bird drop Shadow due to vicinal objects, dust, etc. 
Undetected hotspot 
leading to complete 

failure 

Energies 2023, 16, x FOR PEER REVIEW 6 of 18 
 

 

Table 1. Faults of PV panels. 

Condition Healthy Bird Drop Single Patchwork String Block 

Thermograph 

      

Grayscale 

      

Schematic (Probable)  

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

Possible Cause _ Bird drop Shadow due to vicinal objects, dust, etc. 
Undetected hotspot 
leading to complete 

failure 

Energies 2023, 16, x FOR PEER REVIEW 6 of 18 
 

 

Table 1. Faults of PV panels. 

Condition Healthy Bird Drop Single Patchwork String Block 

Thermograph 

      

Grayscale 

      

Schematic (Probable)  

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

Possible Cause _ Bird drop Shadow due to vicinal objects, dust, etc. 
Undetected hotspot 
leading to complete 

failure 

Energies 2023, 16, x FOR PEER REVIEW 6 of 18 
 

 

Table 1. Faults of PV panels. 

Condition Healthy Bird Drop Single Patchwork String Block 

Thermograph 

      

Grayscale 

      

Schematic (Probable)  

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

Possible Cause _ Bird drop Shadow due to vicinal objects, dust, etc. 
Undetected hotspot 
leading to complete 

failure 

Energies 2023, 16, x FOR PEER REVIEW 6 of 18 
 

 

Table 1. Faults of PV panels. 

Condition Healthy Bird Drop Single Patchwork String Block 

Thermograph 

      

Grayscale 

      

Schematic (Probable)  

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

Possible Cause _ Bird drop Shadow due to vicinal objects, dust, etc. 
Undetected hotspot 
leading to complete 

failure 

Grayscale

Energies 2023, 16, x FOR PEER REVIEW 6 of 18 
 

 

Table 1. Faults of PV panels. 

Condition Healthy Bird Drop Single Patchwork String Block 

Thermograph 

      

Grayscale 

      

Schematic (Probable)  

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

Possible Cause _ Bird drop Shadow due to vicinal objects, dust, etc. 
Undetected hotspot 
leading to complete 

failure 

Energies 2023, 16, x FOR PEER REVIEW 6 of 18 
 

 

Table 1. Faults of PV panels. 

Condition Healthy Bird Drop Single Patchwork String Block 

Thermograph 

      

Grayscale 

      

Schematic (Probable)  

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

Possible Cause _ Bird drop Shadow due to vicinal objects, dust, etc. 
Undetected hotspot 
leading to complete 

failure 

Energies 2023, 16, x FOR PEER REVIEW 6 of 18 
 

 

Table 1. Faults of PV panels. 

Condition Healthy Bird Drop Single Patchwork String Block 

Thermograph 

      

Grayscale 

      

Schematic (Probable)  

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

Possible Cause _ Bird drop Shadow due to vicinal objects, dust, etc. 
Undetected hotspot 
leading to complete 

failure 

Energies 2023, 16, x FOR PEER REVIEW 6 of 18 
 

 

Table 1. Faults of PV panels. 

Condition Healthy Bird Drop Single Patchwork String Block 

Thermograph 

      

Grayscale 

      

Schematic (Probable)  

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

Possible Cause _ Bird drop Shadow due to vicinal objects, dust, etc. 
Undetected hotspot 
leading to complete 

failure 

Energies 2023, 16, x FOR PEER REVIEW 6 of 18 
 

 

Table 1. Faults of PV panels. 

Condition Healthy Bird Drop Single Patchwork String Block 

Thermograph 

      

Grayscale 

      

Schematic (Probable)  

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

Possible Cause _ Bird drop Shadow due to vicinal objects, dust, etc. 
Undetected hotspot 
leading to complete 

failure 

Energies 2023, 16, x FOR PEER REVIEW 6 of 18 
 

 

Table 1. Faults of PV panels. 

Condition Healthy Bird Drop Single Patchwork String Block 

Thermograph 

      

Grayscale 

      

Schematic (Probable)  

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

Possible Cause _ Bird drop Shadow due to vicinal objects, dust, etc. 
Undetected hotspot 
leading to complete 

failure 

Schematic
(Probable)

Energies 2023, 16, x FOR PEER REVIEW 6 of 18 
 

 

Table 1. Faults of PV panels. 

Condition Healthy Bird Drop Single Patchwork String Block 

Thermograph 

      

Grayscale 

      

Schematic (Probable)  

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

Possible Cause _ Bird drop Shadow due to vicinal objects, dust, etc. 
Undetected hotspot 
leading to complete 

failure 

Energies 2023, 16, x FOR PEER REVIEW 6 of 18 
 

 

Table 1. Faults of PV panels. 

Condition Healthy Bird Drop Single Patchwork String Block 

Thermograph 

      

Grayscale 

      

Schematic (Probable)  

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

Possible Cause _ Bird drop Shadow due to vicinal objects, dust, etc. 
Undetected hotspot 
leading to complete 

failure 

Energies 2023, 16, x FOR PEER REVIEW 6 of 18 
 

 

Table 1. Faults of PV panels. 

Condition Healthy Bird Drop Single Patchwork String Block 

Thermograph 

      

Grayscale 

      

Schematic (Probable)  

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

Possible Cause _ Bird drop Shadow due to vicinal objects, dust, etc. 
Undetected hotspot 
leading to complete 

failure 

Energies 2023, 16, x FOR PEER REVIEW 6 of 18 
 

 

Table 1. Faults of PV panels. 

Condition Healthy Bird Drop Single Patchwork String Block 

Thermograph 

      

Grayscale 

      

Schematic (Probable)  

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

Possible Cause _ Bird drop Shadow due to vicinal objects, dust, etc. 
Undetected hotspot 
leading to complete 

failure 

Energies 2023, 16, x FOR PEER REVIEW 6 of 18 
 

 

Table 1. Faults of PV panels. 

Condition Healthy Bird Drop Single Patchwork String Block 

Thermograph 

      

Grayscale 

      

Schematic (Probable)  

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

Possible Cause _ Bird drop Shadow due to vicinal objects, dust, etc. 
Undetected hotspot 
leading to complete 

failure 

Energies 2023, 16, x FOR PEER REVIEW 6 of 18 
 

 

Table 1. Faults of PV panels. 

Condition Healthy Bird Drop Single Patchwork String Block 

Thermograph 

      

Grayscale 

      

Schematic (Probable)  

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

     

     

     

     

     

     
 

Possible Cause _ Bird drop Shadow due to vicinal objects, dust, etc. 
Undetected hotspot 
leading to complete 

failure 
Possible Cause _ Bird drop Shadow due to vicinal objects, dust, etc.

Undetected
hotspot leading

to complete
failure

Surface
Temperature

(Approx.)
50–60◦ Celsius 65 to 80◦ Celsius Above 80◦

Celsius

2.2. Transfer Learning on Pre-Trained Networks

Transfer-learning in neural networks is the re-utilization of trained neural networks
for something other than the base problem. Therefore, avoiding isolated neural networks
during creation, adjustment, iterative training, tuning, and validation [4]. Moreover, neural
networks can be divided into three stages: image input, feature extraction, and classification
based on features by adjusting the neurons’ weight iteratively through backpropagation, as
shown in Figure 4. Neural networks have a strong architecture that helps them extract the
relevant features.



Energies 2023, 16, 1043 6 of 16

Energies 2023, 16, x FOR PEER REVIEW 5 of 18 
 

 

mean of HOG and texture features, were calculated (using a grey-level co-occurrence ma-

trix) to form the feature vector. Energy, contrast, and homogeneity calculations are pro-

vided in Equations (1)–(3). Afterward, feature vectors were utilized for training with a 5-

fold cross-validation approach, and shallow classifiers such as SVM, k-NN, nB, trees, and 

ensemble were trained. The approach is simplified in Figure 3. 

Energy = ∑ 𝑊𝑥,𝑦
2𝑖−1

𝑥,𝑦  (1) 

Contrast= ∑ |𝑥 − 𝑦|𝑊𝑥,𝑦
2𝑖−1

𝑥,𝑦  (2) 

Homogeneity = ∑
𝑊𝑥,𝑦

1+|𝑥−𝑦| 

𝑖−1
𝑥,𝑦  (3) 

wx,y is the pixel value at the pixel’s x and y coordinates, and i is the gray level number.  

 

Figure 3. A manual feature extraction approach. 

2.2. Transfer Learning on Pre-Trained Networks 

Transfer-learning in neural networks is the re-utilization of trained neural networks 

for something other than the base problem. Therefore, avoiding isolated neural networks 

during creation, adjustment, iterative training, tuning, and validation [4]. Moreover, neu-

ral networks can be divided into three stages: image input, feature extraction, and classi-

fication based on features by adjusting the neurons’ weight iteratively through backprop-

agation, as shown in Figure 4. Neural networks have a strong architecture that helps them 

extract the relevant features.  

Therefore, pre-trained neural networks with transfer learning are utilized for classi-

fication by introducing a new classification layer and a fully connected layer to replace 

the old classification layer and a fully connected layer to change the expected classes for 

the neural network. 

Figure 3. A manual feature extraction approach.

Energies 2023, 16, x FOR PEER REVIEW 8 of 18 
 

 

 

Figure 4. Transfer learning on a pre-trained network. 

2.3. Proposed Approach—Neural Network Features and Shallow Classifiers 

In this work, neural networks extract features on their own, and for shallow classifi-

ers, features are extracted manually. Iterative training of neural networks has a high exe-

cution time and higher accuracy [4], while shallow classifiers’ accuracy depends on ex-

tracted features and output classes and has a fast response [4,5,22]. Considering the ad-

vantages of both distinct approaches, a new approach based on the fusion of neural net-

work features with shallow classifiers is proposed. In this approach, a pre-trained deep 

convolutional neural network such as SqueezeNet, GoogleNet, or ResNet18 that is trained 

on almost one million images and able to differentiate into 1000 different classes is used 

to extract the features of IR thermograph datasets (training and testing separately) with-

out backpropagation to reduce the execution time, along with the requirement of memory 

and a strong operating system. Due to their fast-training time, feature vectors are then 

used to train and test shallow classifiers for multi-dimensional issues, hence utilizing the 

strong architecture of neural networks and the fast response of shallow classifiers. The 

proposed approach is presented in Figure 5. 

Figure 4. Transfer learning on a pre-trained network.

Therefore, pre-trained neural networks with transfer learning are utilized for classifi-
cation by introducing a new classification layer and a fully connected layer to replace the
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old classification layer and a fully connected layer to change the expected classes for the
neural network.

2.3. Proposed Approach—Neural Network Features and Shallow Classifiers

In this work, neural networks extract features on their own, and for shallow classifiers,
features are extracted manually. Iterative training of neural networks has a high execution
time and higher accuracy [4], while shallow classifiers’ accuracy depends on extracted
features and output classes and has a fast response [4,5,22]. Considering the advantages of
both distinct approaches, a new approach based on the fusion of neural network features
with shallow classifiers is proposed. In this approach, a pre-trained deep convolutional
neural network such as SqueezeNet, GoogleNet, or ResNet18 that is trained on almost one
million images and able to differentiate into 1000 different classes is used to extract the
features of IR thermograph datasets (training and testing separately) without backpropa-
gation to reduce the execution time, along with the requirement of memory and a strong
operating system. Due to their fast-training time, feature vectors are then used to train and
test shallow classifiers for multi-dimensional issues, hence utilizing the strong architecture
of neural networks and the fast response of shallow classifiers. The proposed approach is
presented in Figure 5.
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3. Features of Infrared Thermographs—Visualization

Most relevant features are important since they vary significantly from class to class
and help achieve higher training and testing accuracy. Moreover, features greatly differ
from one dataset to another. In Figure 6, features extracted from deep neural networks and
manually (texture and HOG features) are visually represented for ease of understanding.
All features are mapped between 0 and 1, where 0 represents the lowest value and is
denoted as black, and 1 represents the highest value and is denoted as white.
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Overall, there are six classes, which are represented by each figure, and the higher the
color contrast vertically, the better the selection of the most varied and appropriate features
between images and classes. All images are resized to 500 × 500 for uniformity. ResNet18
has higher color contrast vertically, and manual extraction has the least contrast vertically.
The last column of manual features represents six different classes encapsulated in a red
rectangle (see Figure 6).

4. Results

In this section, the results are presented, which were obtained on MATLAB 2021a with
7th-generation Core i7, 16 GB of RAM, an NVIDIA GeForce GTX 1060, a 1.5 TB SSD, and
64-bit operating system specifications. Shallow classifiers were trained and validated using
5-fold cross-validation approaches.

4.1. Manual Features and Shallow Classifiers

Different combinations of manual features extracted from IR training and testing
datasets were created. Finally, the mean of HOG and texture features, i.e., 12 energy,
12 contrast, and 12 homogeneities, were used. A total of 37 feature-based vectors are
used, while the 38th column stores the six conditions of PV panels. Among five shallow
classifiers, naive Bayes resulted in the least accurate trained model with 50.8% accuracy,
while multi-class SVM resulted in 83% accuracy with a manual feature vector. The true
identification rate (TPR) of bird drops was the lowest of all classes, owing to the small area
covered by each drop. In contrast, a block’s positive predicted value (PPV) was highest due
to a third area highlighted in IrT since texture features were strong and easily separable.
Furthermore, the k-NN model was trained quickly and had the highest online testing
capacity of 5000 observations per second. The results provided in Table 2, incorporating
TPR, false-negative rate (FNR), PPV, and false discovery rate (FDR), are based on testing
accuracy.



Energies 2023, 16, 1043 9 of 16

Table 2. Manual features-based shallow classification.

Classifier Tree Ensemble nB KNN SVM

Class TPR FNR PPV FDR TPR FNR PPV FDR TPR FNR PPV FDR TPR FNR PPV FDR TPR FNR PPV FDR

Bird Drop 54.5 45.5 46.2 53.8 36.4 63.6 50 50 36.4 63.6 44.4 55.6 81.8 18.2 75 25 63.6 36.4 77.8 22.2
Block 81.8 18.2 100 0 100 0 100 0 54.5 45.5 60 40 100 0 100 0 81.8 18.2 100 0

Healthy 72.7 27.3 88.9 11.1 72.7 27.3 100 0 72.7 27.3 44.4 55.6 81.8 18.2 90 10 81.8 18.2 100 0
Patchwork 63.6 36.4 58.3 41.7 81.8 18.2 69.2 30.8 9.1 90.9 100 0 90.9 9.1 83.3 16.7 100 0 84.6 15.4

Single 90.9 9.1 76.9 23.1 100 0 78.6 21.4 90.9 9.1 52.6 47.4 100 0 91.7 8.3 100 0 68.8 31.2
String 63.6 36.4 70 30 72.7 27.3 66.7 33.3 45.5 54.5 55.6 44.4 81.8 18.2 100 0 72.7 27.3 80 20

Training
Accuracy

(%)
64 70.1 50.8 79.5 83.0

Training
Time (s) 5.78 5.84 13.4 1.55 3.49

Prediction
Speed

(obs/s)
2100 1300 350 5000 2400

Testing
Accuracy

(%)
71.2 77.3 51.5 89.4 83.3
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4.2. Transfer Learning-Based Classification

Pre-trained deep convolutional neural networks such as GoogleNet, SqueezeNet and
ResNet18 were utilized using the transfer-learning approach to monitor the six PV system
conditions. Models were trained using GPUs to reduce the execution time for neural
network training and validation. Table 3 shows the training options used for transferring
learning-based classifications. The initial learner’s rate was kept slow for better learning.
Neuronal weights of pre-trained neural models trained on different classification problems
were re-adjusted after backpropagation. Because neural networks are designed to mimic
the human brain, they are learned on the PV dataset with high training accuracy. Moreover,
in the testing phase of trained neural networks, the healthy class TPR was lowest, resulting
in a considerable FNR. Moreover, in the presence of GPUs, SqueezeNet was the fastest to
converge. Results are provided in Table 4, while TPR, FNR, PPV, and FDR are based on
testing accuracy.

Table 3. Training options.

Solver Stochastic Gradient Descent with
Momentum

Initial Learn Rate 0.001
Epochs 150

Execution Environment Multi-GPU
Shuffle Every epoch

Momentum 0.9

4.3. Fusing Neural Networks with Shallow Classifiers—A Proposed Approach

In this section, features were extracted from a pre-trained network such as GoogleNet,
SqueezeNet, and ResNet18 because of their strong feature extraction approaches. After-
ward, shallow classifiers were trained and tested on feature vectors. TPR, FNR, PPV, and
FDR are based on testing accuracy.

4.3.1. Features through ResNet18 and Shallow Classifier

ResNet18 is an 18-layered deep neural network that has been pre-trained. ResNet18
was used to extract the features of IR thermographs without backpropagation. A total of 512
features were extracted from each thermograph, and the 513th column was added, which
stored the condition of the PV panel. Following that, training thermographic image-based
features vectors were used to train five shallow classifiers using a 5-fold cross-validation
approach to avoid over-fitting, and a test thermographic image-based features vector was
used to test the accuracy of the trained classifier.

Results were analyzed based on TPR, FNR, PPV, FDR, training time, prediction speed
(specifically for online testing of images), training accuracy, and testing accuracy. Multi-
class SVM converged in approximately 13 s, resulting in 97% training accuracy. TPR of the
healthy class was the lowest, same as transfer-learned ResNet18. However, testing the new
dataset resulted in 95.5% accuracy. The detailed results are provided in Table 5.

4.3.2. Features through GoogleNet and Shallow Classifier

GoogleNet, a pre-trained deep neural network, has a 22-layered structure and extracts
the features of IR images without iterative adjustment of neuron weights, resulting in a
reduction in training time and higher operating system requirements. A total of 1024 fea-
tures were extracted from each thermograph, and the 1025th column was added, storing
the PV panel condition among six health states. Afterward, features vectors based on
training thermographic images were used to train five shallow classifiers, and a tested
thermographic-based features vector was used to test the accuracy of the trained classifier.
Results were analysed based on TPR, FNR, PPV, FDR, training time, prediction speed
(specifically for online testing of images), training accuracy, and testing accuracy. As with
transfer-learned, pre-trained GoogleNet, activations of GoogleNet suffered heavily from
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healthy class differentiation. Shallow classifier utilization versus deep training results in
less accurate models when compared to transfer-learned models. Multi-class SVM resulted
in 97% and 95.5% training and testing accuracy, respectively. The healthy class was mainly
misclassified as having a single-cell defect. The detailed results are provided in Table 6.

4.3.3. Features through SqueezeNet and Shallow Classifier

SqueezeNet, a pre-trained deep neural network, has an 18-layered structure and
extracts the features of IR images without iterative adjustment of neuron weights, resulting
in a reduction in training time and lower operating system requirements. A total of 1000
features were extracted from each thermograph, and the 1001st column was added, which
stored the condition of the PV panel among six fault states. Afterward, feature vectors
based on training thermographs were used to train five shallow classifiers, and a test
thermograph-based feature vector was used to test the accuracy of the trained classifier.
Results were analyzed based on TPR, FNR, PPV, FDR, training time, prediction speed
(specifically for online testing of images), training accuracy, and testing accuracy. TPR
revealed that healthy was frequently misclassified as a primarily single cell. However,
multi-class SVM performed better compared to the rest of the classifiers and achieved 95.8%
and 93.9% accuracy in training and testing, respectively, with a 7.38 s training time. The
detailed results are provided in Table 7.
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Table 4. Transfer-learned deep neural networks for PV panels condition monitoring.

Classifier GoogleNet SqueezeNet ResNet18

Class TPR FNR PPV FDR TPR FNR PPV FDR TPR FNR PPV FDR

Bird Drop 100 0 100 0 100 0 100 0 100 0 100 0
Block 100 0 100 0 90.9 9.1 100 0 100 0 100 0

Healthy 81.8 18.2 100 0 90.9 9.1 100 0 81.8 18.2 100 0
Patchwork 100 0 100 0 100 0 91.7 8.3 100 0 100 0

Single 100 0 84.6 15.4 100 0 91.7 8.3 100 0 84.6 15.4
String 100 0 100 0 100 0 100 0 100 0 100 0

Training Accuracy (%) 100 100 100
Training Loss 0.0038 0.0053 0.0038

Validation Accuracy (%) 96.3 96.3 100
Validation Loss 0.099 0.36 0.036

Testing Accuracy (%) 96.97 96.97 96.97
Execution Time (s) 985 196 229

Table 5. ResNet18-based features calculation and shallow classification.

Classifier Tree Ensemble nB KNN SVM

Class TPR FNR PPV FDR TPR FNR PPV FDR TPR FNR PPV FDR TPR FNR PPV FDR TPR FNR PPV FDR

Bird Drop 81.8 18.2 81.8 18.2 90.0 9.1 100 0 90.9 9.1 100 0 100 0 100 0 100 0 100 0
Block 100 0 100 0 100 0 100 0 81.8 18.2 100 0 100 0 100 0 90.9 9.1 100 0

Healthy 81.8 18.2 81.8 18.2 90.9 9.1 100 0 100 0 73.3 26.7 90.9 9.1 100 0 81.8 18.2 100 0
Patchwork 81.8 18.2 90 10 100 0 100 0 100 0 91.7 8.3 100 0 100 0 100 0 100 0

Single 81.8 18.2 69.2 30.8 100 0 84.6 15.4 90.9 9.1 90.9 9.1 100 0 91.7 8.3 100 0 78.6 21.4
String 81.8 18.2 90 10 100 0 100 0 81.8 18.2 100 0 100 0 100 0 100 0 100 0

Training
Accuracy (%) 72.3 35.6 80.3 95.5 97

Training Time (s) 2.32 11.47 111.56 4.97 12.89
Prediction Speed

(obs/s) 1700 1100 46 430 480

Testing Accuracy
(%) 84.8 97 90.9 98.5 95.5
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Table 6. GoogleNet-based features calculation and shallow classification.

Classifier Tree Ensemble nB KNN SVM

Class TPR FNR PPV FDR TPR FNR PPV FDR TPR FNR PPV FDR TPR FNR PPV FDR TPR FNR PPV FDR
Bird Drop 90.9 9.1 90.0 9.1 100 0 91.7 8.3 100 0 19 81.8 100 0 100 0 100 0 100 0

Block 90.9 9.1 100 0 90.9 9.1 90.9 9.1 18.2 81.8 100 0 90.9 9.1 100 0 90.9 9.1 100 0
Healthy 45.5 54.5 71.4 28.6 81.8 18.2 100 0 0 100 0 100 81.8 18.2 90 10 81.8 18.2 100 0

Patchwork 90.9 9.1 71.4 28.6 100 0 100 0 0 100 0 0 100 0 100 0 100 0 100 0
Single 72.7 27.3 61.5 38.5 100 0 84.6 15.4 0 100 0 0 100 0 78.6 21.4 100 0 73.3 26.7
String 81.8 18.2 81.8 18.2 90.9 9.1 100 0 36.4 63.6 100 0 90.9 9.1 100 0 90.9 9.1 100 0

Training
Accuracy (%) 73.9 77.3 35.2 96.2 96.2

Training Time (s) 4.1 24.39 201.04 6.82 7.5
Prediction Speed

(obs/s) 620 430 24 230 380

Testing Accuracy
(%) 78.8 93.9 25.8 93.9 93.9

Table 7. SqueezeNet-based features calculation and shallow classification.

Classifier Tree Ensemble nB KNN SVM

Class TPR FNR PPV FDR TPR FNR PPV FDR TPR FNR PPV FDR TPR FNR PPV FDR TPR FNR PPV FDR

Bird Drop 100 0 100 0 100 0 84.6 15.4 81.8 18.2 100 0 90.9 9.1 100 0 100 0 100 0
Block 100 0 100 0 100 0 100 0 90.9 9.1 100 0 100 0 100 0 90.9 9.1 100 0

Healthy 81.8 18.2 69.2 30.8 72.7 27.3 100 0 54.5 45.5 100 0 63.6 36.4 100 0 81.8 18.2 100 0
Patchwork 100 0 73.3 26.7 81.8 18.2 90 10 90.9 9.1 83.3 16.7 100 0 91.7 8.3 100 0 100 0

Single 63.6 36.4 77.8 22.2 100 0 84.6 15.4 100 0 64.7 35.3 100 0 64.7 35.3 100 0 78.6 21.4
String 63.6 36.4 100 0 90.9 9.1 90.9 9.1 90.9 9.1 83.8 16.7 81.8 18.2 100 0 90.9 9.1 90.9 9.1

Training
Accuracy (%) 76.9 26.5 84.1 95.8 95.8

Training Time (s) 4.45 18.45 171.83 6.15 7.38
Prediction Speed

(obs/s) 640 400 28 240 370

Testing Accuracy
(%) 84.8 90.9 84.8 89.4 93.9
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5. Discussion and Comparison with Already Existing Techniques

In the literature or previously introduced techniques, PV system faults are widely
monitored using electrical signals and non-invasive thermographs [10,16].

Moreover, shallow classifiers, such as SVM, nB, KNN, etc., are trained on manually-
extracted input features to identify the PV system’s fault [5,9,10]. Moreover, deep neural
network classifiers, such as convolutional neural networks, etc., were utilized to monitor PV
system faults by extracting input features through different layers and iteratively adjusting
neurons’ weights through backpropagation to assign probabilities and weights for each
fault identification [4,11,18].

However, shallow classifiers’ accuracy is greatly limited by the extraction of the most
relevant features of the input and the dimensionality of condition monitoring. While
their training and validation times are short, i.e., approximately seconds, they have fewer
memory and operating system requirements, as witnessed in the literature [5]. On the
other hand, because of their non-linearity, deep neural networks work very well with multi-
dimensional classification problems and achieve higher accuracy. They extract the input
features through their architectural layers and adjust the neurons’ weight through back-
propagation. Therefore, neural networks have comparatively higher memory requirements
and execution times for training and validation, and work well on advanced operating
systems (GPUs). Considering the advantages and limitations of shallow classifiers and neu-
ral network-based classifiers, a fusion of neural networks, i.e., extraction of input features
without backpropagation (in approximately a couple of seconds) and training of shallow
classifiers such as KNN, SVM, nB, etc., is proposed.

In comparison to the least accurate manual feature extraction approach and training
through shallow classifiers, and the high memory, high execution time, and strong operating
system requirements of deep neural network classifiers, the proposed approach extracts,
trains, and validates shallow classifiers in seconds while achieving good testing accuracy
and is capable of processing hundreds of observations per second. For instance, 330 infrared
thermographs with six PV systems monitored through manual feature extraction (texture
and HOG) and using SVM resulted in 83.3% testing accuracy after training and validation
in approximately 4 s. In contrast, neural networks trained with transfer learning achieved
96.97% testing accuracy after 3 min and 49 s of GPU training and validation. In contrast,
the proposed approach resulted in 95.5% testing accuracy through SVM, while training and
validation took approximately 13 s using the CPU. Table 8 displays the testing accuracy as
well as the training and validation times of SVM on various feature extraction approaches.

Table 8. SVM testing accuracy and training time using different features extraction approach.

Features Extraction
Approach Testing Accuracy (%) Training Time (Sec)

Manual 83.3 3.5
ResNet18 95.5 12.9
GoogleNet 93.9 7.5
SqueezeNet 93.9 7.4

6. Conclusions

To maintain PV system output, monitoring the PV system is of utmost importance
to keep the performance, emissions mitigation potential, and payback time at an optimal
level. PV panel condition is monitored by keeping track of parameters such as current,
voltage, irradiance, surface temperature, etc., of PV panels and strings through electrical
signal monitoring or non-invasive thermographs and identifying conditions using shallow
and deep classifiers.

However, considering the training and validation time, the method of most relevant in-
put feature extraction, accuracy, low operating system requirements, multi-dimensionality
issues, etc., a new fused approach was proposed to identify the six different faults of PV
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panels by extracting input features through deep neural networks and the utilization of
shallow classifiers. The proposed approach, trained on 264 balanced IR thermographs and
tested on 66 balanced IR thermographs, proved that the proposed approach can be trained
15 times faster using CPUs than deep neural networks using GPUs, and classifies PV panel
faults with 95.5% accuracy on a new dataset that it has not experienced during training.
This results in good accuracy compared to manual extraction-based shallow classifiers with
83.3% accuracy.
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