
����������
�������

Citation: Hsueh, K.-L.; Lin, T.-Y.; Lee,

M.-T.; Hsiao, Y.-Y.; Gu, Y. Design of

Experiments for Modeling of

Fermentation Process

Characterization in Biological Drug

Production. Processes 2022, 10, 237.

https://doi.org/10.3390/pr10020237

Academic Editor: Ralf Pörtner

Received: 18 December 2021

Accepted: 20 January 2022

Published: 26 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Communication

Design of Experiments for Modeling of Fermentation Process
Characterization in Biological Drug Production
Kuang-Lung Hsueh 1,2,*, Tzung-Yi Lin 3, Meng-Tse (Gabriel) Lee 4, Ya-Yun Hsiao 5 and Yesong Gu 6

1 Global Research and Industry Alliance, Tunghai University, Taichung 40704, Taiwan
2 Department of Animal Science and Biotechnology, Tunghai University, Taichung 40704, Taiwan
3 Department of R&D, Green AbioTechnology Co., Ltd., Taichung 403306, Taiwan; dr.gabio@gmail.com
4 Department of Emergency Medicine, National Taiwan University Hospital, Taipei 100, Taiwan;

limengtse@gmail.com
5 Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University,

Taichung 40201, Taiwan; yhsiao@csmu.edu.tw
6 Department of Chemical and Materials Engineering, Tunghai University, Taichung 40704, Taiwan;

yegu@go.thu.edu.tw
* Correspondence: ren.shiue@gmail.com; Tel.: +886-912-387-502

Abstract: Biological products are increasingly important, and therefore the industry has begun to
adopt quality by design, as recommended by the ICH and the U.S. FDA. Smaller companies, however,
have faced difficulties in employing full-scale experiments or the quality by design strategy. Thus, this
study provides an alternative way to build a model from existing data with experimental software
that does not require full-scale experiments. This empirical study hopes to provide a practical way
to improve the efficiency of smaller biopharmaceutical companies and researchers. Moreover, the
models provided here can be applied to process characterization in recombinant protein production.

Keywords: design of experiments; quality by design; modeling

1. Introduction

Recently, the pharmaceutical industry has been advised by the ICH [1] and U.S. FDA
to adopt a new quality control strategy. The U.S. FDA provides new guidelines to assist the
industry under the new strategy, known as quality by design (QBD, ICH Q8 R2) [1–4]. An
increasing number of new drug applications are based on QBD [3].

During the past decade, the number of biological products has been increasing. The
target product of this study is a recombinant biological drug from Green AbioTechnology
Co., Ltd., in Taiwan. The application for this drug will be sent to the U.S. FDA. The
traditional manufacturing process of a biological product often utilizes organisms in the
first step to overexpress the product. In the follow-up downstream process, the product is
purified. There are several developmental stages before the final commercial manufacturing
process can be determined [2]. Often, lab-scale, process characterization, qualification, and
final validation studies are necessary.

In the early stages before process validation, manufacturers in the biopharmaceutical
industry often engaged in troubleshooting with an existing process that was built by a
traditional approach, known as one-factor-at-a-time (OFAT). Few researchers are aware
that the recently introduced quality by design (QBD) approach can help in this. In the
QBD approach, a useful tool, the design of experiments (DOE), can find the direction and
optimized parameters. DOE and model building can potentially help [5,6], not only in terms
of time-efficiency, but also in terms of the completeness of the science (design space) [7,8].

A central concept of the principle is to systematically correlate the relationships be-
tween the process parameters and the quality attributes [8]. This also implies that the
empirical relationships and formulas can be built to assist researchers throughout the pro-
cess development stages [2,8,9]. In the process of development, continuous improvement of
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the process parameters is crucial [2]. Model building (during the development stages) can
help in determining the next direction or experiments in the beginning, and eventually help
with optimizing the current parameters [4]. In the late developmental stages, good control
of the quality attributes ensures an acceptable final quality [8]. Finally, an overall picture of
the whole design will ensure filing and yield a better quantity or quality of the product [2,8].
The U.S. FDA has granted regulatory flexibility for analytical methods applying QBD [4].

In the early developmental stages and the scale-up stages, however, using a full-scale
DOE for the process parameters is usually not a suitable plan. The fermentation process
may take 1.5 weeks [10], and the follow-up purification process may take another 1.5 weeks
(a recombinant protein produced by Escherichia coli). Thus, it is likely infeasible to fully
investigate a fermentation process with five critical process parameters, especially if the
initial operation space is not well-defined (due to the possibility of out-of-specification
(OOS) events, which waste more time). Thus, the minimum number of experiments is
assumed to be on the order of 10, and the full set will take about 15 to 25 weeks (3 to
6 months). Often, such an experiment involves about 10 steps, dozens of quality attributes,
and some 50 process parameters, or even dozens of critical process parameters across the
steps. For biopharmaceutical researchers in smaller companies or those with very limited
budgets and time, full-scale DOE can still be time-consuming and resource-intensive to
implement. Moreover, in reality, during this transition stage (to QBD), the first version of
the process parameters is built with the OFAT approach. A concept of quality by design
and the DOE built on the existing data would be useful for researchers. In this study,
DOE researchers can only develop as few as three additional datasets to optimize (at least
locally) the volumetric yield and total yield. This approach helps the entire pharmaceutical
industry to make more drugs, which have been eagerly requested by patients. This paper
explores the suitability and provides a case study on a biological drug developed using
this new concept.

In DOE analysis, researchers provide input and collect responses. Usually, the volumet-
ric yield and the final yield are prioritized. Thus, they were chosen as the responses here.

In lab-scale studies (presented below), the research and development studies on quality
attributes followed ICH Q8 (R2) guidelines, and the analytical methods for determining pu-
rity and activity in the final lot-release specification were pre-validated for at least linearity,
specificity, and repeatability. All the quality attributes in the quality target product profile
were fully qualified within the lot-release specification after the scale-up batch was finally
confirmed. The analytical methods for the lot-release specification were also validated.

2. Materials and Methods
2.1. Chemicals, Bacterial Strains, and Vectors

The chemicals listed here are the ones used in the lab-scale study. The suppliers of the
chemicals used on a larger scale (such as in the pilot plant) could be different. Isopropyl
β-D-thiogalactoside (IPTG) was purchased from MDBio Inc. (Taipei, Taiwan). The E. coli
strain BL21 (DE3) was purchased from Novagen (Madison, WI). Expression vector pET19b
carrying cDNA encoding a biological drug, MI001-S, was constructed in the lab.

2.2. Protein Expression, Fermentation, and Purification

The fermentation was performed in a Firstek fermenter (FB-10B or an equivalent that
works at 5-L, Firstek Scientific, Taiwan). The cells were harvested by centrifugation at
9000× g for 30 min at 4 ◦C (pre-cooled). If the cells were not lysed within 12 h, the pellets
were refrigerated at −20 ◦C. Cell lysis was performed by a sonicator (for a smaller volume
at or below 0.3 L) or a high-pressure homogenizer at around 85 MPa with the temperature
controlled at 10 ◦C. The process was repeated three times. The initial solution temperature
before each lysis process was around 10 ◦C. The lysis buffer was 0.1 M Tris, 0.3 M NaCl,
and 8 M urea at pH 8. The lysate was centrifuged at 30,000× g for 30 min before being
filtered through a 0.2 um filter. The purification process required three columns. The filtrate
was then dialyzed against the same buffer without 8 M urea. Alternatively, for a volume
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larger than 1 L, the filtrate was directly loaded into the column, and then three column
volumes of buffer were used to slowly elute the buffer without the urea for 3 h. Buffers
were temperature controlled to less than 10 ◦C. The first column was the Ni-NTA affinity
column with buffer. The equilibrium buffer contained 0.02 M imidazole. The elution buffer
contained 0.3 M imidazole. The next column was an ion-exchange column with an initial
NaCl salt concentration of 0.2 M and elution buffer with a salt concentration of 1 M. The
follow-up purification was performed with an RP-HPLC machine equipped with a column
packed with C18 resin. The equilibrium buffer was water mixed with 0.1% trifluoroacetic
acid. The elution buffer contained water, trifluoroacetic, and a high concentration of
acetonitrile. The slow linear gradient required three column volumes. The purity and
protein concentration were calculated from the UV–VIS absorbance ratio of A280 nm [11]
The extinction coefficient was predicted by the ExPASy ProtParam program [11,12].

2.3. Scaling Up Attempts

The current fermentation parameter settings were transferred and scaled up to a 250 L
scale fermenter, and the final products of the batches were successful in terms of quantity
and quality. The results indicated that the full set of fermentation process parameters could
be scaled up. In addition, the scaled-up purification process was also successful.

2.4. Model Building in Design Expert

The predictive model developed during the optimization process was built in the
Design Expert software (Minneapolis, MN) version 13.0.8.0. There were two types of
models. One was a coded model that normalized the maximum of each variable as +1, the
minimum as −1, and the middle point as zero. This model was suitable for visualizing
the relative effects across the variables. For the actual model, all the variables were in
units. The criteria to accept the most suitable model were the corrected Akaike information
criterion (AICc) and the Bayesian information criterion (BIC, priority in this study) [13]. The
procedure is shown below, including the steps of model building, selection, and validation:

1. Create the new design;
2. Use the default regular two-level factorial design to create the table;
3. Choose the number of variables (insert additional runs if needed);
4. Model building: generate both the factorial design model and the polynomial design models;
5. Select candidate models aiming at low AICc and BIC values;
6. Validation: compare the models by high R2, high adjusted R2, low predicted residual

error sum of squares (PRESS), low p-values in variables, high p-values in lack of fit,
low Std. Dev. (also called root mean square error, RMSE) and low (relative) coefficient
of variation (C.V.%), monitor summary of fit and ANOVA;

7. Perform model diagnostic analysis to study the residuals.

2.5. Model Building in JMP

The additional predictive model was built in the JMP software (SAS Institute Inc.,
Cary, NC, USA) trial version 16.1.0. The most suitable model was selected by comparing all
the models with the intercept, the main effect, and the primary interactions. The lowest or
the next lowest BIC (priority) and AIC models were selected. Furthermore, the root mean
square error (RMSE) and the coefficient of determination (R2, and adjusted R2, typically
larger than 0.85) were used to select the best model. We also considered the analyses listed
in the previous section, including number 6, validation. After the selection of the best
model, the prediction module from the profiler function of the JMP software could be
used later, after the model reached an optimized and stable region. For the simulation
study, the Monte Carlo simulation approach was conducted in 100,000 simulation runs.
The simulation provided a tolerance interval of the process parameters. This function could
be useful for researchers.
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3. Results
3.1. The Existing Data and the Analyses

This work aimed to bridge the gap between traditional OFAT and the (full-scale) DOE
approach. We started with the fermentation record from the first 8 runs (batches), which is
presented in Table 1.

Table 1. Experimental data based on OFAT approach (runs 1 to 8) and three consecutive confirmation
runs (runs 9, 10, and 11). The optical density at 600 nm is defined as OD.

Run

Variables Responses

[IPTG]
(mM)

Temperature
(◦C)

OD
(AU)

Total Yield
(AU)

Volumetric
Yield (AU/L)

1 0.2 18 25 415 0.136
2 0.4 18 25 758 0.258
3 0.8 18 25 761 0.316
4 0.2 24 75 349 0.180
5 0.8 21 50 795 0.311
6 0.2 21 50 665 0.196
7 0.8 24 75 456 0.202
8 0.4 24 75 407 0.209
9 1 18 48 945 0.482
10 1 18 49 998 0.400
11 1 18 58 1094 0.412

All the data were collected using a fed-batch fermenter described in the Materials
and Methods section. Thus, the first eight data points were initial scans across three sets
of temperature and optical density (OD) values. The latter three were then executed as
the final batches. On the basis of the initial search of eight points, we found that the
preliminary models suffered from noise and the volumetric yield model was slightly better.
The ANOVA analyses indicated that the volumetric yield model had a low p-value at
0.043, and the total yield had a moderate p-value at 0.06. The analyses indicated that the
volumetric yield had a significant variable of A = [IPTG] at p-value = 0.003. The RMSE was
0.033, average was 0.226, and C.V.% was 14.68. In contrast, the total yield model returned
a RMSE of 106.2, average of 575.8, and C.V.% of 18.45, and the B = temperature variable
was moderately significant with p = 0.05. Thus, we looked at the numerical optimization
analysis and Figure 1. Both models were in agreement that the optimization direction was
(red) color-coded to be at a lower temperature and have a higher inducer concentration.
The coded (normalized) equation of the volumetric yield is shown in Equation (1), where
A = [IPTG] and B = temperature.

Volumetric Yield = 0.2471 + 0.068 × A – 0.036 × B – 0.050 × A × B (1)

3.2. Optimization and Verification

On the basis of the analysis with the first eight data points, we found that there
were two optimization attempts. The verifications are described as follows. In the first,
condition 1, the temperature was 18 ◦C, and the inducer concentration was 1 mM. In the
second, condition 2, the temperature was 17 ◦C, and the inducer concentration was 2 mM.
Condition 1 was executed as runs 9, 10, and 11. The quality data confirmed that these
conditions worked (Figure 2).
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values were set as 50.
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On the basis of the preliminary data, we found that condition 2 returned a higher
quantity than condition 1 on the lab scale (a smaller fermenter). Then, both were examined
in a CMO plant with a larger fermenter. Both conditions yielded better total product
quantities, with 25% increases over run 5 (Table 1). However, the total yield of condition 2
was similar to that of condition 1 in the CMO fermenter. In summary, condition 2 returned
a higher yield than condition 1 in a smaller fermenter but returned a similar quantity in a
large fermenter.

The results may indicate differences between large and smaller fermenters (i.e., the
scale-up parameters might not be suitable in this condition). In addition, the temperature
of around 17 ◦C was a few degrees above the limit of the cold-water system, and therefore
the process took more time. In the end, condition 2 was not used because of the higher
cost of the inducer and longer time before induction (lower temperature and the limit of
the system).

3.3. Final Set of Data and the Characterization of the Model

On the basis of the full data set of 11 runs, we built both of the models. The
ANOVA analyses indicated that the total yield model had a low p-value of 0.0013. The
RMSE was 89, average was 695, and C.V.% was 12.8. The R2 was 0.93, and the adjusted
R2 was 0.88. The analyses indicated that the total yield had a significant variable of
B × C = temperature × OD at p = 0.034 (Table 2). The coded (normalized) equation of the
volumetric yield is shown in Equation (2), where A is [IPTG], B is temperature, and C is OD.

Total Yield = 758.44 + 113.74 × A – 129.99 × B + 11.51 × C – 198.04 × B C (2)

The volumetric yield model returned a low p-value of 0.0002. The RMSE was 0.036,
average was 0.282, and C.V.% was 12.6. The R2 was 0.93, and the adjusted R2 was 0.90.
The analyses indicated that the volumetric yield had significant variables of A = [IPTG]
at p = 0.003, B = temperature at p = 0.017, and A × B at p = 0.013 (Table 3). The coded
(normalized) equation of the volumetric yield is shown in Equation (3), where A is [IPTG]
and B is temperature.

Volumetric Yield = 0.251 + 0.074 × A – 0.042 × B – 0.059 × A × B (3)

Because the highest total yield and the volumetric yield were achieved in runs 9, 10, and
11, then using the Point Prediction function in the “Post Analysis” directory, we were able to
predict the total yield to be on average 1002 ± 89 (885 to 1120, at 95% C.I., Figure 2a). Similarly,
the volumetric yield was predicted to be 0.426 ± 0.036 (0.382 to 0.470 at 95% C.I., Figure 2b).

Table 2. Regression analysis of the model of the total yield model.

Analysis of Variance

Source DF Sum of Squares Mean Squares F Ratio

Model 4 623,649.62 155,912 19.6824
Error 6 47,528.51 7921

C. total 10 671,178.14

Parameter Estimates

Term Estimate Std Error t Ratio Prob > |t|

Intercept 758.4354 64.0169 11.85 <0.0001
IPTG (0.2,1) 113.7417 46.8964 2.43 0.0515

Temperature (18,24) −129.9934 95.2465 −1.36 0.2213
OD (25,75) 11.5113 100.2911 0.11 0.9124

Temperature*OD −198.0394 72.6126 −2.73 0.0343 *
* Variable identified as having a significant effect on response (p < 0.05).
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Table 3. Regression analysis of model of the volumetric yield model.

Analysis of Variance

Source DF Sum of Squares Mean Squares F Ratio

Model 3 0.11546754 0.038489 30.3715 &

Error 7 0.00887095 0.001267
C. total 10 0.12433849

Lack of Fit
Lack of fit 5 0.00489903 0.00098 0.4934
Pure error 2 0.00397192 0.001986
Total error 7 0.00887095

Parameter Estimates

Term Estimate Std Error t Ratio Prob > |t|

Intercept 0.2510369 0.012421 20.21 <0.0001
IPTG (0.2,1) 0.0736129 0.016402 4.49 0.0028 *

Temperature (18,24) −0.042237 0.013629 −3.1 0.0173 *
IPTG * Temperature −0.059079 0.017984 −3.29 0.0134 *

* Variable identified as having a significant effect on response (p < 0.05); &: p = 0.0002.

3.4. Final Set of Data Executed by JMP

On the basis of the full dataset of 11 runs, we also built both the total yield and volu-
metric yield models with JMP software. After similar procedures, the analyses indicated
that both JMP and Design Expert software returned the same final total yield and volumet-
ric yield models. The ANOVA analyses of the total yield are listed in Table 2, and those of
the volumetric yield are listed in Table 3. The coded formula for total yield was the same as
Equation (2). The coded formula for volumetric yield was the same as Equation (3). The
plot of actual versus predicted values is shown in Figure 3.
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statistics can be found in Tables 2 and 3.

The highest total yields and volumetric yields were those from runs 9, 10, and 11.
Thus, the optimization focused on condition 1, with an inducer concentration of 1 mM and
a temperature of 18 ◦C. The average of the simulations of the total yield was 1035.3 (927.7
to 1142.9). The average of the simulations of the volumetric yield was 0.425 (0.390 to 0.461).
Data and distribution are presented in Figure 4.
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Figure 4. Prediction profiler for process optimization and simulation studies with Monte Carlo
simulations of 10,000 runs with different data distribution types (shaded regions) and S.D. The
inducer concentration, induction temperature, and induction OD were set at 1.0 ± 0.1 mM, 18 ± 1 ◦C,
and 50 ± 10, respectively. (a) Total yield model; (b) volumetric yield model.

4. Discussion

Software comparison: This study was analyzed in Design Expert and in JMP. Both
programs returned the same models. The differences were in the optimization in the final
stage. In Design Expert, a single average with a standard deviation was calculated. In JMP,
we set the conditions such that the S.D. of inducer concentration, induction temperature,
and induction OD were 1.0 ± 0.1 mM, 18 ± 1 ◦C, and 50 ± 10, and the additional distri-
bution can be seen in Figure 4. We found these two kinds of software to be similar to the
point of equivalence on the basis of this study.

After the models were built on the basis of eight data points, the Design Expert
simulations indicated that, for an inducer concentration of 1 mM, induction temperature
of 18 ◦C, and induction OD of 50, the predicted total yield would be 998 ± 110 and the
predicted volumetric yield would be 0.40 ± 0.03. The later runs validated the predictions.

In this study, quadratic terms were forced in both software programs. None of the
attempts returned significant results, and the ANOVA results were no better than those of
these simpler models. Thus, the models were not included.

The final conditions for this drug were found to be 1.0 mM, 18 ◦C, and 50 induc-
tion OD. The expected total yield was simulated to be around 1020, and the volumetric
yield, around 0.43. According to experience, the operation space of the inducer concen-
tration was 1.0 ± 0.1 mM, the induction temperature was 18 ± 1 ◦C, and induction OD
was 50 ± 10 (Figure 4). Studies including simulations may serve as supporting data for
the determination of the (putative) critical process parameters and development of the
fermentation process.

In the downstream process, after three purification steps, the lot-release specification of
the final drug substance was around 98 ± 1 (%) in purity. After the first step of purification,
the purity was low, with very large uncertainty. On the basis of the preliminary results of
the scaling-up batches (data not shown), we found that the purity with a fixed condition
after the first column was around 40% to 50%. Thus, the contribution of the fermentation
process parameters to the quality of the product seems difficult to detect. Models will suffer
from noise. After three steps of purification, the contributions were minimized. Thus, the
quality attributes were assumed not to be correlated to the current three process parameters
in the fermentation stage.

Provided that more data are analyzed, we can then know whether the simplest models
can be applied to other systems. In addition, we hope that the above strategy or models
can be applied to other recombinant protein systems.
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5. Conclusions

This case study shows that linear regression models built on OFAT data can help
researchers easily achieve optimization. From the addition of a few points, the volumetric
yield model gained low p-values of 0.0002, with only main effects and primary interaction
terms. The variables all significantly contributed to the model. The analysis can serve as
supporting data for the determination of the operating space of the process parameters in
future drug applications.
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