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Abstract: The application of integrated energy systems is significant for realizing the comprehensive
utilization of various energy sources and improving the utilization rate of renewable energy. At
present, the optimal operation of integrated energy systems is a research hotspot. However, shortcom-
ings remain in the stochastic optimization operation and the scenario generation method. This paper
proposes a stochastic optimization operation model of an integrated energy microgrid based on an
advanced multi-scenario generation method. First, this paper establishes the time-divided probability
distribution model of the forecasting error of the uncertain factors, such as photovoltaic (PV) power
and load, which provide the basis for generating scenarios. Moreover, the covariance matrix is used to
calculate the time correlation of the time-divided probabilistic distributed models, and the parameters
of the covariance matrix are optimized. Second, based on multiple typical scenarios, the stochastic
optimization operation model of the integrated energy microgrid is established. Finally, the real
data is used to verify the proposed method. The results show that the nonparametric kernel density
estimation method has the best fitting effect. On this basis, the time correlation and the operation
costs are compared with the scenario sets generated by other methods, which proves the advantages
of the proposed multi-scenario generation method and stochastic optimization operation model.

Keywords: probability distribution model; time correlation; integrated energy microgrid; stochastic
optimization; covariance matrix

1. Introduction

With rising energy demands and increasing concerns about environmental problems,
seeking alternative energy, reducing the use of fossil energy, and improving energy uti-
lization efficiency have become inevitable choices for the development of human society.
Renewable energy power generation has many advantages and can alleviate energy short-
ages and environmental pollution problems [1,2]. Distributed photovoltaic (PV) and wind
power generation have been widely used in distribution networks and microgrids, which
make important contributions to improving the utilization rate of green energy and reduc-
ing consumer costs [3,4]. Gas microturbines and gas boilers are also being used more often
in the microgrid [5,6], but the single power supply system or heat supply system still has a
shortage of energy efficiency.

The integrated energy system (IES) can combine various energy sources, such as cool-
ing, heating, electricity and gas. It can realize coordinated planning, optimized operation
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and complementary assistance among different energy sources and has received increasing
attention and research [7,8]. The integrated energy microgrid (IEMG) is one of its main
applications, which includes small-scale source, storage, load, and conversion devices
of different energy sources. The integration of a variety of energies and equipment will
inevitably bring challenges to the optimization operation and energy management of the
system [9].

At present, many scholars have studied the operation of integrated energy systems. For
a regional IES, a trilevel two-stage robust optimal operation model is established [10], which
can effectively improve the resilience of the IES under extreme conditions. Reference [11]
investigated the economic dispatch of integrated energy systems, and the proposed dis-
tributed neurodynamic-based approach outperforms the traditional centralized approach.
Reference [12] studied the day-ahead optimization schedule of a gas–electric integrated
energy system. The adaptive clustering partition method was used to study the hierarchical
layout optimization of the integrated energy system in reference [13]. The above studies
give us inspiration for modeling, while they focus on large-scale integrated energy systems.
Different from the large-scale IES, the integrated energy microgrid has less devices and
the devices’ capacity are small. Moreover, the objective function, constraints, and solving
algorithms are different.

For the IES of the industrial park, time-of-use (TOU) price and energy policy models
are constructed in [14], and the optimization operation model and profit distribution
model are established with the goal of maximizing income. The results show that TOU
can improve the matching degree of energy supply and demand and improve energy
utilization efficiency. To solve the optimal economic scheduling model of the IES, a solving
algorithm based on Non-dominated Sorting Genetic Algorithm II (NSGA-II) improved
by tent mapping chaotic algorithms is proposed in reference [15]. However, the NSGA-II
focuses on the multiple objective problems and needs more calculated time to find the
global optimum solution. Reference [16] proposed a multi-energy demand response model
and performance evaluation index system from the perspective of the elastic matrix. It
doesn’t consider the uncertainty of the new energy generation. Regardless of a regional
IES or an integrated energy microgrid, they both include the new energy or various load,
which have the uncertainty caused by the weather conditions or energy consumption habits
of users.

However, in the above studies, the optimal operation models are based on the de-
terministic optimization method. In the deterministic optimization model [10,14–16], the
influence of the uncertainty of these variables on the optimization operation results is
not considered. This uncertainty will have a significant impact on the optimal operation
of the integrated energy system. A feasible method is the scenario-based optimization
method [17], which is a branch of the stochastic programming method. In this method, a
large number of scenarios are obtained by sampling the probability distribution model of
uncertain factors, such as PV, load, and a number of typical scenarios are obtained by the
scenario reduction method, which is taken as the input of the optimization model. This
scenario-based stochastic optimization method has been applied in wind farm access point
selection [18], wind power scheduling [19], microgrid operation [20,21], and distribution
network planning [22], in which its superiorities are proven.

For microgrid operation, Refs. [20,21] proposed a scenario-based stochastic optimiza-
tion operation method, in which the probability distribution of prediction errors of un-
certain factors, such as PV and wind power, are assumed to be the normal distribution.
Moreover, the probability distribution models in different periods are usually assumed to
be the same. These assumptions will lead to the decline of sampling accuracy, which affects
the optimal operation results of the integrated energy system. It is thus necessary to build
the time-divided probability distribution models.

Reference [17] proposed a multi objective optimization method for a multi-energy
microgrid, but the time correlation of uncertain factors was not considered in the sampling
process. The same problem exists in the scenario generation method of integrated energy
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systems in reference [23]. Without considering the time correlation, the statistical char-
acteristics of generated scenarios will be quite different from the actual data. However,
the quality of the scenarios directly affects the final results of the optimization problem.
Reference [24] evaluates three different scenario generation methods, and the results show
that the choice of scenario set has a significant impact on the operating cost of the system,
the utilization rate of renewable energy, and the ability to meet the demand.

To solve the problem that the time correlation is not considered in the process of sce-
nario generation, reference [19] adopts the copula function to establish the time correlation
of random variables, but the model is so complex that its application is limited. To reduce
the complexity, the time correlation model based on the covariance matrix is adopted in
the references [25–27], in which the covariance is assumed and optimized. The concept of
the forgetting factor is proposed in [25] to construct the covariance expression, but it does
not have a specific physical meaning. To avoid this problem, the covariance expression
is improved by using the exponential form [26,27]. However, the assumed parameters
about the covariance are simple and less, which cannot be used for other similar problems.
Inspired by this method, the covariance is further improved and studied in this paper.

Therefore, to solve the above problems, this paper proposes a novel scenario generation
method and applies it to the stochastic optimization operation of the integrated energy
microgrid to reduce the influence caused by the uncertainty of the PV power, wind power
and load. The main contributions of this paper are as follows:

(1) To avoid the shortcomings that the probability distribution models in different
periods are the same [20,21,24], this paper established time-divided probability distribution
models of the forecasting error for random variables based on the nonparametric kernel
density estimation. The model has an excellent fitting effect and can reduce the sampling
error, which provides a basis for generating accurate scenarios.

(2) This paper established the time correlation model based on the covariance matrix
with a novel covariance expression and established the parameter optimization model. The
time correlation can be considered more accurately in the process of generating scenarios,
and the statistical characteristics of generated scenarios are more consistent with the
uncertainty of actual data.

(3) A scenario-based stochastic optimal operation model of an integrated energy
microgrid is established. This model considers various energy forms and the uncertainties
of various random variables, such as PV, wind power, and load, to reduce the impact of
forecasting errors on the operation of the integrated energy microgrid.

The rest of this paper is organized as follows: Section 2 presents the scenario generation
method, including the time-divided probability distribution model and time correlation
model. Section 3 establishes the stochastic optimal operation model. Section 4 is the results
and analysis. The main conclusions are presented in Section 5.

2. Scenario Generation Method
2.1. Time-Divided Probability Distribution Model of Forecasting Error

The probability density function can completely describe the statistical law of random
variables, such as PV or load. Therefore, the probability distribution model is the basis of
scenario generation. Existing studies usually assume that probability distribution models
for different times are the same [20,21]. For example, the sampling time is 1 h, and
scenario generation randomly generates errors for 24 h a day by using the same probability
distribution model. However, in practice, the probability density function of the forecasting
error at each moment is different. Generating scenarios with this method will obviously
increase the error of power scenarios. Inspired by the distribution law of actual data, this
paper proposes that the different probability distribution models should be created for
different periods.

Moreover, the forecasting errors of various uncertain factors are assumed to be the
normal distribution in references [20,21,28]. The distribution of random variables is usu-
ally unknown. The assumption that the forecasting errors are the normal distribution or
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t-distribution will also result in sampling errors. Kernel density estimation, a kind of non-
parametric estimation model that is not based on the basic assumption of the distribution
type, is a method to study the distribution characteristics of the data completely from the
data samples. Reference [29] uses the nonparametric kernel density estimation to build the
probability distribution model of wind power predicted errors, but still does not consider
the characteristics of different periods. Therefore, to avoid sampling errors, this paper
proposes using nonparametric kernel density estimation to build a probability distribution
model of different periods.

Assuming that x1, x2, . . . , xn is n sample points (e.g., PV power) of independent iden-
tical distribution F, its probability density function is set as f , and the kernel density is
estimated as follows:

f̂ (x) =
1

nh

n

∑
i=1

K
(

x− xi
h

)
(1)

where h is the bandwidth, n is the sample number, and K is the kernel function.
The kernel function K(u) needs to satisfy the following conditions:

∫
K(u)du = 1∫

uK(u)du = 0∫
u2K(u)du = µ2(k) > 0

(2)

The Gaussian kernel function is selected in this paper:

K(u) =
1√
2π

e−
u2
2 (3)

In this section, the improvement on the model is that we build a probability density
function for the forecasting error of each period, but not use the same model for all periods.
In this paper, one day is divided into 24 periods, meaning that the sampling time is one
hour. For each period, the kernel density estimation in Equation (1) is different.

2.2. Multivariate Standard Normal Distribution

The scenario considering the time correlation refers to the power curve of the uncertain
variables, such as PV or load. The time correlation needs to be considered when the scenario
is generated by sampling the probability distribution models in Section 2.1. The probability
distribution model is constructed by the nonparametric kernel density estimation method,
and it is difficult to address the time correlation between them. Therefore, to construct
the time correlation of different periods, the probability distribution model based on
kernel density estimation needs to be transformed into a multivariate standard normal
distribution [27]. To improve the sampling accuracy, the covariance parameters and the
optimization method are improved in this section to improve the fitting accuracy of created
scenarios to original scenarios.

The sampling process is converted into a sampling of multivariate standard normal
distributions. The scenario can be viewed as a random vector Z = (Z1, Z2, . . . , ZT), T = 24.
Since Z follows the multivariate standard normal distribution, the covariance matrix can
be expressed as [26]:

∑ =


σ1,1 σ1,2 · · · σ1,T
σ2,1 σ2,2 · · · σ2,T

...
...

. . .
...

σT,1 σT,2 · · · σT,T

 (4)

where σm1,m2 = cov(Zm1 , Zm2) is the covariance between Zm1 and Zm2 , m1, m2 = 1, 2, . . . , T.
∑ is a positive definite matrix, and the value of all diagonal elements is one.
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2.3. Covariance Parameter Optimization

In [27], the covariance expression is assumed to be the exponential form, but it isn’t
compared with other expressions, such as power function. This paper proposes a novel
covariance expression to test the adaptability. The covariance is assumed as follows:

σn,m =

(
1− |m1 −m2|

λ

)α

(5)

where λ is the scaling factor and α is the exponent that is assumed to be a positive integer.
If the scaling factor and exponent are determined, the covariance matrix is uniquely

determined. Therefore, the main goal is to find the best value of the scaling factor and expo-
nent to ensure that the scenario generated by the multivariate standard normal distribution
is as close as possible to the statistical features of the real data. The optimization objective
function of the scaling factor and exponent is established as:

minI =
N

∑
i=1

∣∣F(∆Pt,i)− F′(∆P′t,i)
∣∣ (6)

where N is the sampling number. F(∆Pt,i) is the probability distribution function of real
data. ∆Pt,i = Pt,i − Pt−1,i is the power fluctuation of real data. F′(∆Pt,i

′) is the probability
distribution function of the generated data. ∆Pt,i

′ = Pt,i
′ − Pt−1,i

′ is the power fluctuation
of generated data. When the objective function is minimum, the generated scenario is most
consistent with the random characteristics of the original data, and the parameters λ and α
are optimal.

PR,t,s = P f orecast
R,t + Perror

R,t,s (7)

where t = 1, 2, . . . , T, s = 1, 2, . . . , N, PR,t,s, P f orecast
R,t , and Perror

R,t,s are the value of random
variables, the forecasting value and the value of the forecasting error at time t, respectively.
R is the type of random variable, such as PV, electric load, and cooling load. s is the
scenario number.

A large number of scenarios can be generated by using the above method. If the
scheduling calculation of the integrated energy microgrid is carried out based on a large
number of scenarios, the calculation results will be more accurate, but the amount of
calculation will be large and the calculation time will be very long. Therefore, a large
number of scenarios need to be reduced to obtain a few representative scenarios and their
probabilities. Since scenario reduction is not the main research content of this paper, it will
not be repeated in this paper.

3. Stochastic Optimization Operation Model of an Integrated Energy Microgrid

In this section, the optimal operation model of the integrated energy microgrid is
established. The integrated energy microgrid contains four energy forms: cooling energy,
heating energy, electricity and gas. The IEMG contains a gas microturbine, PV power,
wind power, battery, thermal storage tank, gas boiler, absorption chiller, electric chiller and
various loads. A schematic diagram of the IEMG system is shown in Figure 1. Electric
sources, including PV, wind power, gas microturbine and the power grid, supply power
to the electrical load. In winter, the waste heating energy recovery device of the gas
microturbine, gas boiler and heating system can provide the consumer with heating energy.
The absorption chiller and electric chiller provide cooling energy for the user in summer. In
addition, the battery and thermal storage tank can store and release electric and heating
energy, respectively.
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Figure 1. The diagram of integrated energy microgrid.

3.1. Optimization Model of Operation Cost

The objective function of the optimal operation of the integrated energy microgrid
is to minimize the operating cost. The operating cost of the system includes the cost of
purchasing electricity from the power grid Cgrid and the cost of purchasing gas C f uel . The
operating income is from selling electricity to the power grid Csold. The optimization
objective function is:

minC = Cgrid + C f uel − Csold (8)

Cgrid =
T

∑
t=1

cgrid,tPgrid,t∆t (9)

C f uel =
T

∑
t=1

[
cng,t

(
Ggt,t + Ggb,t

)
/HVng

]
∆t (10)

Csold =
T

∑
t=1

csold,tPsold,t∆t (11)

where cgrid,t is the electricity price, Pgrid,t is the power purchased from the grid, ∆t is the
time interval, cng,t is the natural gas price, Ggt,t and Ggb,t are the heating energy of the gas
microturbine and gas boiler, respectively. HVng is the natural gas heating value, csold,t is
the price of selling electricity to the grid, and Psold,t is the power sold to the power grid.

The optimal operation model should follow many constraints. The specific constraints
are as follows.

(1) Cooling power balance constraint
The cooling power released by the absorption chiller and electric chiller should be

equal to the cooling power load of the user.

COPac Hac,t + COPecPec,t = CPL,t (12)

where COPac is the coefficient of performance of the absorption chiller, Hac,t is the heating
power input into the absorption chiller, COPec is the coefficient of performance of the
electric chiller, Pec,t is the electric power input into the electric chiller, and CPL is the cooling
power of load.
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(2) Heating power balance constraint

Hhr,t + Hgb,t − Hac,t − Htst,dis,t + Htst,ch,t = HL,t/ηhe (13)

where Hhr,t is the heating power absorbed by the waste heat recovery device, Hgb,t is the
heating power generated by the gas boiler, Hac,t is the heating power input to the absorption
chiller, Htst,dis,t and Htst,ch,t are the charging and discharging heating power of the thermal
storage tank, respectively, HL,t is the heating load, and ηhe is the efficiency of the heating
exchanger. The efficiency is a simplified value without considering the different application
scenarios or types of equipment.

(3) Electric power balance constraint

Pmt,t + Pgrid,t − Pec,t + Pb,dis,t − Pb,ch,t − Psold,t = PL,t − PPV,t − PW,t (14)

where Pmt,t is the gas microturbine output power, Pgrid,t is the power purchased from the
grid, Pec,t is the input electric power of the electric chiller, Pb,ch,t and Pb,dis,t are the charging
and discharging power of the battery, Psold,t is the power sold to the grid, PL,t is the electric
load, PPV,t is the PV power, and PW,t is the wind power.

(4) The constraint of the gas microturbine
This paper assumes that the electric power of the micro gas turbine has a relationship

with its heating value and the efficiency is a fixed value.

Pmt,t = Ggt,tηmt (15)

Pmin
mt ≤ Pmt,t ≤ Pmax

mt (16)

where ηmt is the efficiency of the gas microturbine and Pmin
mt and Pmax

mt are the minimum
and maximum values of the gas microturbine power, respectively.

(5) The constraint of the battery

SoCb,t = SoCb,t−1(1− σb) + ηb,chPb,ch,t∆t/Eb_N-ηb,disPb,dis,t∆t/Eb_N (17){
0 ≤ Pb,ch,t ≤ ubPmax

b
0 ≤ Pb,ch,t ≤ (1− ub)Pmax

b
(18)

SoCmin
b ≤ SoCt ≤ SoCmax

b (19)

ub = 0 or 1 (20)

SoCb,1 = SoCb,24 (21)

where SoCb,t is the state of charge of the battery, ηb,ch and ηb,dis are the charging and
discharging efficiency, respectively. Pb,ch,t and Pb,dis,t are the charging and discharging
power, Eb_N is the rated energy of the battery, Pmax

b is the maximum power, and SoCmin
b

and SoCmax
b are the minimum and maximum state of charge (SoC), respectively. ub is the

0–1 variable related to the battery.
In this paper, we take one day or 24 h as a cycle period, in which we assume that the

initial and end states of the energy storage battery are the same. This assumption is also
suitable for the thermal storage tank.

(6) The constraint of interactive electric power with a power grid{
0 ≤ Pgrid,t ≤ ugPmax

grid
0 ≤ Psold,t ≤

(
1− ug

)
Pmax

grid
(22)

ug = 0 or 1 (23)

where Pmax
grid is the maximum interactive power and ug is the 0–1 variable related to the

interactive electric power.
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(7) The constraint of the thermal storage tank

Etst,t = Etst,t−1(1− σtst) + ηtst,chHtst,ch,t∆t-Htst,dis,t∆t/ηtst,dis (24){
0 ≤ Htst,ch,t ≤ utstHmax

tst
0 ≤ Htst,disch,t ≤ (1− utst)Hmax

tst
(25)

utst = 0 or 1 (26)

Emin
tst ≤ Etst,t ≤ Emax

tst (27)

Etst,1 = Etst,24 (28)

where Etst,t is the heating energy stored in the thermal storage tank. ηtst,ch and ηtst,dis are
the charging and discharging efficiencies of the thermal storage tank, respectively. Htst,ch,t
and Htst,dis,t are the charging and discharging heating power, respectively, and Hmax

tst is the
maximum heating power. Emin

tst and Emax
tst are the minimum and maximum heating energies,

respectively, and utst is the 0–1 variable related to the thermal storage tank.

3.2. Expected Model of Operating Cost

The forecasting error scenarios of user load, PV, etc., can be generated by the method
in Section 2. The typical scenarios and their corresponding probabilities are assumed to be:

(Si, ξi), i = 1, 2, . . . , n. (29)

Si ∼ (PPV , PW , PL, CPL, HL) (30)

where PPV , PW , PL, CL, HL are the PV power, wind power, electric load, cooling load and
heating load.

Based on the multi-scenario method, the stochastic optimization problem is trans-
formed into several deterministic problems, and the input of each deterministic problem
is one typical scenario. The user cost model can be solved in each scenario. Then, the
expected value of the user operating cost can be obtained by the expected value model:

E(C) =
N

∑
n=1

ξnCn (31)

where ξn and Cn are the probability and the cost corresponding to scenario n, respectively.

3.3. Solving Method and Steps

In the model of Section 3.1, the relationship of decision variables is linear, except for
Equations (20), (23) and (26). The decision variables in these three equations are all integers.
Therefore, this paper uses the intlinprog algorithm in MATLAB to solve the stochastic
optimization model. The intlinprog algorithm is a mixed-integer linear programming
method. The flow chart of this paper is shown in Figure 2.

The flow chart is divided into two parts. Part A is the scenario generation method and
Part B is the stochastic optimization operation. The specific solution steps are as follows:

Part A: Scenario generation method.
Step 1: Input the original data of PV, load and so on.
Step 2: Build the time-divided probability distribution model.
Step 3: Build the time correlation model based on the covariance matrix of multivariate

standard normal distribution.
Step 4: Generate the scenarios by sampling the probability distribution model with

the time correlation and reduce them to several typical scenarios.
Part B: Stochastic optimization operation.
Step 1: Input the i-th scenario, i = 1, 2, . . . , n..
Step 2: Substitute the scenario’s data into the optimization model in Section 3.1 and

solve the model using the intlinprog algorithm in MATLAB.
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Step 3: Determine that the calculations of all the typical scenarios are complete. If so,
execute the next step. If not, i = i + 1 and return to the first Step 1, Part B.

Step 4: Substitute the optimization results of all scenarios into Equation (31) to solve
the expected value of the operating cost and output the calculation results.

As seen in the above steps, each typical scenario is taken as input to solve the opti-
mization problem. Therefore, the solving process of the optimization problem is executed
n times, which is also the number of typical scenarios.

Figure 2. The flow chart of solving method.

4. The Results and Analysis

To verify the method proposed in this paper, a microgrid system was adopted for
simulation calculation. It is located in an industrial park in Changzhou, Jiangsu Province,
China. Based on this system, we built an integrated energy microgrid. Table 1 shows the
corresponding parameters of various equipment in the integrated energy microgrid.

Table 1. Equipment Parameters in the Integrated Energy Microgrid.

Equipment Parameters

Gas microturbine Pmin
mt = 0 kW, Pmax

mt = 120 kW, ηmt = 0.3
Gas boiler Hgb_N = 300 kW
PV power PPV_N= 150 kW

Absorption chiller COPac = 0.7, Hmax
ac = 500 kW

Electric chiller COPec = 4, Pmax
ec = 100 kW

Wind power PW_N= 150 kW
Battery ηb,ch = ηb,dis = 0.95, Pmax

b = 100 kW, Eb_N= 200 kW,
SoCmin

b = 10%SoCmax
b = 90%

Thermal storage tank ηtst,ch = ηtst,dis = 0.9, Hmax
tst = 300 kWh, Emin

tst = 0 kWh,
Emax

tst = 300 kWh
Exchange power with grid Pmax

grid = 300 kW
Heating exchanger ηhe = 0.75
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4.1. Probability Distribution Model

Figure 3 shows the histogram and distribution curves of the forecasting error of PV
power. The histogram of the forecasting error of PV power is shown in the blue bar and is
related to the left vertical axis, the frequency. The fitting probability density distribution
function curve is shown in red curve and is related to the right vertical axis, the probability
density. The horizontal axis is the per-unit value of the forecasting error. As mentioned
above, we need to establish the probability distribution model of PV forecasting error in
each period. We take 8:00 and 14:00 as examples to explain the results, which are shown in
Figure 3a,b, respectively. In Figure 3a, compared with the histogram, the fitting effect of the
normal distribution is the worst, and the fitting effects of the kernel density distribution
and the t-distribution are similar. The main difference between these two distributions is
in the range of ±[0.02, 0.05]. The shape of the kernel density distribution curve has more
fluctuations to fitting the shape of the histogram, while the t-distribution does not have this
advantage. The root mean square error (RMSE) of the two distributions are 4.44× 10−4 and
9.45× 10−4, respectively. The fitting effect kernel density distribution is better. At 14:00,
the fitting effect of the kernel density distribution and t-distribution is almost the same.

Figure 3. The histogram and distribution function curve of PV forecasting error.
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To compare the forecasting error probability distribution of different periods, we
calculated the RMSE of the different distributions, as shown in Figure 4. The vertical axis
is the RMSE value between the cumulative probability distribution curve and the fitting
probability distribution curve. The fitting effect of the normal distribution is the worst, and
the effects of the t-distribution and nonparametric kernel density distribution (NKDD) at
10:00–20:00 are very similar. In the morning and evening, the effect of the nonparametric
kernel density distribution is better than the t-distribution. Therefore, the nonparametric
kernel density distribution model adopted in this paper is feasible and has advantages. For
all periods, the total RMSE of NKDD is 49.00% and 90.37% lower than the t-distribution
and the normal distribution, respectively.

Figure 4. RMSE comparison of different distribution functions.

Figure 5 is the probability density curve (PDC) of selected periods. The horizontal axis
is the forecasting error of PV power, and the vertical axis is the probability density. The
curve marked by “PDC of all time” refers to the probability distribution curve of errors
of all periods. The other curves are the probability density curve of each period. We can
see that the distributions of different periods are different. Taking the 10:00 and 14:00, for
example, the shape of the probability density curve at 10:00 is higher and narrower than
the shape of the probability density curve at 14:00. The curve of all time is highest and
narrowest. The reason is that the PV power in the morning and at nightfall is low and closed
to zero. Owing to the irregular shape of the probability density curve, a nonparametric
kernel density distribution has more advantages. Therefore, if the scenario is generated
by sampling based on the distribution function of all errors, the errors of the generated
scenario will be too large. Based on the time-divided probability distribution for sampling,
the statistical law of the generated scenario is more consistent with the original data.

4.2. The Analysis of the Time Correlation

In general, the time correlation exists between probability distribution models of
different times. In Section 2, the covariance matrix was used to calculate the time correlation,
and its parameters were optimized. Based on this method, the time correlation between
probability distribution models is simulated and analyzed in this section. We carried out a
sensitivity analysis of the exponent α and scaling factor λ.
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Figure 5. Probability density curves of different periods.

Figure 6 shows the objective function value comparison of the different exponents α
and scaling factors λ. In Equation (6), we defined the optimization objective function of the
scaling factor and exponent, which represents the relationship between the time correlation
and covariance. The smaller it is, the higher the sampling accuracy. Figure 6 shows the
value of the objective function of different α values and the scaling factor λ. As the value of
the two parameters increases, the objective value decreases first and then increases. When
the exponent α and the scaling factor λ are 6 and 15 respectively, the objective value is
smallest, and the consistency of statistical characteristics between the generated scenario
and the original data is highest.

Figure 6. Correlation comparison of the different exponents and scaling factors.

Figure 7 shows a boxplot of the relationship between the objective function value
and scaling factor λ. The boxplot can show the maximum, minimum and average values
of multiple calculations to avoid the randomness of the calculation results. As shown in
Figure 7, within a certain range [11,19], the scaling factor decreases first and then increases,
and the average objective value reaches the minimum of 2.5423 when the scaling factor λ is
15. As mentioned above, when the objective function value is minimal, the time correlation
of the generated scenarios is closest to the real data. For the scenario without considering
the time correlation, the objective function value is 9.728. The optimal value of this paper’s
method is 73.87% lower than 9.728. For the method in [27], the optimal objective function
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value is 2.6745 when the range parameter is 3. The optimal value of this paper’s method is
5.66% lower than 2.6745.

Figure 7. The boxplot of the scaling factor λ.

When the objective function value is minimum, the relationship between the covari-
ance and time is shown in Figure 8. Obviously, the correlation between the same time is
1. The covariance decreases rapidly with the increase of the time difference, such as the
covariances between 7 and 8, 9, 10, 11, 12 o’clock are 0.66, 0.26, 0.16, 0.09, 0.05, respectively.
This covariance decrease is also in line with the objective law and subjective cognition. For
the other values of the scaling factor and exponent, the variation trend of covariance is
different, which has an impact on the time correlation of the forecasting error of PV power
and lead to inconsistency between the statistical law of the generated scenarios and the
actual scenarios.

Figure 8. Relationship between covariance and time difference.

4.3. Optimized Operation of Integrated Energy Microgrid

According to the optimized operation model proposed in Section 3, the simulation
analysis is carried out in this section. In Figures 9 and 10, the input data of the simulation
are the point forecasting scenario. We assume that the typical day in summer has a cooling
load and does not have a heating load, and the typical day in winter has a heating load and
does not have a cooling load.



Processes 2022, 10, 330 14 of 20

Figure 9. Optimal operation results of electric power (a) summer (b) winter.

Figure 10. Optimal operation results of cooling power and heating power (a) The cooling power in
summer cold (b) The heating power in winter.

As seen from Figure 9a, the balance of electric power can be achieved among the
power supply, load and battery. The battery energy storage system has two functions. One
function is to charge when the electricity price is low and then release electric energy to
earn profits. The other function is to meet the electrical demand during peak load periods.
Between 1:00 and 6:00, the battery earns profits by charging when the electricity price is
low and discharging when the electricity price is high. The electricity demand is large at
8:00 and 11:00. Although the electricity price is high at 12:00 and 13:00, to avoid the load
demand not being met at 16:00 and 17:00, the battery must charge during the period of
high electricity price. Energy storage plays an important role in meeting the demand of
electric load and making profits for the user.

In summer, the micro gas turbine can provide electrical power for electric load
and provide heating energy for the absorption chiller at the same time. As shown in
Figures 9a and 10a, the user has the cooling power demand from 7:00 to 22:00, which is
supplied mainly by the electrical chiller. Besides, the user’s electricity load power is high,
and a gas microturbine supplies power to the user. At the same time, the gas microturbine
generates heating energy, which can be used by the absorption chiller to generate cooling
power at 8:00–13:00 and 16:00–21:00.

As shown in Figure 9b, the case we selected in winter has higher wind power and
lower load power, and the integrated energy microgrid can sell electricity to the grid to
make profits most of the time. Since wind-PV power generation can meet most of the load
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demand, the main role of energy storage batteries is to make profits by charging when the
price is low and discharging when the price is high. As seen from Figures 9b and 10b, the
heating load of users is met mainly by the gas-fired boiler. When the gas-fired boiler reaches
its output limit, such as at 1:00 and 7:00, part of the heating load is met by the thermal
storage tank, and the other part is met by the micro gas turbine. The main function of the
thermal storage tank is to store heating energy when the heating load is low and release
heating energy when the heating demand is high. The thermal storage tank stores the
heating energy generated by the gas-fired boiler from 14:00 to 15:00. The thermal storage
tank releases heating energy when the gas-fired boiler cannot meet the heating demand
from 19:00 to 23:00.

The simulation results of Figures 9 and 10 are based on the input of point forecasting
data. However, the forecasting of PV, wind power and load has errors in real applications.
In particular, the electric energy storage battery and thermal storage tank both have a time-
coupling relationship. Their action at one moment will have an impact on their operation
in the future. Therefore, we proposed the stochastic optimization operation model based
on the multiple scenarios in Sections 3.1 and 3.2.

Based on the model in Section 2 and the corresponding simulation results and taking
PV power as an example, we generated 10,000 random scenarios and reduced them to
six typical scenarios. As mentioned in Section 3.3, the executed times of solving the opti-
mization problem are equal to the whole time of typical scenarios. Thus, the optimization
problem is solved six times in this case. The intlinprog algorithm can display the computing
time. We repeated the calculation ten times for each scenario and plotted the boxplot of
the computing time of six different scenarios in Figure 11, which has different numbers of
iterations and computing times. One of the reasons why the computing time is different
is that the feasible domains for the optimization models in the different scenarios are
different. As seen from the boxplot, the computing time for the six typical scenarios is
in the range of [0.4,1.6], which is not very long in total. However, if the computation is
performed for 10,000 scenarios, the solution time would be very long. It is worth noting
that the computing time of the fourth scenario is shortest. The branch and bound algorithm
of intlinprog algorithm is used in this paper. Its computing time is different if the feasible
domains and initial value of the variables. For the fourth scenario, its calculation requires
the least branch and bound steps, so the computing time is shortest.

Figure 11. Boxplot of the computing time for six different scenarios.
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In this paper, the time correlation of the time-divided probability distribution models
is considered when generating scenarios but has not been considered in the literature [17].
In addition, the time correlation considered in [27] is not very consistent with the statistical
laws of real data. To analyze and consider whether the time correlation would have an
impact on the operating results, we took PV power generation as a single variable and
carried out a simulation. We compared the operating costs under three different sets of
typical scenarios generated by three methods. The results are shown in Figure 12. The blue
histogram or Method 1 is the costs of the scenarios set that considers the time correlation
using the method in this paper. The red histogram or Method 2 is the costs of the scenario
set that does not consider the time correlation. The yellow histogram or Method 3 is the
cost of the scenario set that considers the time correlation in [27]. The real costs are the
costs of a real scenario but not the forecasting scenario. The vertical axis represents the
value of the objective function in the Chinese yuan (CNY). On the horizontal axis, 1–6
represents six typical scenarios, and 7 represents the results of the expected value model of
the six scenarios.

Figure 12. Comparison of Results in Different Scenarios (a) Summer (b) Winter.

As shown in Figure 12a, in summer, the operating costs in different scenarios are
different. We are more concerned about the expected value of three scenario sets, that is,
scenario 7. Compared with the real value, the costs of the method in this paper are 1.27
less than the actual value, while the costs of the methods in [17,27] are 42.17 and 28.55
more than the actual value, respectively. The difference is reduced by 96.98% and 95.55%,
proving that the expected costs of the method proposed in this paper are closer to the
actual value.

For Figure 12b, in winter, there is a similar conclusion. The differences between the
three methods are 1.66, 7.96 and 6.03. The difference in this paper is reduced by 79.17%
and 72.47% because the PV power in winter is smaller than the PV power in summer.
In Figure 12a,b, the costs of our method are higher and lower than the real scenario,
respectively. This phenomenon that the cost fluctuates higher or lower than the real
scenario is very normal, owing to the stochastic influence of the weather for the PV power
generation. What we focus on is that the influence caused by the stochastic weather or the
absolute value of cost is decreased. In two seasons, the comparison of the three scenario sets
shows that the scenario generation method proposed in this paper considers the correlation
of different periods and has less impact on the operation results.

5. Conclusions

This paper proposes an advanced scenario generation method and applies it to the
stochastic optimization operation of integrated energy microgrid, which includes electric,
cooling, heating power, and natural gas. In this method, the time correlation of the time-
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divided probability distribution models is considered in the process of generating scenarios.
Based on multiple scenario theory, the stochastic optimization operation model was built.
The main conclusions are as follows.

(1) This paper established a time-divide probability distribution model based on
nonparametric kernel density estimation. The simulation results show that the fitting effect
of the NKDD estimation model is better than the fitting effect of the normal distribution
and t-distribution.

(2) Considering the time correlation of the time-divided probability distribution mod-
els, this paper proposes the covariance expression and the optimization model of its
parameters. Compared with other methods with and without considering the time correla-
tion, the statistical characteristics of scenarios generated by this paper’s method are more
consistent with the real data.

(3) A stochastic optimization operation model based on the expected value model is
established for the integrated energy microgrid. The model can achieve the energy balance
in the system, and the operating cost difference is reduced, which proves the feasibility and
economy of the operation model.

Although we obtained some research results, we still need to explore more methods
that consider more factors related to uncertainty, such as other forms of covariance matrices
and the uncertainty of price. In addition, our optimization model needs to take more
economic factors into account. Many factors, such as the efficiency of the gas microturbine
and the heating exchanger, are simplified and assumed as a fixed value. In future work, we
will refine our optimization model based on the accurate forecasting of uncertain factors.
The models with more refined and specific parameters will be built too. Moreover, the
planning method of the integrated energy system is a research hotspot. We will study the
planning of the IES microgrid considering the uncertainty and apply stochastic optimization
methods in a large-scale integrated energy system.
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Abbreviations
PV Photovoltaic
IES Integrated energy system
IEMG Integrated energy microgrid
TOU Time-of-use
NSGA-II Non-dominated Sorting Genetic Algorithm II
SoC State of charge
RMSE Root mean square error
NKDD Nonparametric kernel density distribution
PDC Probability density curve
Symbol (Unit) Symbol Meaning
xi The sample point (e.g., PV power) of independent identical distribution F.
f The probability density function.
h The bandwidth.
n The sample number.
K The kernel function.
Z Z = (Z1, Z2, . . . , ZT) is the scenario can be viewed as a random vector.
T (h) Time
∑ The covariance matrix.
σm1,m2 The covariance between Zm1 and Zm2 , m1, m2 = 1, 2, . . . , T.
λ The scaling factor
α The exponent that is assumed to be a positive integer.
F(∆Pt,i) The probability distribution function of real data.
F′(∆Pt,i

′) The probability distribution function of the generated data.
∆Pt,i (kW) The power fluctuation of real data.
∆Pt,i

′ (kW) The power fluctuation of generated data.
PR,t,s (kW) The value of random variables.
P f orecast

R,t (kW) The forecasting value.
Perror

R,t,s (kW) The value of the forecasting error.
cgrid,t (CNY/kWh) The electricity price.
cng,t (CNY/m3) The natural gas price.
csold,t (CNY/kWh) The price of selling electricity to the grid.
Cgrid (CNY) The cost of purchasing electricity from the power grid.
C f uel (CNY) The cost of purchasing gas.
Csold (CNY) The operating income is from selling electricity to the power grid.
Pgrid,t (kW) The power purchased from the grid.
Ggt,t (kWh) The heating energy of the gas microturbine.
Ggb,t (kWh) The heating energy of the gas boiler.
HVng (kWh/m3) The natural gas heating value.
Psold,t (kW) The power sold to the grid.
COPac The coefficient of performance of the absorption chiller.
COPec The coefficient of performance of the electric chiller.
Hac,t (kW) The heating power is input into the absorption chiller.
Pec,t (kW) The electric power input into the electric chiller.
CPL (kW) The cooling power of load.
Hhr,t (kW) The heating power absorbed by the waste heat recovery device.
Hgb,t (kW) The heating power generated by the gas boiler.
Hac,t (kW) The heating power input to the absorption chiller.
Htst,dis,t (kW) The charging heating power of the thermal storage tank.
Htst,ch,t (kW) The discharging heating power of the thermal storage tank.
HL,t (kW) The heating load.
ηhe The efficiency of the heating exchanger.
Pmt,t (kW) The gas microturbine output power.
Pgrid,t (kW) The power purchased from the grid.
Pec,t (kW) The input electric power of the electric chiller.
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Pb,ch,t (kW) The charging power of the battery.
Pb,dis,t (kW) The discharging power of the battery.
Psold,t (kW) The power sold to the grid.
PL,t (kW) The electric load.
PPV,t (kW) The PV power.
PW,t (kW) The wind power.
ηmt The efficiency of the gas microturbine.
Pmin

mt (kW) The minimum values of the gas microturbine power.
Pmax

mt (kW) The maximum values of the gas microturbine power.
SoCb,t The state of charge of the battery.
ηb,ch The charging efficiency.
ηb,dis The discharging efficiency.
Eb_N (kWh) The rated energy of the battery.
Pmax

b (kW) The maximum power.
SoCmin

b The minimum SoC.
SoCmax

b The maximum SoC.
ub The 0–1 variable related to the battery.
Pmax

grid (kW) The maximum interactive power.
ug The 0–1 variable related to the interactive electric power.
Etst,t (kWh) The heating energy stored in the thermal storage tank.
ηtst,ch The charging efficiencies of the thermal storage tank.
ηtst,dis The discharging efficiencies of the thermal storage tank.
Htst,ch,t (kW) The charging heating power.
Htst,dis,t (kW) The discharging heating power.
Hmax

tst (kW) The maximum heating power.
Emin

tst (kWh) The minimum heating energy.
Emax

tst (kWh) The maximum heating energy.
utst The 0–1 variable related to the thermal storage tank.
ξn The probability of scenario.
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