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Abstract: The optimization of industrial processes is a critical task for leveraging profitability and
sustainability. To ensure the selection of optimum process parameter levels in any industrial process,
numerous metaheuristic algorithms have been proposed so far. However, many algorithms are either
computationally too expensive or become trapped in the pit of local optima. To counter these chal-
lenges, in this paper, a hybrid metaheuristic called PSO-GSA is employed that works by combining
the iterative improvement capability of particle swarm optimization (PSO) and gravitational search
algorithm (GSA). A binary PSO is also fused with GSA to develop a BPSO-GSA algorithm. Both the
hybrid algorithms i.e., PSO-GSA and BPSO-GSA, are compared against traditional algorithms, such
as tabu search (TS), genetic algorithm (GA), differential evolution (DE), GSA and PSO algorithms.
Moreover, another popular hybrid algorithm DE-GA is also used for comparison. Since earlier works
have already studied the performance of these algorithms on mathematical benchmark functions, in
this paper, two real-world-applicable independent case studies on biodiesel production are consid-
ered. Based on the extensive comparisons, significantly better solutions are observed in the PSO-GSA
algorithm as compared to the traditional algorithms. The outcomes of this work will be beneficial to
similar studies that rely on polynomial models.

Keywords: optimization; non-traditional algorithms; process optimization; process parameters; algorithms

1. Introduction

In the last few decades, many researchers have proposed numerous optimization tech-
niques to find the best values among the sets of alternatives. Many researchers have used
metaheuristic techniques to find the optimal values. Metaheuristic techniques are mostly
optimization techniques inspired by nature and natural phenomena. Some examples of
nature-inspired metaheuristic techniques are the genetic algorithm (GA) [1], particle swarm
optimization (PSO) [2], artificial bee colony (ABC) [3], bat algorithm (BA) [4], gravita-
tional search algorithm (GSA) [5], ant colony optimization (ACO) [6], differential evolution
(DE) [7], ant lion optimization (ALO) [8], multi-verse optimization (MVO) [9], salp swarm
algorithm (SSA) [10], grey wolf optimization (GWO) [11], dragonfly algorithm (DA) [12],
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whale optimization algorithm (WOA) [13], firefly algorithm (FA) [14], etc. All population-
based metaheuristic optimization algorithms have two main parts—exploration and ex-
ploitation. Some optimization techniques are very good at exploration, and some are very
good at exploitation. So, an optimizer with good exploration and bad exploitation is often
combined with an optimizer with bad exploration and good exploitation to form a hybrid
optimizer. Thus, the hybrid optimizers are very good at both exploration and exploita-
tion. Some hybrid metaheuristic techniques are GA-PSO [15], WOA-SA [16], CS-DE [17],
PSO-CS [18], PSO-GSA [19], etc.

In this paper, as a case study, the industrial use case of biodiesel production is analyzed.
The rationale behind this is that alternate fuel demand is at an all-time high. Biodiesel in
this regard is a promising sector. However, to ensure the rapid adoption of biodiesel, it
is necessary to improve the existing yields and bring down the associated costs. Though
the biodiesel generation process is fairly standardized, the process parameters involved
have a significant impact on the overall effectiveness of the process. Thus, as a test case
for the hybrid algorithms, the biodiesel industry is focused on in this paper. Researchers
have mostly relied on multi-criteria decision making (MCDM) methods for optimization
in this industry. However, MCDMs methods need a decision matrix, that is made up
of the responses to be optimized. Thus, the MCDM method is limited by the provided
decision matrix that are often recorded on discrete points. MCDMs work by locating the
best solution (in terms of some weighted measure of multiple conflicting alternatives)
among the supplied discrete points. By level averaging of the process parameters, the best
process parameter levels can also be identified. On the other hand, since metaheuristics
directly use objective functions that can perform continuous search in the search space,
they are likely to return better optimal values than MCDMs.

A few works on metaheuristics-based optimization of biodiesel production process
are seen in the literature. Betiku et al. [20] performed the optimization of process parame-
ters of biodiesel production from shea tree nut butter using the GA, neural network and
response surface methodology. The objective of their work is to maximize the biodiesel
yield. Garg and Jain [21] performed optimization of process parameters of biodiesel
production from algal oil using RSM and ANN. They considered reaction time, catalyst
amount, and methanol/oil ratio as process parameters and yield as a response parameter.
Miraculas et al. [22] examined process parameter optimization for biodiesel production
from mixed feedstock using an empirical model. Patil and Deng [23] optimized biodiesel
production from edible and non-edible vegetable oils. Outili et al. [24] optimized biodiesel
production from waste cooking oil. They considered temperature, catalyst amount, and
methanol/oil ratio as independent variables and conversion, and energy and green chem-
istry balance as dependent variables to design the regression model. It is observed that
for expressing responses as functions of process parameters, mostly RSM (polynomial
regression) is used in the literature [20,22–26]. However, the use of neural networks has
also gained traction in the last decade [21,27,28].

In this paper, two hybrid metaheuristic algorithms are developed by combining the
iterative improvement capabilities of PSO and GSA. The hybrid algorithms are called
PSO-GSA and BPSO-GSA and are compared against several traditional algorithms to
demonstrate their efficacy. The BPSO is a genetic-algorithm-inspired binary version of
the traditional PSO algorithm. Optimal process parameters of biodiesel production are
studied by using these two hybrid algorithms. To build sufficient confidence in the derived
conclusions, two independent case studies are considered. The performance of these two
hybrid algorithms is compared with TS, GA, DE, GSA and PSO algorithms in terms of
convergence, the solution quality as well as the computational time requirements. Another
popular hybrid algorithm DE-GA is also used for comparisons. The rest of the paper is
arranged as follows—the formulation of the metaheuristic algorithms is given in Section 2.
Section 3 shows the experimental results of the optimal parameter evaluation of biodiesel
production and compares the TS, GA, DE, GSA, PSO, DE-GA BPSOGSA and PSOGSA.
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At last, the definitive conclusions, recommendations and the future scope are discussed
in Section 4.

2. Methods
2.1. Particle Swarm Optimization

Particle swarm optimization was proposed by Kennedy and Eberhart in 1995 [2].
PSO is inspired by the collective behavior of social insects and other animal societies.
PSO is inspired by the flocking of birds or fish schooling. Examples of swarms are the
following: bees swarm around their hive, an ant colony has ants as individual agents, a
flock of birds is a swarm of birds, the immune system is a swarm of cells, and a crowd is a
swarm of people. PSO models the social behavior of bird flocking or fish schooling. Each
particle is a potential candidate solution to the optimization problem and has a position and
velocity associated with it. Particles change their position by adjusting their velocity to seek
food, avoid predators, and identify optimized environmental parameters. In PSO, each
particle memorizes the best location identified by it. Particles communicate the information
regarding the best location explored by them. The mathematical model of particle swarm
optimization is given as follows.

First, the initial population and the velocity of the particles are generated randomly.
The particle velocity is given as follows [2]:

vi
t+1 = wvi

t + c1r1

(
pt

best,i − Xt
i

)
+ c2r2

(
gt+1

best − Xi
t
)

(1)

where vi
t+1 and vi

t are the velocities of the ith particle at the (t + 1)th and tth iterations,
respectively, w is the inertia of the particles, and c1 and c2 are the acceleration coefficients.
r1 and r2 are random numbers in between [0, 1]. pt

best,i is the personal best of the ith particle

at the tth iteration. gt+1
best is the global best of the ith particle at the (t + 1)th iteration. Xi

t is
the position vector of the ith particle at the tth iteration.

The position of the particle is updated, using the equation as follows:

Xi
t+1 = Xi

t + vi
t+1 (2)

Here, Xi
t+1 is the position vector of the ith particle at the (t + 1)th iteration.

After updating the position of all the particles, fitness is calculated using the current
position vector. If the current fitness function gives better objective values, the particles
remember the current position; otherwise, the particles remember the older best personal
values. If the current position gives better values than the previous global best values, then
the global value is updated. Otherwise, the older values of global best remain the same.
The pseudocode for the PSO algorithm is given in Appendix A, Algorithm A1.

2.2. Gravitational Search Algorithm

The gravitational search algorithm is inspired by the law of gravity and mass inter-
actions [5]. In GSA, the search agents are considered objects, and their masses measure
their performance. Due to the gravitational force, all objects attract each other, which
causes global movement of all objects toward the object with heavier masses [5]. Through
the gravitational force, the heavy masses (considered a good solution) move slowly com-
pared to the lighter masses. This shows the exploitation of the algorithm. In GSA, each
mass has four specifications—position, inertial mass, active gravitational mass and passive
gravitational mass.

The positions of a set of masses are represented as [5]

Xi =
(

x1
i , . . . , xd

i , . . . , xn
i

)
for i = 1, 2, . . . , N (3)

where xd
i presents the position of the ith agent in the dth dimension.
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The gravitational force acting on mass i for the mass j is given as

Fd
ij(t) = G(t)

Mpi(t)×Maj(t)
Rij(t) + ε

(
xd

j (t)− xd
i (t)

)
(4)

where Maj represent the active gravitational mass related to agent j, and Mpi represents the
passive gravitational mass related to agent i. G(t) is the gravitational constant at time t, ε
represents the small constant, and Rij(t) is the Euclidean distance between the two masses,
i and j.

The G and R are calculated as follows:

G(t) = G0 × e(−α t
T ) (5)

Rij(t) = ||Xi(t), Xj(t)||2 (6)

where α is a coefficient, G0 shows the initial value of the gravitational constant, and t and T
are the initial iteration and the maximum iteration, respectively.

To give a stochastic characteristic to the algorithm, the total force that acts on agent i
in dimension d is a randomly weighted sum of dth components of the forces exerted from
other agents.

Fd
i (t) =

N

∑
j=1,j 6=i

randj Fd
ij(t) (7)

where randj is the random number in between the interval [0, 1].
After calculating the forces and in order to move the solutions, the acceleration and

velocities should be formulated as

ad
i (t) =

Fd
i (t)

Mii(t)
(8)

vd
i (t + 1) = randi × vd

i (t) + ad
i (t) (9)

where Mii(t) is the inertial mass of agent i, and randi is the random number in between [0, 1].
After calculating the acceleration and velocity, the position of the solutions can be

updated as
xd

i (t + 1) = xd
i (t) + vd

i (t + 1) (10)

where xd
i (t + 1) is the the agent at the (t + 1)th iteration, xd

i (t) is the position of the tth

iteration and vd
i (t + 1) is the velocity at the (t + 1)th iteration.

The mass of the solution is the fitness value calculated by the fitness function. So, a
heavier mass is the best fitness function value.

The normalization of masses is calculated as follows:

mi(t) =
f iti(t)− worst(t)
best(t)− worst(t)

(11)

Mi(t) =
mi(t)

∑N
j=1 mj(t)

(12)

where f iti(t) is the fitness values of the ith agent at the tth iteration, worst(t) is the worst
value at the tth iteration and best(t) is the best value at the tth iteration. The pseudocode of
GSA is presented in Appendix A, Algorithm A2.

2.3. Hybrid Particle Swarm Optimization and Gravitational Search Algorithm

The hybrid PSOGSA algorithm was initially proposed by Mirjalili and Hashim [29],
and the BPSOGSA was proposed by Mirjalili et al. [30]. PSOGSA combines the social
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thinking ability of PSO with the exploration trait of GSA. PSOGSA is realized by using the
pseudocode presented in Algorithm 1.

Algorithm 1: Pseudocode of PSOGSA

Inputs: Population size (N), Max. iteration number (tmax)
while (t < tmax)

Evaluate the fitness for each agent
Update the G and gbest of the population
For each search agent

Calculate gravitational forces
Calculate acceleration
Update velocity
Update position

End
End
t = t + 1
Return the gbest solution

BPSOGSA is realized by using the pseudocode presented in Algorithm 2.

Algorithm 2: Pseudocode of BPSOGSA

Inputs: Population size (N), Max. iteration number (tmax)
while (t < tmax)

Evaluate the fitness for each agent
Update the G and gbest of the population
For each search agent

Calculate gravitational forces
Calculate acceleration
Update velocity
Calculate probability of changing position vector’s element
Update position vector’s element

End
End
t = t + 1

Return the gbest solution

3. Case Study 1: Process Optimization for Biodiesel Production

Optimization for biodiesel production from waste frying oil over montmorillonite
clay K-30 was examined by Ayoub et al. [31]. They collected waste frying oil from a
local restaurant in Bandar Sri Iskandar, Perak, Malaysia. They considered four process
parameters (reaction temperature, reaction period, oil/methanol ratio, and amount of
catalyst) for the biodiesel production yield. The central composite design (CCD) was
selected for the design of experiments. Considering the CCD model, they performed 30
experiments. A second-order polynomial function [31] was modeled using the experimental
data, which correlates the process parameters and response parameters.

R = 67.7038− 3.2758x1 + 4.2341x2 + 4.7808x3 − 1.93x4 − 4.0325x3x4 − 4.4823x2
2 (13)

The range of process parameters was considered as, reaction temperature (x1) between
400 and 1400 ◦C, reaction period (x2) between 60 and 300 min, methanol/oil ratio (x3)
between 1:6 and 1:18 and amount of catalyst (x4) between 1 and 5. However, Equation (13)
is based on a coded form of the process parameters, wherein each process parameter is
coded as −2 to +2 for the lower and upper bounds, respectively.

In this article, the optimal process parameters to maximize the palm oil yield are
analyzed using TS, GA, DE, GSA, PSO, DEGA, BPSOGSA and PSOGSA optimizers. The
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optimization is performed considering 30 search agents and a maximum iteration of 100.
The convergence curves of yield % for TS, GA, DE, GSA, PSO, DEGA, BPSOGSA and
PSOGSA optimizers are shown in Figure 1.
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Figure 1. Convergence curve of GSA, PSO, BPSOGSA and PSOGSA.

From Figure 1, it is seen that for GA and DE, there is no improvement in its best value
even after 100 iterations. TS and GSA require very few iterations to locate their personal
best values, which appear to be the local optima. DEGA and BPSOGSA have similar
performance in terms of convergence to their respective best value. PSOGSA, on the other
hand, shows stepwise improvement in its best solution over the iterations. It converges at
the best optimal value found so far by all the algorithms. The distribution of 3000 functional
evaluation values for TS, GA, DE, GSA, PSO, DEGA, BPSOGSA and PSOGSA is presented
in Figure 2. From these scatters, it is observed that GSA, PSO, BPSOGSA and PSOGSA
have a maximum number of evaluated function values in the mid-range region. Further,
PSOGSA appears to have reached the best-known function value very few times. DEGA
shows a good overall distribution of the evaluated function values.
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For unbiased comparisons, each algorithm is independently run for 10 times. The
performance analysis (best value, worst value, mean value, median value, and standard
deviation value) of TS, GA, DE, GSA, PSO, DEGA, BPSOGSA and PSOGSA optimizers
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is presented in Table 1. From Table 1, it is seen that the maximum best value of yield is
obtained by the PSOGSA algorithm (i.e., 95.646). Among the eight algorithms, PSOGSA
generates better results than TS, GA, DE, GSA, PSO, DEGA and BPSOGSA. In PSOGSA, the
functional values lie between 91.055 and 95.646, with a mean value of 93.455 and median
value of 93.750. However, the standard deviation is the minimum for DE (i.e., 0.238) and
low for BPSOGSA (i.e., 0.287).

Table 1. Performance of GSA, PSO, BPSOGSA and PSOGSA.

Optimizer Best Worst Mean Median Standard Deviation

TS 87.614 83.687 85.675 86.017 1.354
GA 87.529 82.057 85.022 85.613 2.188
DE 90.930 90.188 90.539 90.512 0.238

GSA 87.796 83.520 86.138 86.143 1.441
PSO 89.697 87.514 88.147 87.529 0.833

DEGA 91.055 90.786 90.890 90.786 0.130
BPSOGSA 91.055 90.082 90.724 90.786 0.287
PSOGSA 95.646 91.055 93.455 93.750 1.520

Optimal values of process parameters and response using TS, GA, DE, GSA, PSO,
DEGA, BPSOGSA and PSOGSA are presented in Table 2. The obtained results are compared
with the previously published results by Ayoub et al. [31]. The maximum yield values are
improved by 11.75%, 11.64%, 15.98%, 11.98%, 14.41%, 16.14%, 16.14% and 22.00% using TS,
GA, DE, GSA, PSO, DEGA, BPSOGSA and PSOGSA, respectively. The PSOGSA optimizer
gives the greatest improvement (i.e., 22.00%) on the previous known yield value.

Table 2. Optimal process parameter and responses.

Optimizer Reaction
Time

Reaction
Temp

Catalyst
Amount

Ratio
O/M Yield % Improvement %

Ayoub et al. [31] 180.00 90.00 3.00 1:12 78.4 -
TS 75.00 101.00 4.87 1:11 87.614 11.75%
GA 75.00 101.00 4.87 1:10 87.529 11.64%
DE 97.20 109.25 4.46 1:8 90.930 15.98%

GSA 148.80 103.75 4.88 1:9 87.796 11.98%
PSO 262.80 108.75 4.86 1:7 89.697 14.41%

DEGA 196.80 120.00 4.79 1:6 91.055 16.14%
BPSOGSA 196.80 120.00 4.79 1:6 91.055 16.14%
PSOGSA 66.60 125.00 4.79 1:7 95.646 22.00%

4. Case Study 2: Multi-Objective Process Optimization for Biodiesel Production

Mostafaei et al. [32] used the response surface methodology (RSM) to optimize the
ultrasonic-assisted continuous biodiesel production from waste cooking oil. They used
CCD to design 50 experimental runs, using a combination of five process parameters. The
process parameters were irradiation distance (x1), UP amplitude (x2), prob diameter (x3),
vibration pulse (x4) and flow rate (x5). The responses considered were yield (R1) and
energy consumption (R2). It should be noted that the objective is to maximize yield (R1)
and minimize energy consumption (R2). The true range of the process parameters was
considered to be 30 to 90 mm for x1, 20% to 100% for x2, 14 to 42 mm for x3, 20% to 100%
for x4 and 40 to 80 mL/min for x5. However, the process parameters are coded as −2 to +2,
and the following mathematical model for yield (R1) and energy consumption (R2) is used.

R1 = 90.14 + 0.6275x1 + 0.8975x2 + 0.6125x3 + 0.6975x4 − 0.5325x5 − 0.428125x1x2

+ 0.353125x1x4 − 0.296875x2x3 − 0.571875x2x4 + 0.509375x2x5 − 0.178125x3x4

+ 0.665625x4x5 − 1.035625x2
2 − 0.985625x3

2 − 1.248125x4
2 + 0.214375x5

2

(14)
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R2 = 120.3575 − 10.2975x1 + 18.4825x2 + 29.3425x3 + 14.6175x4 − 0.032499x5 − 1.321875x1x2

− 2.509375x1x3 + 0.646875x1x5 + 3.921875x2x3 + 2.409375x2x4 − 1.021875x2x5

+ 3.884375x3x4 + 0.590625x4x5 − 3.428125x1
2 + 0.809375x2

2 − 0.965625x3
2

(15)

In this case study, the maximization of yield % (R1) and minimization of power
consumption (R2) using TS, GA, DE, GSA, PSO, DEGA, BPSOGSA and PSOGSA is carried
out. The convergence curve of yield % and power consumption with the iterations is shown
in Figure 3. The optimization is performed considering 30 search members and maximum
iterations of 100. Figure 3a shows that despite the maximization of yield %, GSA and PSO
did not show any improvement in the best value as the iterations progressed. On the other
hand, the three remaining traditional algorithms, i.e., TS, GA and DE, converged to their
respective best value in the 12th, 7th and 15th iterations. The hybrid algorithms, i.e., DEGA,
BPSOGSA and PSOGSA, converged to their respective best values in the 13th, 9th and 8th
iterations. Thus, for the yield % objective, all the functions recorded very fast convergence
to their respective best values. Nevertheless, it is worth mentioning that, except BPSOGSA
and PSOGSA, all the other algorithms converged to relatively poorer solutions. A similar
trend is observed in Figure 3b, where convergence characteristics of the tested algorithm
in the power consumption minimization scenario are reported. However, here, the DE,
DEGA, BPSOGSA and PSOGSA all were able to locate the best-known optimum, which
may be the global optimum.

Figure 3. Convergence curve of various metaheuristics while optimizing (a) yield % (b) power
consumption.

Scatter of the 3000 function evaluation values for TS, GA, DE, GSA, PSO, DEGA,
BPSOGSA and PSOGSA is presented in Figure 4. It is seen that the distribution pattern of
DE, PSO, DEGA, BPSOGSA and PSOGSA is somewhat similar. Major accumulations of
function evaluation values are seen to be clustered in the higher yield % zone. On the other
hand, the other three algorithms, i.e., TS, GA and GSA, showed throughout the distribution
of the function evaluation values. Similar observations are made from Figure 4b, where
GA, DE, GSA, DEGA, BPSOGSA and PSOGSA showed good concentrations of solutions
in the lower power consumption zone, indicating that the algorithms spent a relatively
smaller number of function evaluations to locate the potential global optimal zone.

Table 3 presents the optimal process parameters and the achieved best value for yield %
optimization by the eight algorithms. It is observed that both BPSOGSA and PSOGSA were
able to achieve the maximum yield % (i.e., 93.715). All the algorithms were able to locate
good solutions for yield % maximization. Similarly, from Table 4, it is seen that all the three
hybrid algorithms, i.e., DEGA, BPSOGSA and PSOGSA, as well as DE were able to locate
the best-known minimum power consumption value (i.e., 12.48).
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Table 3. Optimal process parameter for optimization of yield %.

Optimizer x1 x2 x3 x4 x5 Response

TS 77.25 79.4 31.36 57.8 43.2 90.938
GA 84.6 58.4 23.38 59.2 44 91.731
DE 90 64 29.33 80.8 80 92.768

GSA 87 71.6 26.32 72.8 47.7 91.07
PSO 86.55 43.4 32.41 73.8 47.7 92.08

DEGA 90 64 29.33 80.8 80 92.768
BPSOGSA 90 48.8 30.66 62.6 40 93.715
PSOGSA 90 48.8 30.66 62.6 40 93.715

Table 4. Optimal process parameter for optimization of power consumption.

Optimizer x1 x2 x3 x4 x5 Response

TS 86.7 22.6 17.85 30.4 62.1 30.223
GA 30 20 14 20 80 26.34
DE 90 20 14 20 40 12.48

GSA 76.65 25.4 14.14 22.4 42.9 27.225
PSO 85.65 29.4 17.08 42.2 44.2 29.982

DEGA 90 20 14 20 40 12.48
BPSOGSA 90 20 14 20 40 12.48
PSOGSA 90 20 14 20 40 12.48

The ability of the hybrid algorithms to tackle multi-objective optimization problems is
also assessed by considering a weighted sum multi-objective optimization wherein yield %
and power consumption are simultaneously optimized. The composite objective function
(Z) is described as

Min Z =
0.5 ∗ R2

(R2)min
− 0.5 ∗ R1

(R1)max
(16)

where (R1)max and (R2)min are the best-known values of yield % and power consumption
single-objective optimization.

The convergence of multi-objective function with respect to iteration and distribution
scatter of 3000 function evaluations for TS, GA, DE, GSA, PSO, DEGA, BPSOGSA and
PSOGSA is presented in Figures 5 and 6, respectively.
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The performance analysis of the eight optimizers in the weighted sum multi-objective
environment is given in Table 5. In multi-objective optimization, the minimum value of
the function is obtained using PSOGSA, whereas for DEGA and BPSOGSA, the obtained
solution is almost on par with that of PSOGSA.

Table 5. Performance of metaheuristics in multi-objective optimization.

Optimizer Best Worst Mean Median Standard
Deviation

TS 1.012 1.644 1.454 1.644 0.290
GA 0.952 1.644 1.358 1.447 0.304
DE 0.725 1.250 1.093 1.250 0.241

GSA 0.646 1.250 1.008 1.250 0.296
PSO 0.855 1.644 1.092 0.855 0.316

DEGA 0.091 1.459 0.775 0.775 0.684
BPSOGSA 0.091 0.725 0.281 0.091 0.291
PSOGSA 0.090 0.725 0.217 0.091 0.254
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The optimal process parameters and responses are presented in Table 6. The obtained
results are compared with the previously published results by Mostafaei et al. [32]. The
optimal result is improved about 72.12%, 73.77%, 80.03%, 82.20%, 76.45%, 97.49%, 97.49%
and 97.52% using TS, GA, DE, GSA, PSO, DEGA, BPSOGSA and PSOGSA, respectively.
However, it is important to state here that the derived multi-objective results are dependent
on the considered weightage of the objectives. The composite objective function (Z) is
a compromise solution that takes into account both yield (R1) and energy consumption
(R2). This is why in the best solution derived by PSOGSA, the R1 dropped by about 15.7%
whereas the R2 improved by approximately 88%. The average computational time for each
independent run of TS, GA, DE, GSA, PSO, DEGA, BPSOGSA and PSOGSA is 2.010, 2.351,
2.411, 3.832, 2.407, 3.973, 4.771 and 4.684 s, respectively.

Table 6. Optimal process parameter for multi-objective optimization.

Optimizer x1 x2 x3 x4 x5 Z R1 R2 % Improvement in Z

Mostafaei et al. [32] 75 56 28 62 50 3.630 91.6 102.8 -
TS 84 20.2 14.49 78.8 76 1.012 81.179 36.256 72.12%
GA 88.8 56 16.24 46.8 43.3 0.952 88.044 35.451 73.77%
DE 30 20 14 20 80 0.725 61.998 26.34 80.03%

GSA 86.2 27.6 17.57 26.4 44.7 0.646 81.018 26.940 82.20%
PSO 85.5 73.4 14.63 22.4 41.9 0.855 83.013 32.497 76.45%

DEGA 90 20 14 21.6 40 0.091 77.155 12.548 97.49%
BPSOGSA 90 20 14 20 40 0.091 76.638 12.480 97.49%
PSOGSA 90 20 14 21.6 40 0.090 77.155 12.548 97.52%

5. Conclusions

To improve the performance and capabilities of industrial processes, it is crucial to
optimize them. Most industrial processes are combinatorial optimization problems, where
the performance or responses can be significantly improved by assigning optimized values
to each process parameter. In this study, based on the two independent case studies
on biodiesel production optimization, the following conclusions regarding the hybrid
algorithms can be drawn.

• For case study 1, the tested algorithms can be ranked as PSOGSA > DEGA > BPSOGSA
> DE > PSO > GSA > TS > GA based on best solution and mean solution. For
case study 2, considering all the three scenarios (i.e., yield % maximization, power
consumption minimization and weighted sum multi-objective minimization), the
ranking is PSOGSA > BPSOGSA > DEGA > DE > GSA > GA > PSO > TS. Thus, in
terms of quality of the optimum obtained, PSOGSA, BPSOGSA and DEGA are the top
three algorithms. However, in general, PSOGSA is found to be roughly 1–2% better
than BPSOGSA and DEGA for the tested case studies.

• Based on variance in the optimum, the algorithms can be ranked from least variance
to most variance as DEGA > DE > BPSOGSA > PSO > TS > GSA > PSOGSA > GA for
case study 1. For case study 2, the ranking is DE > PSOGSA > TS > BPSOGSA > GSA
> GA > PSO > DEGA. Using an average ranking methodology and considering both
case studies 1 and 2, the top three algorithms (i.e., lesser variance) are DE, BPSOGSA
and TS.

• In terms of computational time, the hybrid algorithms are slower than their traditional
counterparts. The algorithms can be ranked from fastest to slowest as TS > GA > PSO
> DE > GSA > DEGA > PSOGSA > BPSOGSA. With respect to TS, the GA, DE, GSA,
PSO, DEGA, BPSOGSA and PSOGSA are found to be 17%, 20%, 20%, 91%, 98%, 133%
and 137% slower, respectively.

• With regards to the previous best known solution from the literature, the traditional al-
gorithms improved the solution by an average of 13.15%, whereas the hybrid algorithm
improved it by 18.09% for case study 1. Similarly, for case study 2, the improvements
were seen to be 76.91% and 97.5% for traditional and hybrid algorithms, respectively.
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Polynomial regression models are quite common in industrial process optimization
research studies and applications. The outcomes of this study will be beneficial to any
similar study that relies on second-order models. This study can be further improved by
considering the probabilistic and non-probabilistic uncertainties of process parameters.
Hybridization of the metaheuristics with MCDMs for multi-objective optimization is also
likely to lead toward some interesting research.
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Appendix A

Algorithm A1: Pseudocode of PSO

Inputs: Population size (N), tmax (Max. iteration number)
Initialize the random population (N), and initial random velocity (v)
Evaluate the objective function values of N.
Assign Pbest and fpbest
Select the gbest and fgbest
while (t < tmax)

for t = 1 to N
Determine the velocity (vi) of ith particle
Determine the position (Xi) of ith particle
Bound Xi
Evaluate the objective values of ith particle

if current fitness values are better than the older one
then update Pbest and fpbest

End
if current fitness value is better among the entire population

then update gbest and fgbest
End

End
t = t + 1

End
Return the best solution

Algorithm A2: Pseudocode of GSA

Inputs: Population size (N), Max. iteration number (tmax)
while (t < tmax)

Evaluate the fitness for each agent
Update the G, best and worst of the population
Calculate M and a for each agent
Update velocity and position

End
t = t + 1
Return the best solution
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