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Abstract: Modern societies need a constant and stable electrical supply. After relying primarily on
formal mathematical modeling from operations research, control theory, and numerical analysis,
power systems analysis has changed its attention toward AI prediction/forecasting tools. AI tech-
niques have helped fix power system issues in generation, transmission, distribution, scheduling
and forecasting, etc. These strategies may assist today’s large power systems which have added
more interconnections to meet growing load demands. They make it simple for them to do difficult
duties. Identification of problems and problem management have always necessitated the use of
labor. These operations are made more sophisticated and data-intensive due to the variety and
growth of the networks involved. In light of all of this, the automation of network administration is
absolutely necessary. AI has the potential to improve the problem-solving and deductive reasoning
approaches used in fault management. This study implements a variety of artificial intelligence
and deep learning approaches in order to foresee and predict the corrective measures that will be
conducted in response to faults that occur inside the power distribution network of the Grid station in
Tabuk city with regard to users. The Tabuk grid station is the source of the data that was gathered for
this purpose; it includes a list of defects categorization, actions and remedies that were implemented
to overcome these faults, as well as the number of regular and VIP users from 2017 to 2022. Deep
learning, the most advanced method of learning used by artificial intelligence, is continuing to make
significant strides in a variety of domain areas, including prediction. This study found that the main
predictors of remedial measures against the fault occurring in the power systems are the number of
customers affected and the actual cause of the fault. Consequently, the deep learning regression model,
i.e., Gated Recurrent Unit (GRU), achieved the best performance among the three, which yielded an
accuracy of 92.13%, mean absolute error (MAE) loss of 0.37%, and root mean square error (RMSE)
loss of 0.39% while the simple RNN model’s performance is not up to the mark with an accuracy of
89.21%, mean absolute error (MAE) loss of 0.45% and root mean square error (RMSE) loss of 0.34%.
Significance of the research is to provide the maximum benefit to the customers and the company by
using different AI techniques.

Keywords: power systems; fault classification; deep learning; neural networks

1. Introduction

Electrical utility companies must address the problem of fault management in power
systems to ensure increased efficiency and reliability. To do so, they must employ a wide
range of cutting-edge approaches and mechanisms that take advantage of developments
in information, communications, and technology [1–7]. The Low Voltage transformer is
one node in the network that carries electricity from the power plant to the homes and
businesses that consume it. Electrical problems are reported by customers or by utility staff
in many emerging cities, including Tabuk, by physical visual examination. The customer
service department often needs to dispatch a maintenance crew to perform electrical service
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restoration and troubleshooting. The whole procedure is inefficient since it requires unnec-
essary time to discover and report errors via phones, insufficient troubleshooting methods,
and inadequate instruments to identify and categories faults [8]. Using Supervisory Control
and Data Acquisition (SCADA) systems have led to significant improvements in monitor-
ing the electrical grid’s transmission and main distribution networks. Measurements are
taken in real-time by the systems from remote terminal units (RTUs) located in transmission
and main distribution substations [9,10]. Enhancements in synchronization utilizing the
Global Positioning System led to the invention of the phase Measurement Unit (PMU).
On the basis of data collected by SCADA or PMU, mathematical techniques were used to
identify and categorize errors. However, because of the complexity and high cost of the
system, these solutions cannot be used in the electrical SDN [11,12]. Most studies have con-
centrated on the transmission and main distribution network, which has fewer nodes, less
complexity, and is where most sensor deployments have occurred. The high user density,
complexity, dynamic changes, and enormous quantity of data needed make it challenging
to implement problem detection and classification processes in the secondary distribution
network. Hierarchical control, Intelligent automation, Internet of Things (IoT) technologies,
and hybrid communication networks may soon be used into the electric grid to improve its
performance and efficiency, thanks to recent improvements in information processing and
sensing technology [13]. There is currently widespread usage of intelligence approaches
in transformer failure diagnostics, and the results are persuasive. When used to solve
complicated issues like transformer defect diagnostics, artificial intelligence systems mimic
live creatures’ survival and other behaviors to make judgments and optimize real-world
problems in ways that conventional approaches cannot. Traditional DGA methods are
prone to uncertainty as a result of boundary difficulties, unresolved codes, and multi-fault
situations; however, intelligent strategies may assist in alleviating these issues [14]. Re-
cently, intelligence methods have been extensively used in transformer defect diagnostics
with compelling outcomes. Artificial intelligence approaches diagnose transformer faults
and solve complex problems by modeling living organisms’ survival and other behaviors
to make decisions and optimize their solutions. These approaches aim at more general
problem descriptions, typically lacking structural information. Traditional DGA methods
are prone to uncertainty as a result of boundary difficulties, unresolved codes, and multi-
fault situations; however, using intelligent approaches may alleviate this problem [15].
A neural network technique is presented in [16] for determining when a power transformer
will develop an internal defect. An upgraded Elman network, a recursive neural network,
is utilized to simplify the Neural Network’s structure. Conventional DGA techniques are
improved upon by combining a fuzzy theory with neural network inputs. Based on a
large knowledge base and a library of oil chromatograms from troubleshooting jobs, a
technique was developed for diagnosing faults in transformers using a mix of artificial
intelligence and neural networks [17]. A series diagnostic model for transformer faults is
created by first training a BP neural network using an enhanced AdaBoost method and then
combining it with a PNN neural network in [18]. Using dissolved gas analysis (DGA), a bat
algorithm (BA), and probabilistic neural network optimization, this research proposes a ma-
chine learning-based solution to problem identification in power transformers (PNN) [19].
In [20], an innovative machine learning approach for defect detection in oil-immersed
power transformers, according to a Probability Neural Network (PNN) that has been tuned
using a Multi-Verse Optimizer (MVO) algorithm. Similar numerous forms of artificial
intelligence, including neural networks, have been used for DGA defect diagnostics by
scientists, Refs. [21–26] support vector machine (SVM) [27–35], and clustering [36–38].
Artificial neural network (ANN) is used in solar energy systems to optimize and anticipate
the performance of equipment such as solar collectors, solar aided equipment [39].Also
the artificial intelligence techniques are used to control the spread of COVID-19 pandemic
which is an effective way as compared to their statistical models [40]. Some AI techniques
are also used to improve the design of bi-stable structures and to predict how they will
behave under different activation schemes. An ensemble random vector functional link
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model (ERVFL) linked with a gradient-based optimizer is suggested to represent ultrasonic
welding of a polymeric material mix (GBO) [41–43]. Friction stir welding of incompati-
ble polymers: a novel AI-based prediction model [44]. Similarly AI is presenting a huge
contribution in many other fields like metal cutting through model based on political opti-
mizer for eco-friendly MQL-turning of AISI 4340 alloy with nano-lubricants [45]. Artificial
Intelligence techniques are also used in prediction for thermal efficiency and water yield
in solar stills systems [46]. A hybrid artificial intelligence predictive model is adopted to
predict the mechanical and microstructural properties of frictional stir processed aluminum
alloy reinforced by alumina nanoparticles is used [47]. An AI model (CFNN) cascaded
forward neural network model is used for predicting the productivity of a developed
inclined stepped solar still system [48]. Also LSTM method is adopted to predict the yield
of fresh water in stepped solar and a comparison has been made through it with conven-
tional solar [49]. In this study, real-time data was acquired from the Tabuk grid station,
consisting of the number of faults that occurred from 2017 to 2022, remedies to remove
these faults manually, and the number of users affected by these faults. This number of
users splits into two categories; one is the normal users, and the other is VIP users. In
this study, firstly explore a large dataset covering the years 2017 to 2022 in an attempt to
test and compare the efficacy of several models for anticipating increases or decreases in
energy use. The results demonstrated the importance of these characteristics in boosting the
precision of future predictions. Third, compared the prediction accuracy of three popular
deep learning models built on LSTM, GRU, and RNN for forecasting power utilization
over several time intervals. The rest of this work may be summarized as follows: Section 2
describes the case study and how the framework worked with it, including data gathering,
analysis, and model construction. Then, Section 3 gives an overarching description of the
framework/methodology and its many approaches. Next, Section 4 discusses the findings.
Finally, the results of this research are presented in Section 5.

2. Case Study

For the purposes of this investigation, real-time data from the years 2017 to 2022 are
being gathered by a grid station that is located in Tabuk, Saudi Arabia. On the distribution
side, alarms are utilized to gather information on any issues that may arise. Both physical
and logical alerts are included within this system. Following the accumulation of these alerts,
problems are categorized, and after that, corrective actions or preventative measures are
carried out in response to these alarms. There are two types of people who consume energy
in Tabuk City: VIP users and ordinary users. Regular users pay the standard rate. VIP users
are given priority for any corrective steps that need to be taken. The event will be noted in the
log only if the defect has been repaired or eliminated; if this has not occurred, the type of the
problem will be categorized as one that requires more corrective actions. Figure 1 shows the
whole process, how the data of the faults and their remedial measures are collected.Energies 2023, 16, x FOR PEER REVIEW 4 of 22 
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2.1. Data Classification

Table 1 shows the classification details of the faults that mostly occurred during the
period of 2017–2022 by the users. Similarly, Table 2 lists remedial measures or actions taken
against these faults.

Table 1. Types of faults occurred during the period of 2017–2020.

No. Outage Reason

1 Breakdown-Failure
2 Contact with conductors (birds/animals)
3 End connection combustion (to-ring/ crank unit)
4 Shaft / tensioner / bracket damaged by an external factor
5 Power cut due to (sandstorm/wind)
6 Straightening/T-joint failure
7 Cable failure caused by an external factor
8 Power cut due to (rain/thunderstorm)
9 Force majeure (disasters, floods, earthquakes)
10 Separation due to transmission protection
11 Disconnection of the feeder due to a fault in the subscriber’s network
12 broken insulation
13 Emergency separation
14 Cable failure due to (longevity/insulation defect)
15 power restored to the feeder with a fault that has not been isolated
16 Blowout / air breaker switch (LBS) failure
17 Throw wires and metal pieces at the connectors
18 contact with conductors (trees)
19 Wrong operation of the protection devices
20 antenna transducer failure
21 Failure of the cable connection with the antenna connector
22 Detachable / burning jumper
23 A pillar fell due to the wind
24 Feeder breaker end combustion
25 Separation of the feeder at the request of the Civil Defense Department

26 Disconnection of the circuit breaker for the senior subscribers’ switching unit due to a
fault in the subscriber’s network

27 Distribution substation transformer failure (compact / unit / building)
28 Damage to the splicing unit (annular/expandable) by an external factor
29 Transformer end connection combustion
30 Internal failure of the toroidal wrench
31 Earth transformer failure without toroidal unit
32 Ground transformer combustion without toroidal unit
33 Part/or the entire main distribution station is out of service
34 Distribution substation transformer combustion (compact/unit/building)
35 Failure of the lightning rod
36 Failure due to feeder overload
37 Internal combustion of the VIP subscribers switch unit
38 Emergency break for overhead jumper repair
39 Cut / rupture of the antenna connector
40 Emergency disconnection at the request of the civil defense / government agency
41 Failure due to transmission network

42 Emergency disconnection for operational operations (transfer or reload/ failure isolation/
change (N.O)

43 Key failure caused by an animal
44 one of the phases touches another phase
45 Emergency disconnection at the request of the subscriber
46 Emergency disconnection at the request of other activities (transmission – power plant)
47 Transformer damage by external factor
48 Failure of the GIS circuit breaker end connection
49 Failure of the protection system
50 A main distribution station breaker failure due to a fault in the trip setting values
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Table 2. Remedial measures or action taken against the faults.

No. Action Taken

1 Turned on and back to normal
2 Isolated and restarted from alternate source
3 Isolated and gradual restart
4 Isolated and restarted
5 Replaced and restarted
6 Restarted after passing the overhead line
7 Eliminated and restarted
8 Isolated and waiting for the subscriber to fix the fault
9 The subscriber has been isolated and restarted
10 Repaired and restarted
11 The isolation point has been changed and restarted
12 After checking, the switch was turned off and restarted
13 After approval from the transmission network, it was restarted
14 Restarted after the subscriber fixed the failure
15 Loads reduced and restarted

2.2. Data Analysis

Figure 2a represents the heat map of the data acquired. This map shows the correlation
between the parameters used for forecasting or predicting fault management remedies.
The parameters used for the heat map are the number of faults, actions taken against these
faults, reasons due to which fault occurred, number of normal and VIP users, and the years
during which these faults occurred. The color bar shows the correlation strength between
these parameters. Similarly, Figure 2b is the pair plot obtained through data set in which
scattered values with respect to other parameters are shown.
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Figure 2. (a) Heat map of the data collected from Tabuk grid station; (b) Pair plot of the data collected
from Tabuk grid station.

Figure 3 shows the box plot of the data parameters, explaining the concentration of
the data values. This box plot is categorized into five sections, i.e., users, VIP users, faults
that occurred, action taken against each fault, and the number of years. A Box plot is a
standardized way to analyze the data, separating it into four equal parts, having 25% each.
It tells about the values of the data’s outlier and also shows whether it is symmetrical. In
this case, data acquired from the grid station shows that during the first quartile (Q1), the
strength of complaints from normal users is very low, but during the second quartile (Q2),
25% of the normal users are below 220. In the third quartile (Q3), 25% of the normal users
lie between 220 to 600, and the remaining 25% of users are between 600 to 1400, whereas
the strength of VIP users is very low compared to normal users. Similarly, the data is more
concentrated in the Q2 during faults, which means 25% of faults occurred between 5 to
7 serial numbers present in Table 2, whereas 25% is from 7 to 15, and the remaining 25%
in Q3 are present between 15 to 28 serial numbers as present in Table 2. In the same way,
actions taken against these faults are from 1 to 2 during Q1 and 2 to 4 for 50% of the faults
during Q2 and Q3. Action or remedial measures from 4 to 7 are taken against the faults
that occurred during Q4. Box plots related to the years show that 75% of faults occurred
from 2017 to 2020, and the remaining 25% occurred from 2020 to 2022.
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3. Framework with Fault Management

Figure 4 shows a high-level overview of the framework proposed for fault manage-
ment using deep learning models. The first step of this research is data collection and
feature/parameter selection. The second step is partitioning the data, in which 50% train-
ing, validating, and 50% testing of the data has been done. After cleaning and testing the
data, predicted output result values and projected error values are kept under the models
developed after training through 50% of the data. Finally, graphical visualizations have
been acquired from these trained models, as shown in Figure 4.
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Similarly, the RMS and MAE errors are also tested after training 50% of the data.
Again, the graphical visualizations show that the results acquired from the GRU model are
much better than the other two methods. Also, the root mean square error (RMSE) loss and
mean absolute error loss (MAE) loss for the GRU model is low than that of the LSTM and
RNN models.

In a similar manner, Figure 5 depicts the whole process as a flow chart of the procedures
involved. Python is used to build and implement the three distinct artificial intelligence
strategies, which are recurrent neural networks (RNN), long short-term memory (LSTM),
and gate recurrent units (GRU). After the first data set has been imported, an analysis of the
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state of the data is performed on it, and then it is put through the validation process. During
the process of validating the imported data, it is examined to see whether the data ought to be
in the form of numbers. This is done because, in time series analysis, the data must not be
in the form of strings and must also be legitimate and accurate (no negative numbers, etc.).
If the data value is determined to be right or YES, then the process moves on to the next
step; otherwise, it is filtered through the validation process once again, as illustrated in the
flowchart in Figure 5. The next stage of the procedure involves setting aside half of the
data that is being used for training for each of the deep learning RNN, LSTM, and GRU
models that have been constructed. After that, it is decided whether the generated model
is appropriate for the data that was trained on it. The remaining 50% of the data is used to
generate the final set of anticipated values and visualizations. The root mean square errors
(RMSE) and the mean absolute errors are shown in this integrated graphical form that
shows the final visualization findings (MAE). The comparative study found that the results
obtained by the artificial intelligence deep learning model of gate recurrent unit (GRU) for
real-time fault classification and the number of users data have a lower percentage of RMSE
and MAE values. This was the conclusion reached after comparing the models’ RMSE and
MAE values. The following section provides a concise overview of the generated models
and their mathematical formulations.
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3.1. Mathematical Expressions and Functional Process of RNN, LSTM and GRU
3.1.1. Simple Recurrent Neural Network (RNN)

Elman initially suggested using the recurrent unit as its basic building block (1990).
Figure 6 shows the essential composition of an RNN cell. Figure 6 shows the most basic
composition of an RNN cell [45].
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Figure 6. RNN internal structure.

When used to extremely lengthy sequences, the basic RNN cell has the well-known
issues of disappearing gradient and expanding gradient. It is a fact that the basic RNN
cells cannot hold long-term dependence in the future. So it is proof that these cells have
deficiencies. The back-propagated gradients tend to decrease when the sequences are
very lengthy, preventing an effective update of the weights. However, when gradients are
substantial, they may erupt across lengthy sequences, rendering weight matrices unstable.
Both of these problems stem from the intractable nature of the gradients, making it harder
for RNN cells to detect and account for long-term relationships. Equations (1) and (2) show
the mathematical expressions for RNN structure [2].

ht−1 = σ(Ph ∗ ht−1 + Px ∗ xt + Ba) (1)

yt = tanh(Po ∗ ht + Bo) (2)

where ht is the hidden state, and it is the only type of memory in the RNN cell. xt and yt
represent the input and output of the cell at time step t, respectively. Ph and Px are the
weight matrices for the hidden state and Po bias vector for the cell output, respectively.
Ba and Bo denote the bias vector for the hidden state and cell output, respectively.

The final hidden state is conditioned on the hidden state of the preceding time step and
the current input. The cellular feedback loops that link the present state to the subsequent
one support this hypothesis. These bonds are crucial for considering historical data while
modifying the current cell state. In this case, the sigmoid function is utilized, denoted by,
to turn on the latent state, and the hyperbolic tangent function, denoted by tanh, to turn on
the overt state.

3.1.2. GRU Explanation

The GRU is a subset of RNNs. As seen in Figure 7, the GRU differs significantly from
the LSTM in that it lacks a cell state and instead employs a simple logic circuit consisting of
an update gate (Zt) and a reset gate (Rt), as shown in Figure 7.
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Figure 7. Internal structure of GRU.

They simplify model training as they are a more literal depiction of the LSTM. On the
other hand, the GRU is endowed with a hidden state Ht that crosses the top of the cell and
undergoes periodic updates through a gating mechanism. The GRU requires two inputs,
the current input Xt and the pre-hidden state Ht−1. These two states are analyzed by two
gates that assess whether the information helps modify the hidden state or not. One is the
reset gate which decides what percentage of the previous hidden state should be preserved,
thereby decreasing the amount of information that can be stored gradually. At first, the
current input Xt and the prior entry Ht−1 are processed through the nonlinear sigmoid
function that produces a value between 0 to 1, as illustrated in Equation (3) [2].

Rt = σ(WRH ∗Ht−1 + WRX ∗ Xt) (3)

The second one is the update gate; during the process of the update gate, the input
Xt and pre-hidden state Ht−1 are multiplied by their weights WZX and WZH, respectively.
These two products are added, and then a sigmoid activation function is utilized, which
clamps the output between 0 and 1, as in Equation (4) [2].

Zt = σ(WZH ∗Ht−1 + WZX ∗ Xt) (4)

In Equations (3) and (4), Zt is the output of the reset gate, WRH and WRX represent
the weights for the reset gate, WZH and WZX represent the weights of the update gate of
pre-hidden state Ht−1 and input Xt, respectively.

Now for H′t, the first step is to calculate the product of input Xt and its weight WH′X.
The second step is to find the product of the reset gate (Rt) and (Ht−1 ∗WH′H), which will
find what value should be remembered or forgotten and then apply the nonlinear function
‘tanh’ by combining these both steps, as in Equation (5) [2].

H′t = tanh{WH′H ∗ (Rt ∗Ht−1) + WH′X ∗ Xt} (5)

In Equation (5), WH′H and WH′X are the weight matrix, Ht−1 is the pre-hidden state,
Rt is the reset gate output, Xt is the input, and tanh represents the activation function of
the output.

During the last stage, an update gate is needed to find what should be collected from
the current memory content H′t and previous memory content Ht−1. For the update gate,
the first step is the product of Zt and H′t, and the second step is the product of Ht−1 and



Energies 2023, 16, 1026 11 of 20

(1 − Zt) is needed. By combining these two steps, the value of Ht can be determined from
the following Equation (6) [2].

H′t = tanh{WH′H ∗ (Rt ∗Ht−1) + WH′X ∗ Xt} (6)

Ht = {(1− Zt)Ht−1 + ZT ∗H′t} (7)

where Ht is the final output, Ht−1 is the pre-hidden state, Rt is the reset gate output in
Equation (7) [2].

3.1.3. LSTM Explanation

Long Short Term Memory is a more advanced type of recurrent neural network
designed to address issues with explosive and decaying gradients. LSTM, similarly to
RNN, is composed of repeated modules; however, the structure is different. Rather than
having a single layer of tanh, an LSTM network contains four layers that interact with each
other and communicate with one another, as shown in Figure 8. This structure, consisting
of three gates or four layers, is useful for LSTM in retaining long-term memory and may be
used to address various sequential issues. The internal structure of the LSTM cell is shown
in Figure 8.
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Figure 8. Internal structure of LSTM.

LSTM cell is divided into three gates. The combined inputs of the hidden state from
the preceding time step (Ht−1) and the input at the current time step (Xt) are sent through a
series of gates, as shown in Figure 8. The values of Ht−1) and Xt are passed through the
sigmoid, which is called forget gate. For gates, the sigmoid function (σ) is used since it returns
only positive values and can be relied upon to definitively tell us whether or not a given
characteristic should be retained. The sigmoid function has values between 0 and 1, and it
determines whether values should be determined, i.e., multiplied with 1 (means gates are
open) or forgotten, i.e., multiplied with 0 (means gates are blocked). Equation (8) shows
the mathematical expression for the output of forget gate [2].

Ft = σ{WF(Ht−1, Xt)} (8)

Similarly, the input gate is used for determining which factors should be included in the
current cell state (C). This gate has two parts; one is the input gate layer having sigmoid. It
decides which value should be updated. The other one having a tanh layer constitute new



Energies 2023, 16, 1026 12 of 20

candidate values (C′t) that could be combined to the state. Equation (9) and Equation (10)
represent the input gate parameters [2].

It = σ{WI(Ht−1, Xt)} (9)

C′t = tanh{WC ∗ (Ht−1, Xt)} (10)

The next process is to update the cell state (Ct); for this output of the forget gate (Ft) is
multiplied by the previous cell state (Ct−1,). Then, the product of the input gate (It) and the
cell state candidate’s information (C′t) is added to get the current cell state (Ct), as shown
in Equation (11) [2].

Ct = (Ft ∗Ct−1) + Ct ∗C′t (11)

The last step of the process is to update the hidden cell. Ct is passed through the tanh
activation function and then multiplied by the output gate (Ot) results, as in Equation (12) [2].
In the end, Ct and Ht move back toward the recurrent unit, Equation (13) [2], and the
process starts over at time step t + 1 until it is over, as shown in Figure 8.

Ot = σ{WO(Ht−1, Xt)} (12)

Ht = Ot ∗ tanh
(
Ct) (13)

where σ is the sigmoid function, It denotes the Input gate, Ft is Forget gate, Ot, is the output
gate, Xt is the input at a current Time Step, Ht is the hidden state at the current time step,
Ht−1, is the hidden state from a previous time step, Ct, represents the current cell state,
C′t signifies a candidate for cell state at the timestamp (t), and Ct−1, is the previous
cell state.

3.1.4. Experimental Setup Used

In this research, the following hardware and software setups were utilized:

1. CPU: Intel(R) Core (TM) i7-10875H CPU@2.30GHz 2.30 GHz
2. Graphics Card: NVIDIA GeForce RTX 2060
3. RAM: 16.0 GB, 6 GB GUP Memory
4. OS: 64-bit Windows operating system
5. Software: Python 3.7, Keras, TensorFlow version 2.3.1

The resulting handcrafted fused feature set was divided 50:50 across the training and
testing sets. Precision, accuracy, recall, and F1-score were standard performance indicators
used in assessing results. True Positive (TP), True Negative (TN), False Negative (FN),
and False Positive (FP) rates were calculated to determine the value of these standard
performance indicators, which are defined as:

• TP: True positive rate is the number of fault classifications samples that were success-
fully identified as malignant.

• TN: True negative rate is the number of benign samples that were successfully identi-
fied as benign.

• FP: False positive rate is the number of benign samples that were wrongly identified
as malignant.

• FN: False negative rate is the number of malignant samples that were wrongly identi-
fied as benign.

Precision =
TP

TP + FP
(14)

Recall =
FP

FP + TN
(15)

F1− Score = 2× TP
TP + FP + FN

(16)
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Accuracy =
TP + TN

TP + TN + FP + FN
(17)

4. Results and Discussion

Figure 9 shows the confusion matrix of the three models used for prediction using
the real-time data set of fault classification. A confusion matrix may be used to provide a
concise summary of the effectiveness of a categorization system. For example, if there is a
considerable imbalance between the quantities of observations in each class or if there are
more than two classes in the dataset, placing all of the trust in the classification accuracy
alone might be misleading. The confusion matrix also explains the benefits and drawbacks
associated with categorization models that are computed. Figure 9a shows the results of
the data set in the confusion matrix between the actual values of the data set and values
after prediction through the GRU model.

Energies 2023, 16, x FOR PEER REVIEW 15 of 22 
 

 

Accuracy =  TP + TNTP + TN + FP + FN (17) 

4. Results and Discussion 
Figure 9 shows the confusion matrix of the three models used for prediction using 

the real-time data set of fault classification. A confusion matrix may be used to provide a 
concise summary of the effectiveness of a categorization system. For example, if there is a 
considerable imbalance between the quantities of observations in each class or if there are 
more than two classes in the dataset, placing all of the trust in the classification accuracy 
alone might be misleading. The confusion matrix also explains the benefits and drawbacks 
associated with categorization models that are computed. Figure 9a shows the results of 
the data set in the confusion matrix between the actual values of the data set and values 
after prediction through the GRU model.  

  
(a) (b) 

 
(c) 

Figure 9. Confusion matrix through (a) GRU, (b) LSTM, and (c) RNN. 

Accurately predicted true positive values from 2017 to 2022 have the highest percent-
age compared to the values of the other two methods. This means the data is classified as 
having positive values without the lowest misleading numbers. Similarly, the confusion 
matrix between actual values of the data set and values after prediction through LSTM 
and RNN models in Figure 9b and Figure 9c, respectively, show performance results 
about the data. However, it can be clearly seen that GRU is showing better results than 
LSTM and RNN. At the same time, RNN performed poorly than the other two methods. 

Figure 10 compares the RMSE validation loss graph of the models designed and the 
RMSE loss after prediction by using 100 epochs on the x-axis. It is observed in Figure 10a 
that validation loss through RNN starts after the first epoch and from 10 on the y-axis and 
suddenly decreases. After that, the fluctuation can be seen until the last epoch. In the same 

Figure 9. Confusion matrix through (a) GRU, (b) LSTM, and (c) RNN.

Accurately predicted true positive values from 2017 to 2022 have the highest percent-
age compared to the values of the other two methods. This means the data is classified as
having positive values without the lowest misleading numbers. Similarly, the confusion
matrix between actual values of the data set and values after prediction through LSTM and
RNN models in Figures 9b and 9c, respectively, show performance results about the data.
However, it can be clearly seen that GRU is showing better results than LSTM and RNN.
At the same time, RNN performed poorly than the other two methods.

Figure 10 compares the RMSE validation loss graph of the models designed and the
RMSE loss after prediction by using 100 epochs on the x-axis. It is observed in Figure 10a
that validation loss through RNN starts after the first epoch and from 10 on the y-axis and
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suddenly decreases. After that, the fluctuation can be seen until the last epoch. In the same
way, validation loss in GRU and LSTM is less than RNN and starts from 5.5, then decreases
and continuously remains to fluctuate up to the 100th epoch. If the validation results of
RMSE loss compare with the predicted RMSE loss, then it can be clearly seen here that GRU
is giving much better results than LSTM and RNN as the RMSE loss of GRU in prediction
is very low.
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Figure 10. (a) RMSE validation loss through GRU, LSTM and RNN; (b) actual predicted RMSE Loss
through GRU, LSTM and RNN.

Figure 11 shows the comparison between the mean absolute error (MAE) validation
loss graph of the models designed and the MAE loss after prediction using 100 epochs on
the x-axis. It can be seen in Figure 11a that validation loss through RNN starts to decline
from zero, and after the first epoch, a gradual fluctuating decrease can be seen until the
last epoch. In the same way, validation loss in GRU and LSTM is less than RNN and starts
from 1.5, then decreases and continuously remains to fluctuate up to the 100th epoch. If
the validation results of MAE loss compare with the predicted MAE loss, it can be clearly
seen that GRU is performing much better than LSTM and RNN as the MAE loss of GRU is
very low.
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Figure 11. (a) MAE validation loss through GRU, LSTM and RNN; (b) Actual predicted MAE loss
through GRU, LSTM and RNN.
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After training 50% of the data, validation accuracy and loss of the three models are
determined through graphical visualization in Figure 12a,b. Figure 12a shows that the
validation accuracy of the GRU model starts from 0.45 at the start, then goes on increasing
up to 0.93 and remains constant till the 100th epoch, which is higher than the LSTM and
RNN validation accuracy. In contrast, the Validation loss of GRU is much lower than that
of LSTM and RNN as it starts from 1.4 and decreases down to 0.2, as shown in Figure 12b
compared to the losses of LSTM and RNN models. On the other hand, the highest validation
loss is from the RNN model, starting from 1.7 and decreasing to 0.39 until the last epoch, as
in Figure 12b.
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Figure 12. (a) Validation Accuracy of the developed models GRU, LSTM and RNN; (b) Validation
Loss of the developed models GRU, LSTM and RNN.

In Figure 13, prediction accuracy and prediction loss are described in graphical visu-
alization form. Figure 13a shows that the accuracy of the model GRU is more than that
of LSTM and RNN. Similarly, in the same way, the GRU loss in Figure 13b is the lowest
compared to the other two models. The prediction accuracy of GRU starts from 0.5 and
increases up to 0.93, whereas its loss is from 1.4 to a minimum value of 0.28. The model
RNN shows the lowest performance in both, i.e., prediction accuracy and loss.
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Figure 13. (a) Prediction accuracy of the models GRU, LSTM and RNN after testing 50% data;
(b) Prediction loss of the models GRU, LSTM and RNN after testing 50% data.

Tables 3–5 below summarize the trainable and non-trainable parameters of the data
forecasting framework for the GRU, LSTM, and RNN, respectively. This is done after
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the datasets have been divided into training, validation, and testing sets and the appro-
priate fine-tuned parameters have been selected. The results of employing gradients to
update the values of trainable parameters, such as error, loss, and cost relative to chosen
hyperparameters in neural networks, are shown in Tables 3–5 indicate that there are over
394,758 trainable parameters for GRU, over 524,358 trainable parameters for LSTM, and
over 131,238 trainable parameters for RNN. A model’s accuracy could improve with more
trainable parameters, but this comes with a greater danger of overfitting. Dropout layers
were included in the model to prevent the overfitting and underfitting that plague neural
networks. Tensor Flow and Keras may show overfitting and underfitting due to tunable
parameters by plotting epochs versus training and validation losses. A model is considered
underfitting if it does not increase its performance on either the training or validation sets.
It is claimed that a model is overfitting if, despite prolonged training, it still performs poorly
on the validation set. One indicator of a well-fitting model is its ability to perform well
not just on the training set but also on the validation set, a phenomenon known as transfer
learning. In order to assess whether the suggested neural network model’s parameters are
indeed trainable, one might look at epoch curves depicting training and validation loss.

Table 3. Summary of model parameters based on fine-tuned GRU neural network.

Layer (Type) Output Shape Param #

gru (GRU) (None, None, 256) 199,680
dropout (Dropout) (None, None, 256) 0

gru_1 (GRU) (None, None, 128) 148,224
dropout_1 (Dropout) (None, None, 128) 0

gru_2 (GRU) (None, None, 64) 37,248
dropout_2 (Dropout) (None, None, 64) 0

gru_3 (GRU) (None, 32) 9408
dropout_3 (Dropout) (None, 32) 0

dense (Dense) (None, 6) 198
activation (Activation) (None, 6) 0

Total params 394,758
Trainable params 394,758

Non-trainable params 0

Performance of GRU

Loss: 0.21, Accuracy: 92.13%
# Number of parameters

Table 4. Summary of model parameters based on fine-tuned LSTM neural network.

Layer (Type) Output Shape Param #

lstm (LSTM) (None, None, 256) 265,216
dropout (Dropout) (None, None, 256) 0

lstm_1 (LSTM) (None, None, 128) 197,120
dropout_1 (Dropout) (None, None, 128) 0

lstm_2 (LSTM) (None, None, 64) 49,408
dropout_2 (Dropout) (None, None, 64) 0

lstm_3 (LSTM) (None, 32) 12,416
dropout_3 (Dropout) (None, 32) 0

dense (Dense) (None, 6) 198
activation (Activation) (None, 6) 0

Total params 524,358
Trainable params 524,358

Non-trainable params 0

Performance of LSTM

Loss: 0.22, Accuracy:91.69%
# Number of parameters
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Table 5. Summary of model parameters based on fine-tuned RNN neural network.

Layer (Type) Output Shape Param #

simple_rnn (SimpleRNN) (None, None, 256) 66304
dropout (Dropout) (None, None, 256) 0

simple_rnn_1 (SimpleRNN) (None, None, 128) 49280
dropout_1 (Dropout) (None, None, 128) 0

simple_rnn_2 (SimpleRNN) (None, None, 64) 12352
dropout_2 (Dropout) (None, None, 64) 0

simple_rnn_3 (SimpleRNN) (None, 32) 3104
dropout_3 (Dropout) (None, 32) 0

dense (Dense) (None, 6) 198
activation (Activation) (None, 6) 0

Total params 131,238
Trainable params 131,238

Non-trainable params 0

Performance of Simple RNN

Loss: 0.28, Accuracy: 89.21%
# Number of parameters

Table 6 discusses the resulting overall summary of all predicted models. It can be seen
that the losses of RNN and LSTM are 0.28 and 0.22, respectively, whereas the loss of GRU
is lower than both of them. Similarly, the accuracy of GRU is higher than RNN and LSTM,
which is 92.13%. In the same way, the MAE and RMSE loss of GRU is 0.37 and 0.39, which
is the lowest among all three models.

Table 6. Performance evaluation of various neural network models in terms of losses and accuracy.

Model of
Neural Network
Prediction

Losses Accuracy (%) MAE Loss RMSE Loss

Recurrent
Neural Network
(RNN)

0.28 89.21 0.45 0.47

Long-Short Term
Memory (LSTM) 0.22 91.69 0.42 0.40

Gated Recurrent
Unit (GRU) 0.21 92.13 0.37 0.39

5. Conclusions

Since traditional secondary techniques often lack fault monitoring and normalization
systems, resolving power outage concerns in distribution networks is a time-consuming
and complex task. Distribution network operators have a significant challenge in fault
management. Systems that can go through the deluge of incoming data, diagnose problems,
and suggest fixes may take a massive load off the operator’s shoulders. In this research,
some AI neural network models are available for defect prediction and how to fix them,
including GRUs, LSTMs, and RNNs. After training and testing the models, predictions
and forecasts were made using real-time data on physical and logical faults occurring at
Tabuk grid station from 2017 to 2022. Graphical representations generated allowed for
a comparison of results, showing that GRU outperformed LSTM and RNN. The overall
analysis revealed that GRU achieved a prediction performance of over 90% with a prediction
loss of less than 20%. Similarly, it was evident from the results that RMSE and MAE loss of
GRU (both validation and prediction) was lower than that of LSTM and RNN. Compared
to LSTM (91.69%) and RNN (81.21%), GRU’s accuracy is much higher at 92.13%. For
this reason, the fault management system of today and the future will benefit from the
incorporation of AI methods or models that will allow for more nuanced and accurate
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diagnoses of problems and the implementation of appropriate corrective measures. In
future, some latest AI techniques will be implemented for enhancing the response towards
any fault occurred with in or out of the grid system. For making the system more swift and
efficient for the users and for the service providers, ensemble will be developed through
different artificial intelligence models like LSTM, AdaBoost, XGBoost, etc.
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