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Abstract: In the oil and gas industry, there has not been a consistent, concerted effort to reduce global
greenhouse gas (GHG) emissions across the supply chain. In addressing this challenge, this study
evaluates the potential GHG emissions reduction that may be realized through deployment of a
geothermal power co-production system in two Colombian oil fields, compared to a base case where
energy needs are derived through non-renewable sources such as gas and diesel. These geothermal
power co-production systems make use of organic Rankine cycle (ORC) engines to convert the
heat from produced oilfield fluids into electrical energy. The energy potential of this resource is
evaluated through the exergy concept, and a life cycle analysis is implemented to calculate the carbon
footprint using the Intergovernmental Panel on Climate Change (IPCC) 2013 methodology. In the
two oil fields of interest, OFA and OFB, the results show a maximum potential energy production
of 2260 kWe for OFA and 657 kWe for OFB. The co-production of crude oil and electrical energy
from geothermal resources suggests a possible a carbon footprint reduction of 19% and 11% for OFA
and OFB, respectively, when compared to conventional power systems. In addition, four emissions
scenarios are assessed where the current energy sources in these oil fields are substituted by gas,
diesel, co-generated geothermal power, or a combination of the three while maintaining the average
power output in each field. The highest carbon footprint reduction is found in Scenario 1, which
replaces 100% of the liquid fuel consumption with purchased gas (gas provided by a third party and
treated outside the system’s limits), thereby achieving carbon footprint reductions up to 54% for OFB.
This research opens the prospect for the use of renewable energies in the oil and gas industry.

Keywords: carbon footprint; co-production; electrical energy; exergy; geothermal energy; life cycle
assessment; oil field

1. Introduction

The increasing global energy demand, especially in the industrial sector, has renewed
the search for new energy resources that allow for both diversification of the energy matrix
and mitigation of environmental impacts [1]. According to the data presented in the World
Energy Markets Observatory (WEMO) [2], oil and coal will continue to be the leading
sources of energy worldwide. The use of these fossil resources has led to a 2% increase
in global greenhouse gas (GHG) emissions in the period between 2016 and 2018, where
China and the United States were the leading emitters of CO, into the atmosphere [3]. Even
though less than 0.5% global total GHG emissions are emitted in Colombia, it is among
the countries most vulnerable to climate change. In the Paris Agreement, Colombia has
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committed to reducing its GHG emissions by 51% by 2030 and to becoming carbon neutral
by 2050 [4]; these goals were recently ratified at COP26 [5]. The Colombian government
is promoting several circular economic strategies across all sectors to support a transition
from a brown to a green economy [6].

In Colombia, the energy matrix shows a strong dependence on water sources and
natural gas, which in 2018 represented approximately 82% and 11% of electrical power
consumption, respectively. Thermal plant power generation contributes a further 6% to
this overall figure. The contribution of renewable energies in Colombia’s energy matrix
is minor, as it represents less than 0.1% of overall generation [7-9]. As a result, there is
renewed interest in diversifying energy generation sources in Colombia and increasing the
contribution of renewable energy technologies such as solar, wind, and geothermal energy,
particularly in regions that are well suited to the development of these resources [8,10].

Geothermal power is climatically independent and generates base-load power that
provides an element of energy security that other renewable technologies cannot. The
lack of specialized studies examining the characterization and use of geothermal energy
to produce electricity, and the high costs and risks that these types of projects carry, has
stunted the growth of a geothermal power industry in Colombia [11-13].

Recent work has forecasted that in the year 2025, geothermal energy will meet 1.65%
of Colombia’s electrical demand. In addition, it is estimated that the generation capacity of
this renewable resource could eventually be scaled to 17,400 GWh year~! [14]. The research
carried out in Colombia has not considered oil fields as potential areas for geothermal
energy development; these investigations have instead focused on the direct exploitation
of conventional, hydrothermal geothermal deposits.

Colombia does not take advantage of geothermal resources for electrical generation,
despite multiple studies supporting its potential in the country [11,12,14-19]. One of
the principal challenges of geothermal projects is the cost of drilling and completions,
which can account for 30% to 40% of total project costs in a conventional geothermal
development [20-23]. The use of petroleum wells to produce geothermal energy mitigates
the costs associated with single-purpose geothermal exploration or development wells. The
subsurface knowledge acquired in drilling oil and gas wells, including reservoir properties
and fluid properties, allows one to reduce subsurface uncertainty related to geothermal
resource development [22,24-26]. Importantly, the constant, base-load generation profile
of geothermal energy makes it well suited to oilfield use, as power demands in oil fields
are generally stable and do not tend to fluctuate significantly [27]. Coupling geothermal
energy with oil and gas operations provides a decarbonization alternative that supplies
reliable power and reduces GHG emissions. Moreover, geothermal energy in oil and gas
operations can supply electricity to remote areas (where conventional power grids are
difficult to connect to), and the heat can also be harnessed in direct-use applications [28].

During the life of an oil well, the amount of water produced as percentage of overall
fluid production can rise to levels above 95% [29]. Such wells can produce water with
temperatures exceeding 90 °C. This water is usually treated for consumption in other
activities or reinjected into a subsurface reservoir for disposal, secondary recovery, or
pressure maintenance. This represents a waste of a thermal resource that could otherwise
be employed for energy production or direct-use applications. The waters produced in these
oil fields, according to published criteria, would be classified either as medium-enthalpy
(90 °C to 150 °C) or low-enthalpy (30 °C to 90 °C) geothermal resources [30,31]. Medium-
enthalpy resources can provide useful energy to the operation in the form of electricity or
heat, whereas low-enthalpy resources are only useful in direct-use applications. Indeed, in
the global context, a growing body of research is showing the co-production potential of
geothermal energy and oilfield reservoir fluids [32-50].

As mentioned, the conversion of geothermal heat to electricity in an oilfield oper-
ation is desirable due to the local demand, and due to the potential for direct offset of
fossil fuel-burning, internal combustion power sources. The benefits are realized both in
terms of lowering costs and reducing the GHG footprint of the oilfield power supply [26].



Processes 2022, 10, 568

30f22

Other applications for the use of geothermal resources in oil fields have also been piloted
successfully, including heating systems and crude oil transportation [31,41,51,52].

The production of geothermal power from oil fields has already been piloted suc-
cessfully in the USA and China [35,41,44]. Work by Augustine et al. [48] estimated the
potential for this co-produced fluid geothermal power generation in the United States
using three models for electrical generation potential: exergy, the Massachusetts Institute
of Technology (MIT) model, and a commercially available “off-the-shelf” (COTS) model.
The exergy model is based on the theoretical limit of the maximum amount of work that
can be obtained by bringing the resource to ambient or dead conditions. Meanwhile, the
Massachusetts Institute of Technology (MIT) model works with the theoretical efficiency
for ORC [53], and the commercially available “off-the-shelf” (COST) model is derived from
performance curves of the ORC system [54].

The information was taken from a database created by the authors based on the pa-
rameters of volume, flow rate, bottom-hole temperature of the produced waters, and maps
of surface temperature of the fluids. Based on an estimate that approximately 4.2 billion
bbl yr~! of co-produced water is extracted in the United States with temperatures suitable
for power production, the authors calculated estimated power production potentials of
1300 MWe with the exergy model, 560 MWe with the MIT model, and 276 MWe with the
COTS model.

A study by Auld et al. [49] assessed the potential for power generation from co-
produced hot brines in oil fields in the North Sea to supply the power demand of offshore
platforms through an on-platform organic Rankine cycle (ORC) power plant. Power
generation from the ORC units was analytically modeled using co-produced brines from
oil fields in Brent Province. These simulations showed that six of the 21 evaluated oil fields
had an electrical generation potential greater than 10 MW. The smallest and largest projects
assessed yielded 0.45 MW and 31 MW of power generation potential, respectively.

Banks et al. [50] investigated the gross geothermal power potential of several oil
fields in Virginia, USA. This investigation used three different methods to assess gross
power production potential over an operating lifetime of 25 years. Using a reservoir-
volume method, the investigation identified 172 MWth and 28 MWe of power potential.
A deterministic surface heat method, based on available information for bottom-hole
temperatures and historical water production from 190 wells, estimated an average power
potential of 115 MWth and 16 MWe.

In Texas, it was reported that a natural gas well could generate approximately 1.5 MW
of net energy using the geothermal energy of produced waters [55]. Likewise, in the
Gulf Coast, over 1000 MW of electrical power potential has been identified from high-
temperature waters [56]. One of the most critical investigations on this topic was conducted
in 2012 by Bennet et al. [38], who stated that the potential for generating power from
geothermal sources present in mature Los Angeles basin oil fields was approximately
7430 kWe.

The United States Department of Energy (DOE), in Wyoming, carried out the first
pilot of co-produced fluid geothermal power production. The system used an ORC gen-
eration unit to convert the heat from low-temperature co-produced fluids to electrical
power [41]. In the field trial, production of 132 kWe of net electrical power was achieved
from 40,000 barrels per day of water at temperatures ranging between 90 °C and 99 °C.
Another landmark project was carried out in North Dakota, where the first commercial
application of oilfield geothermal power generation occurred [57]. The system produced
250 kWe of power from 30,000 barrels per day of co-produced water at a temperature of
98 °C.

A study on Naval Petroleum Field No. 3 (NPR-3) in Wyoming by Milliken [40] esti-
mated that 300 kWe of co-produced geothermal power could be harnessed from 40,000 bar-
rels of produced water per day at a temperature of 88 °C.

The first geothermal power plant built in China for an oilfield, co-produced fluid
geothermal application made use of 18,114 barrels of water per day produced from oil



Processes 2022, 10, 568

4 0f22

wells, at an average temperature of 110 °C [58]. This plant produced 310 kWe of electrical
power and remains an impactful example of how oilfield infrastructure can be used to
produce energy from alternative sources.

Although geothermal energy presents the highest energy return (energy output/energy
invested) of any comparable renewable energy source, it has not been implemented in
Colombia because of the considerable levels of capital investment required and the sig-
nificant uncertainties inherent in exploring for geothermal resources. Such uncertainties
include fluid type, temperature, chemical composition, and the generation technology that
will be most appropriate for the resource (dry steam, flash, binary cycle) [21,27]. In addition,
financial pressures to obtain economic returns over a short period of time have been an
obstacle to the development of geothermal energy both in Colombia and globally [16,18,19].

Although prior research has considered the energy and subsurface aspects of oilfield
co-produced geothermal power, recent studies on the subject have not considered the GHG
emissions benefits, despite the significant environmental, social, and technical-economic
pressures on extractive industries in recent years. Moreover, carbon footprint calculations
through life cycle analyses (LCA) have not been implemented for geothermal co-generation
systems in oil fields. Few studies have focused on GHG emissions calculations in oil
fields through life cycle analyses, as work by Rahman et al. [59] and Nassar et al. [60] has
pointed out. Therefore, the objective of this paper is to evaluate, for the first time, the GHG
reductions in two oil fields under two energy production systems: first, a conventional
system based on the combustion of fossil fuels, and second, a co-generation system that
harnesses the potential of the geothermal energy in the produced fluids. This evaluation
will incorporate an LCA using IPCC 2013. The fields of interest in this study are the two
fields that have been chosen for the first pilot of co-produced fluid geothermal power
in Colombia.

This study assesses the technical and environmental feasibility of the application of
co-produced fluid geothermal energy in these oil fields, with special emphasis on the
carbon footprint reduction. This research details the magnitude reduction of the carbon
footprint reduction achieved using the geothermal energy in these produced waters. The
field trial associated with this study involves the start-up of the ORC equipment in the two
fields of interest. The outcome of this work does not simply consist of the specific carbon
footprint reductions achieved in each field; rather, it demonstrates the possibility of making
better use of all resources in the oilfield value chain, of which geothermal resources are just
one element.

This document is divided into two sections. The first section describes the electrical
co-generation process for two oil fields, referred to as A and B (OFA and OFB, respectively)
for the purposes of this study. The methodologies used to evaluate the electrical power
potential of geothermal resources in oil fields are described. Subsequently, the energy
potential of the geothermal resources is calculated through an approach that focuses on
exergy and energy. The carbon footprint calculation is used to measure environmental
impact under the LCA framework.

The second section explores and quantifies the power generation potential from
the geothermal resources based on exergy and energy, and then examines the electrical
production observed in one of the generation units deployed in the field. Lastly, four
power generation scenarios are evaluated to investigate a configuration with a minimal
GHG footprint. The scenarios consider different fossil fuel energy sources (gas and diesel)
together with geothermal energy co-production. The aim is to minimize the GHG footprint
of the power generation while maintaining the historical, average power production in
the field. In Scenario 1, 100% of liquid fuel consumption is replaced by purchased gas; in
Scenario 2, 100% of liquid fuel consumption is replaced by field gas (gas produced and
treated inside the system’s limits); in Scenario 3, 100% of energy consumption is carried out
with purchased gas; and in Scenario 4, all energy consumption is carried out with field gas.
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2. Methodology
2.1. Estimation of Geothermal Potential in Two Colombian Oil Fields

Geothermal resources in oilfield settings, according to published classification schema,
are generally considered medium-enthalpy or low-enthalpy geothermal resources, where
fluid temperatures rarely exceed 120 °C. Typically, water that is co-produced with oil or
gas is run through a treatment system and then disposed of according to local regulations,
most often in a permeable subsurface formation [61].

The harnessing of geothermal energy in these produced waters occurs through the use
of technologies like organic Rankine cycle (ORC) power generation systems [62,63]. ORC
systems use heat exchangers to transfer the thermal energy of these produced waters to a
low-boiling-point working fluid (which is commonly a refrigerant or hydrocarbon) in a
closed loop. This heat provokes a phase change and turns the liquid working fluid into
vapor. The pressure of this vapor is used to drive a turbine and generator, thereby producing
electrical power [27,52,55]. Figure 1 illustrates how geothermal energy is harnessed by
ORC units in oil fields.
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Figure 1. Schematic of an oilfield application of an ORC power generation unit. Image from Parex
Resources Archives. Water flow (blue arrows), heat flux (orange arrows), phase change of the working
fluid in the turbine and evaporator (light green lines), fluids produced from wells (gray arrows).

The separation and treatment of produced fluids is key to the proper functioning of
the ORC generation unit. Better separation and treatment leads to fewer problems with
heat exchangers, such as hydrocarbon build-up or scale, which may impair the overall
efficiency of the system [64].

As previously indicated, ORC systems are the most common technology for producing
electrical energy from low- and medium-enthalpy geothermal resources [44,52,63]. As in
many other power generation technologies, a vapor pressure differential across a turbine is
required to produce electrical power. Organic fluids such as refrigerants and hydrocarbons
make this possible, as they vaporize at temperatures below the boiling point of water.
Despite the potential hazards that the use of organic fluid may present compared to water,
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many organic working fluids may exhibit properties that are environmentally benign,
such as low global warming potential (GWP), low ozone depletion potential (ODP), low
to zero flammability, and low toxicity, according to the American Society of Heating,
Refrigerating, and Air-conditioning Engineers (ASHRAE) [65]. Thermodynamically, these
organic working fluids also feature a high molecular weight, allowing fluids to absorb
and retain more thermal energy [62], and a low propensity to condense during expansion.
Condensation during expansion can damage turbine components. A simple ORC consists
of four main elements: An evaporator, a turbine, a condenser, and a booster pump. Initially,
the produced geothermal fluid enters the evaporator, where it transfers its energy to the
working fluid of the ORC. The working fluid is then heated and undergoes a phase change
to vapor. At high temperature and pressure, the working fluid in the vapor phase enters a
turbine, where it expands and produces mechanical movement. Subsequently, the rotation
of this turbine is used by a generator to produce electricity. After expansion in the turbine,
the working fluid is cooled and brought back to the liquid phase at low temperature and
pressure through a condenser. Lastly, the fluid is pumped back to the evaporator to start
the cycle again.

The oil fields that are the subject of this study were selected based on the characteristics
of their produced fluids. The key parameters in this evaluation were the flow rates and
temperatures of the produced fluids. The two oil fields produce water at temperatures of
88 °C and 100 °C, respectively. The selected fields are separated by 149 km and share similar
climatic conditions (Figure 2). The air temperature is effectively the cooling temperature of
the working fluid, which is an important factor in assessing the geothermal power potential
of these assets.

Figure 2. The geographic location in Colombia of the two subject oil fields in this study, OFA and
OFB. The colors indicate the division of Colombia 32 departments.

Figure 3 shows the relationship between the flow rate of individual oil wells and
the surface temperature of the fluids in each well across the oil fields of interest. Wells
with high water production exhibit higher surface temperatures, which meet the threshold
for electrical generation in ORC systems. In the OFB field, the surface temperature of
the combined flow of all fluids in the field can reach up to 98 °C, and in the OFA field,
combined-flow surface temperatures can reach temperatures of 104 °C.
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Figure 3. The relationship between the magnitude of the produced water flow and produced water
temperatures for (a) OFA and (b) OFB. The blue circles indicate the measurements made in different
wells for oilfield A. The yellow circles indicate the measurements made in different wells for oilfield B.

For the characterization of each field, the energy production potential was calcu-
lated through the exergy concept, a thermodynamic property that indicates the maximum
amount of work that can be extracted from a particular energy source. The exergy (available
energy) in the subject fields was calculated as shown in Equation (1).

B:ﬂ.’l[h*ho*To(S*SQ)] (1)

where B is the exergy flow of a current (kW); m is the mass flow (kg s~ 1); h and hg are the
enthalpies at the system temperature and pressure, and ambient conditions, respectively
(K] kg~1); and s and s are the entropy at the system temperature and pressure, and ambient
conditions, respectively (k] kg~! K~1). Finally, T is the ambient temperature (K).

Next, the energy of each flow was calculated through Equation (2).

E = 1ith @)

The produced waters in each field were chemically profiled through physicochemical
analysis. This was performed to understand the potential for scale precipitation, which
could impair the performance of the process. The alkalinity of the samples was measured
using a titrimetric method considering the SM2320 B method [66]. On the other hand, for
the measurement of chlorides, the standardized argentometric method was used based
on the S.M. (4500—Cl-B) [66]. In the case of water conductivity, the electrometric method
was used according to the S.M. (2510B) standard [66]. For the pH, a potentiometric method
based on the S.M. (4500-H+B) standard was employed [66]. Finally, the total dissolved
solids were obtained from a gravimetric process based on the S.M. (2540 C) standard [66].
It should be mentioned that all measurements were done in triplicate. The physicochemical
characteristics of the produced waters of each field are summarized in Table 1.

Table 1. Physicochemical properties of the produced waters of OFA and OFB.

Parameter OFA OFB
Total alkalinity (mg CaCOj3 LY 335.0£3.8 2715+ 3.1
Chlorides (mg C1 L1 7624.8 £ 38.1 39419 £ 19.7
Conductivity (uS cm™1) 21,600.0 £ 130.0 10,760.0 & 65.0
pH 72+02 7.6 £0.2

Total dissolved solids (mg TDS LD 16,686.7 + 83.4 7710.7 £ 46.3
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2.2. Effect of Oilfield Geothermal Energy on Carbon Emissions Intensity Using the Life Cycle
Analysis Approach

A life cycle analysis (LCA) is a methodological tool for evaluating environmental
impacts across supply chains and value chains. It takes into consideration the use of
both renewable and non-renewable natural resources and quantifies the associated envi-
ronmental impacts in terms of emissions and contamination (water contamination, soil
contamination, and air contamination) during the transformation of raw materials into
end-user products and services. According to Rahman et al. [59], few studies related to
upstream oil and gas activities have focused on GHG emissions calculations. The authors
determined the carbon footprint from the production of various North American conven-
tional crude oils, which produce emissions across many activities at various points in the
value chain, including drilling, land use changes, crude oil production, crude oil processing,
venting, flaring, and fugitive emissions. The aim of this work was to provide an accurate
assessment of these impacts so that strategies can be devised to meet the relevant envi-
ronmental regulations [59]. In 2021, Nassar et al. [60] estimated the CO, emissions factor
across the hydrocarbon supply chain (including extraction, distillation, and combustion)
through the LCA methodology. The LCA calculations showed that a scenario employing
renewable energy results in 6.7% lower CO, emissions compared to a traditional approach
without the use of renewable energy [60].

The ISO 14040 standard, which consists of the following four steps, codifies one ap-
proach to life cycle analyses. The components of this standard are (1) goal and scope
definition, (2) inventory analysis, (3) impact assessment, and (4) interpretation [67]. The
functional unit selected for the current study was 1 kWh of electrical energy, and accounts
for the impacts of all steps in the value chain, from extraction to final consumption: gas
extraction, treatment, and power generation. These steps were considered in two different
power-producing systems, a gas-burning system and an ORC power generation system. In
this study, inventory data related to the production of electrical energy were collected for
the two oil fields of interest over a period of one month. The impact category evaluated
was the carbon footprint, using the hierarchical perspective of the IPCC 2013 methodol-
ogy [68], which reports values in metric tons of CO; equivalent (metric tons CO5q) per
kWh generated. Software including Umberto LCA+ and Ecoinvent v. 3.6 (ifu Hamburg,
Hamburg, Germany) were used to carry out these calculations [69].

The carbon footprint was obtained from the characterization of the input-output envi-
ronmental flows of the system process, based on energy and mass balance. GHG emissions
flows become a carbon footprint through the characterization factors that represent the
GWP (see Equation (3)); GWP is a relative measure of how much heat can be trapped by a
given GHG compared to a baseline gas, usually carbon dioxide.

Carbon footprint = Z(GWP(S) X EI(S)> ®)

S

where GWP,,) is the global warming potential of each emission s, and El ) is the emis-
sion inventory.

For both oil fields, this study quantified the GHG emissions reduction between the
baseline scenario—a conventional system without geothermal power co-generation—and
alternative scenarios that consider the use of this novel, geothermal co-generation applica-
tion. Four scenarios were evaluated to analyze the environmental impacts of supplying
power to an oil field through different combinations of fossil-fuel power sources and
geothermal co-generation power equipment, as described below:

e  Scenario 1: 100% of liquid fuel consumption is replaced by purchased gas.
e  Scenario 2: 100% of liquid fuel consumption is replaced by field gas.

e  Scenario 3: 100% of energy demands are supplied by purchased gas.

e  Scenario 4: 100% of energy demands are supplied by field gas.
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The analysis requires an accounting of the consumed resources in terms of material
balance and energy balance. The operator of the oil field provided the data on fuel con-
sumption related to power generation and the associated costs. The information used for
the calculations in this research corresponds to an average month of fuel consumption in
the year 2019. For clarity, the net calorific value of each fuel was considered in the energy
accounting. In this way, the resources consumed in these processes were contemplated
both in terms of the volume of fuel used and the overall energy consumed.

3. Results

This section presents the results of this study, first with an assessment of the energy
potential of the oil fields, followed by a section on the efficiency of the geothermal co-
generation systems. Lastly, this section details the results of the carbon footprint accounting,
highlighting the advantages of using renewable energy sources such as geothermal energy.

3.1. Geothermal Energy Potential

To determine the energy generation potential of the subject oil fields, the energy
flow and exergy of the produced waters were calculated based on temperature and flow
rates. In this study, the average temperatures assumed for the OFA and OFB fields were
100 °C and 88 °C, respectively. The representative produced water flow rates vary between
40,000 BFPD and 45,000 BEPD for the OFA field, and between 15,000 BEPD and 20,000 BEPD
for the OFB field. From the characteristics of the produced waters, the enthalpy and entropy
of the system were calculated as shown in Table 2.

Table 2. Properties of the produced waters for the calculation of energy potential.

Oil Field Enthalpy (k] kg—1) Entropy (k] kg~1 K1)
OFA 420.01 1.3087
OFB 368.89 1.1694

Figure 4 shows the energy and exergy potential of the subject fields for different pro-
duced water flow rates. It should be clarified that the energy and exergy flows are shown
for comparative purposes. Energy is a global measure of the capacity to produce work in
the analyzed energy source, but it does not consider the thermodynamic irreversibilities
inherent to all real processes. On the other hand, exergy considers all the irreversibilities
through the generated entropy, although it does not consider the levels of applied tech-
nologies (technological conversion efficiency). In addition, these two measurements are
presented as evaluation parameters of the geothermal resource, although it is clarified that
the exergy is a more realistic value.

The difference between the energy potential and the exergy potential is highlighted.
The reason for this discrepancy lies in the definition of these parameters. Energy losses
due to processes such as heat transfer caused by finite difference in temperatures are not
considered in these calculations [70]. For exergy potential, which is a more realistic measure
of the maximum energy production in the field, the thermal and mechanical gradients
available using the properties of the system at ambient temperature and pressure are
considered. Therefore, exergy is defined by the difference between the original energy
of the produced fluids at surface compared to their energy at the ambient temperature
and pressure, at which no further energy can be extracted due to the lack of pressure or
temperature gradients.
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Figure 4. Energy and exergy potential of the subject oil fields.

The calculation of the energy potential shows that for OFB, a maximum energy pro-
duction between 576 and 758 kW could theoretically be obtained, whereas for OFA, the
maximum production is between 2157 and 2364 kW. This production is only possible if
the generation equipment operates at 100% thermodynamic efficiency. Currently, ORC
technologies in geothermal fields that operate with medium- and low-enthalpy resources
have thermal-to-power efficiencies of between 5% and 12% [62], which implies an output
of between 50 and 70 kWe for the OFB field and between 180 and 200 kWe for the OFA field,
assuming a 9% thermal-to-power efficiency.

The difference between the values obtained for OFA and OFB is accounted for by
the difference in flow rates, as OFA produces twice as much water as OFB. Moreover, the
temperature measured in OFA produced waters is greater than that of OFB.

This result demonstrates that useful quantities of geothermal energy are available in
these oil fields.

3.2. Production of the First Pilots in Colombia: Electrical Power Production

The first field pilot was carried out in OFA, where a modular ORC power generation
unit was put into operation. Coincident with the commissioning of the power unit at OFA,
installation activities for the OFB field pilot were initiated. The equipment installation in
each field was carried out in a facility where the produced water could be filtered and
treated prior to entering the ORC generation units. The treatment of this water, in addition
to being normal oilfield practice, removed contaminants such as scale and hydrocarbons
that could impair the operation of the ORC unit. Figure 5 shows the installed ORC system
in one of the oil fields.

As Figure 5b illustrates, the ORC condenser uses ambient air to facilitate cooling of
the working fluid in the system. In addition, the design of the system fits within a 40-foot
shipping container, which allows for subsequent redeployment of the unit to another oil or
gas field, should the need arise to do so.

A growing market for generation units suited to medium- and low-enthalpy geother-
mal energy is spurring innovation among ORC equipment manufacturers. These con-
tainerized, modular ORC units will help make the best use of geothermal power in oilfield
settings [27].
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(a) (b)

Figure 5. An oilfield ORC system: (a) internal view; (b) external view with condenser positioned
on top.

On average, higher power production in the OFA field should be expected based
on higher temperature fluids and higher flow rates when compared to the OFB field.
A diurnal tendency in power production was observed due to changes in ambient air
temperature over the course of a day. More efficient cooling was achieved at night, where
temperatures could decrease from daytime highs of more than 30 °C down to temperatures
of approximately 23 °C. This improved cooling efficiency at night allowed the power output
to reach 77 kWe. This is explained by the increase in the thermal gradient between the
system’s high-temperature focus (the geothermal fluid) and low-temperature focus (the
environment as a cooling sink). The greater the magnitude of this thermal gradient, the
greater the efficiency of the process. The true efficiency of the system depends on the
technology employed, as well as the irreversibility of the process. A real measure of the
system’s efficiency was calculated by dividing the gross power produced over the total
thermal power available in the geothermal resource at the point of entry into the generation
equipment. This calculation is detailed in Equation (4).

W,
Nreal = WZ;] (4)

where Wy is the gross power generated (kW) and Wr is the thermal power, or energy

transported by the produced water (kW). Another parameter to evaluate the performance

of the technology is the exergy efficiency. This parameter compares the amount of exergy

employed regarding the exergy available at the beginning of the process, as shown in
Equation (5).

Wy

Hexe Won

where Wy, is the exergy available at the beginning of the process (kW). Table 3 provides
general information on the performance of the equipment, and Figure 6 shows the 24 h
production of the ORC system in one of the oil fields.

©)
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Table 3. Monitoring parameters of the energy production in the ORC system.

Time Water Flow Thermal Power
(kgs—1) (KWt) Hreal Hexe
5:44 35.8 1803 4% 22%
9:02 30.7 1548 4% 20%
10:00 30.7 1548 3% 20%
11:00 30.7 1548 3% 20%
12:00 30.7 1548 3% 18%
13:02 35.1 1767 3% 17%
14:00 351 1767 3% 18%
15:00 35.1 1767 3% 18%
16:00 35.1 1767 3% 19%
17:00 351 1767 3% 20%
18:00 329 1662 4% 26%
19:00 26.4 1332 5% 24%
20:00 31.8 1603 4% 25%
21:00 30.5 1537 5% 24%
22:00 31.6 1594 5% 25%
23:00 314 1581 5% 24%
0:00 32.7 1649 5% 26%
1:00 29.7 1496 5% 26%
2:00 30.0 1511 5% 26%
3:00 31.3 1575 5% 25%
4:00 314 1584 5% 31%
5:00 26.2 1321 6% 22%
90 40
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80 35 &
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Figure 6. 24 h production of the ORC system in one of the subject oil fields.

As Table 3 demonstrates, the production of electrical energy increased when the am-
bient temperature was lower. Consequently, the highest power generation rates were
obtained at night and in the early morning (19:00-5:00), as can be seen in Figure 6. In
addition, as seen in Table 3, low values of exergy efficiency were found between 12:00 and
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17:00, which were the times of highest ambient temperature. This is explained as being due
to the influence that the ambient temperature has on the condensation of the working fluid
inside the ORC, where high temperatures do not allow a complete condensation of the fluid,
considering that for this system the ambient air is used as a cooling substance. This was to
be expected because, as a thermal machine, the greater the temperature difference between
the source and the sink, the greater the use and production of the technology [71,72]. On
the other hand, the production system had an average exergy efficiency of 23%, indicating
that only that percentage of the exergy that entered the process was transformed into power
produced. The amount that was not usable in power generation was exergy wasted as
residual heat and exergy destroyed, indicating that the proposed process can be optimized
to increase efficiency and performance from modifications such as in the working fluid or
in ORC components [63,72]. The real efficiency of the ORC unit depends on the process
experiencing irreversibilities, such as heat transfer due to finite temperature difference, and
fluid expansion, among others. It should be noted that the real efficiency observed was
within the expected ranges of values for this type of generation system [73-76]. The greater
efficiency observed in the hours of lower ambient temperature was also explained by the
larger thermal gradient, which can be clearly seen in Figure 6. The improved condensation
efficiency of the working fluid in these cooler conditions increased the overall efficiency
of the ORC system. As shown in Figure 6, there were two zones that describe the energy
production. The first zone was characterized by less energy production and high environ-
mental temperatures and was found between 10:00 and 17:00 h. The second zone, with
the highest energy production, was characterized by low environmental temperatures and
appeared between 22:00 and 5:00. As explained above, this behavior was due to the temper-
ature gradient between the energy source (geothermal fluid) and the sink (environment),
which was greater in the second zone.

The geothermal power production in each oil field is used to supply part of the field’s
own electrical needs, which may include lighting or the operation of heavy equipment.
In this oil field setting, the use of the ORC units directly offsets power generation from
fossil fuel combustion. The geothermal power production in an oilfield is an example of a
transition from non-renewable technologies to renewable energy technologies. The benefits
realized through the implementation of these systems are both environmental and financial
due to a reduction in carbon footprint and a lowering of fuel costs, as reported in previous
studies [38,42,45,47,51].

3.3. Carbon Footprint Calculation for the Two Colombian Oil Fields

A carbon footprint calculation was performed to determine the GHG emissions re-
duction associated with the implementation of the co-produced fluid geothermal power
systems in both OFA and OFB compared to a base case where power was supplied exclu-
sively through fossil fuel combustion. Four scenarios for this co-production system were
evaluated to determine how different combinations of power generation sources would
affect overall GHG emissions from these oil fields. The scenarios were listed in Section 2.2.

There is no other study in the scientific literature that examines the environmental
benefits of geothermal co-production in oil and gas fields.

3.3.1. System Boundaries and Carbon Footprint Inventory Data

The calculation of the carbon footprint began by defining the cases that would be
applied to OFA and OFB, where one case consisted of power generation exclusively from
non-renewable, fossil fuel sources (Figure 7), and a second case considered the contribution
of power from renewable sources, such as geothermal energy (Figure 8). In the case detailed
in Figure 7, a large fraction of the natural gas consumed for power generation (80%) is
supplied by an external provider. The remaining 20% comes from the oil field itself, where
the gas is extracted and treated on site. The GHG emissions related to the transport of
the natural gas were not considered in the carbon footprint calculation, but the emissions
related to the combustion of this gas were accounted for. It was assumed that the gas
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supplier is responsible for the environmental impacts related to the production of the sold
gas. Diesel consumption occurs when there is a shortage of gas, or when it is necessary to
reinforce the energy generation system.

Purchased gas
consumption

(80%)
Field gas 3
Ty —_— Tt 1
Field
gas|{20%)
Gas 2
Energy

(Cleaning) generation

|
[
|
|
|
|
|
Treatment | Generator (Gas burning)
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Figure 7. Energy production from non-renewable resources (gas, diesel) for both the OFA and
OFB fields.
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5 3 _____________________ a
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consumption
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Figure 8. Energy production from the geothermal energy co-generation systems for both the OFA
and OFB fields.

Table 4 presents the volumetric and energy flows consumed in the energy generation
system based on non-renewable resources. The values expressed in this section, including
energy consumption and gas consumption, represent the consumption over a period of
one month in the year 2019, and were provided by the field operator based on the actual
consumption in the oil fields.
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Table 4. Input sources for energy production from non-renewable resources.

Stream

Energy
Production *

Oil Field

Volumetric

Energy Volumetric Energy Volumetric Energy Energy

(m?)

(M]) (m?) M]) (m?) M) (M)

OFA
OFB

96,319
55,821

3,926,929 385,276 15,707,716 0.75 27610 4,924,800
2,275,814 223,283 9,103,257 3.25 119,235 3,132,000

Note: * Monthly energy production average. Calorific power: diesel (36,648 MJ L™1), natural gas (40.44 MJ m~3).
Stream 3 shown in Figure 7 assumed that the environmental load from gas treatment is assumed by the service
provider. Stream 1 shown in Figure 7 was not considered, as it is outside of the scope of these calculations.

Figure 8 shows an energy production system where the use of renewable geothermal
energy is incorporated. This system considers the geothermal energy supplied from the
produced waters, as well as the parasitic load imposed by the pump. The total energy
produced is 94,970 MJ per month. As in the previous case, gas and diesel are consumed,
but here, the consumption of field gas is smaller because of the power contribution from
the ORC system.

Table 5 presents the summary data for a system integrating geothermal energy co-
generation. The calculations related to non-renewable resources (gas and diesel) considered
that the energy produced by the ORC offsets the use of gas. Over a period of a month in
OFA, 1,102,816 MJ and 27,050 m? of gas consumption are offset and in OFB, 1,352,940 M]
and 33,185 m® are offset.

Table 5. Input sources for the geothermal energy co-production system.

Stream

2

Energy

3 4 5 6 7 Production *

Volumetric Energy

Volumetric Energy =~ Volumetric Energy = Volumetric Volumetric Energy Energy

Oil
Field

(m?)

M)

(m?) MJ) (m?) MJ) (m?) (m?) MJ) M])

OFA
OFB

69,269
22,636

2,824,112
922,874

385,276 15,707,716  0.75 27,610 194,400 194,400 94,970 4,924,800
223,283 9,103,257 3.25 119,235 194,400 194,400 94,970 3,132,000

Note: * Monthly energy production average. Calorific power: diesel (36,648 MJ L~1), natural gas (40.44 MJ m~3).
Stream 3 shown in Figure 7 assumed that the environmental load from gas for treatment is assumed by the service
provider. Stream 1 shown in Figure 7 was not considered, as it is outside of the scope for these calculations.

When analyzing the information shown in Tables 4 and 5, it was identified that the
OFA field has a greater energy need. This can be explained by the dynamics of OFA,
where there is a greater production of fluids (see Figures 3 and 4). In addition, when part
of the input to the system came from the geothermal co-production, a decrease of 28%
and 59% in field gas was identified for OFA and OFB, respectively. The decrease in OFB
can be explained due to the lower consumption of field gas, where the co-production of
geothermal energy has a greater impact in terms of energy consumption.

3.3.2. Carbon Footprint Accounting for Energy Production from Non-Renewable Resources
and Geothermal Energy Co-Generation Systems

The comparison of the per-kWh carbon footprint between the fossil fuel-derived
power scenario and the geothermal energy co-production scenario showed a 19% reduction
in CO, emissions in the OFA oil field. The gas treatment process within the oil field
accounted for most of the CO, emissions in these evaluations. In the OFA oil field, gas
treatment represented 99.1% of total carbon emissions in the fossil fuel-derived power
scenario, and in the geothermal power co-generation scenario, it represented 87.3% of total
carbon emissions.



Processes 2022, 10, 568

16 of 22

In the case of OFB, a possible 11% reduction in CO, emissions intensity was identified
through the use of geothermal co-generation. As in the OFA analysis, the greatest contribu-
tor to GHG emissions in OFB was gas treatment. Here, gas treatment represented 93.4%
of total carbon emissions in the fossil fuel-derived power scenario, and in the geothermal
power co-generation scenario, it represented 63.2% of total carbon emissions. Table 6
summarizes these analyses and underscores the positive environmental impacts of incorpo-
rating geothermal energy into these assets. It is worthwhile to reinforce that the emissions
related to the treatment of the imported gas are assumed by the gas supplier; hence, they
are not included in this accounting.

Table 6. Tons of CO, equivalent per kWh generated for the raw material inputs and energy genera-
tion phases.

Energy Production from Geothermal Energy Percentage
Oil Field Non-Renewable Resources Co-Generation System (Tons Reduction in
(Tons COzeq/kWh) CO2eq/kWh) Carbon Footprint (%)
OFA 260 212 19
OFB 185 165 11

The impact of offsetting power derived from field gas with power from co-produced
geothermal energy is notable. In the OFA oilfield, 27,050 m® of gas combustion was avoided
using geothermal co-production, and in the OFB oilfield, 33,185 m? of gas combustion
was avoided.

A contribution analysis of the non-renewable, fossil fuel-derived system was con-
ducted, and a summary is presented in Table 7. Field gas generated a significant carbon
footprint through the cleaning process. The analysis revealed that 90.1% and 80.1% of the
overall carbon footprint for OFA and OFB, respectively, can be attributed to gas cleaning.
By reducing the volume of field gas in this system, the carbon footprint should be reduced
meaningfully. Table 8 shows the contribution analysis for the fossil fuel-derived energy
in the geothermal co-generation. Field gas continued to be one of the most significant
contributors to the carbon footprint of the system, as 87.5% of OFA emissions and 63.21% of
OFB emissions were derived from this treatment. In the case of OFB, the geothermal energy
co-generation system had a more significant impact in reducing the carbon footprint due to
the lower amount of gas burned compared to OFA. Here, a 19% carbon footprint reduction
can be achieved through implementation of the geothermal system. In the case of OFA,
although a total decrease in the carbon footprint of 19% was identified through geothermal
co-production, gas combustion still contributed significantly to the carbon footprint in
this field.

Table 7. Contribution analysis of non-renewable resources expressed as a percentage of the overall
carbon footprint produced in an exclusively non-renewable resource system.

Non-Renewable Resource OFA OFB
Diesel 0.95% 6.64%
Field gas 90.14% 80.15%

Purchased gas consumption 8.91% 13.21%
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Table 8. Contribution analysis of non-renewable resources expressed as a percentage of the overall
carbon footprint produced in a geothermal energy co-generation system.

Non-Renewable Resource OFA OFB
Diesel 1.16% 11.09%
Field gas 87.25% 63.21%

Water Pumping * 11.59% 25.7%

* Energy required to pump the geothermal fluid to the ORC system. It is accounted for because it is part of the
power generation system.

3.3.3. Effect of the Variation in Consumption of Non-Renewable Resources on the Carbon
Footprint in the Geothermal Energy Co-Generation System

The results from the previous sections show that the use of geothermal resources
had a significant positive environmental impact on the carbon footprint in both subject oil
fields. In this section, the impacts of geothermal energy co-generation systems are further
analyzed by proposing scenarios where the non-renewable energy inputs are varied. This
analysis was conducted to find the geothermal energy co-generation scenario in which
the lowest carbon footprint occurs while still maintaining the average power production
in the oil field. For this purpose, four scenarios were defined wherein the quantities of
non-renewable energy sources used in power generation are manipulated.

Table 9 and Figure 9 show the contributions of each of the non-renewable energy
sources to the overall carbon footprint. As we have seen in this study, the impact of diesel
fuel power generation is relatively low, as it is only used when natural gas supplies are
restricted. We proposed replacing the diesel power generation to further reduce the impact
of diesel generation on the overall footprint. In Scenario 1, diesel is replaced by purchased
gas, and in Scenario 2, diesel generation is replaced by field gas. Due to the large impact of
gas generation on the carbon footprint, it is useful to consider scenarios wherein 100% of
the generation is derived from purchased gas or 100% of the generation is derived from
field gas. These are represented by Scenarios 3 and 4, respectively.

Table 9. Variation in the consumption of non-renewable resources on the carbon footprint in the
geothermal energy co-generation system.

Purchased Gas Field Gas
Scenarios Evaluated
(m®) M) (m3) M)

, OFA 385,959 15,608,185 69,269 28,241,113
Scenario 1 OFB 226,232 9,148,808 22,636 922,874

_ OFA 385,276 15,580,575 69,947 2,851,722
Scenario 2 OFB 223,283 9,029,573 25,561 1,042,109

_ OFA 455,794 18,432,298 0 0
Scenario 3 OFB 249,052 10,071,682 0 0

, OFA 0 0 452,104 18,432,298
Scenario 4 OFB 0 0 247,037 10,071,682

For additional clarification, when there is a gas overload in the system, a flaring system
is used. For the purpose of this investigation, this flaring was not considered in the carbon
footprint accounting, as these emissions are not directly associated with power generation.

The electrical production in OFA was assumed to be 4,924,800 M] month~! and for
OFB was assumed to be 3,132,000 MJ month~!. Table 9 shows the fuel consumption for
each proposed scenario.
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Figure 9. tCO5cq/kWh for the scenarios considered in OFA and OFB.

When comparing the scenarios in each oil field, one can observe that the replacement
of diesel with gas combustion generated a decrease in the carbon footprint of OFB of 48%
in Scenario 1 and 44% in Scenario 2. For OFA, the replacement of diesel resulted in a
carbon footprint reduction of 1% in Scenario 1 and had no significant effect in Scenario
2 (a decrease of 0.3%). This can be attributed to the lower amount of diesel consumed in
OFB (3.25 m® month ') compared to OFA (0.75 m® month~!). Furthermore, this result,
particularly in OFB, indicates that this reduction is sensitive to the overall amount of diesel
that enters the system. Diesel is a key target for GHG emissions reduction, and where it
is a significant input in power generation, it should be replaced by a fuel with a lower
emissions impact, like natural gas. These large reductions in carbon footprint through
the replacement of diesel will not apply to all oil fields, and the magnitude of the GHG
emissions reductions may depend on factors that are outside the scope of this study.

Scenarios 3 and 4 represent the cases with the highest and lowest carbon footprint in
this analysis. This can be attributed to the differences in the types of gas consumed in each
scenario. When 100% field gas is used, as in Scenario 4, the carbon footprint associated
with the treatment of the gas must be accounted for in the footprint calculation. Otherwise,
as observed in Scenario 3, the environmental impact produced by the purchased gas is
assumed by the supplier rather than the operator of the oil field.

In addition, if each scenario is analyzed in terms of practicality and viability, Scenario 3
would require a constant supply of purchased gas. Considering that the purchased gas
is treated in a facility that may be located a significant distance from the oil field, which
provokes additional GHG emissions, Scenario 3 is not recommended. Meanwhile, Scenario
4 requires a large gas production within the oil field, which is not the case in the subject fields
in this study. Therefore, balancing technical, environmental, and practical considerations,
the best operating scenario is Scenario 1, wherein 100% liquid fuel consumption is replaced
with purchased gas. All of the above scenarios take into account the power contribution
from the geothermal co-generation units.

Figure 10 shows the reduction in GHG emissions compared to the base case when
using the geothermal energy co-production system and when considering Scenario 1
as the optimal scenario for energy production in OFA and OFB. In OFA, the emissions
reductions are realized almost exclusively through the implementation of geothermal co-
generation and the practices outlined in Scenario 1. This is due to the low amount of diesel
consumption in OFA, which uses 25% of the amount of diesel consumed in OFB. This
means there is less of an opportunity for diesel replacement in OFA compared to OFB. In
OFB, a carbon footprint decrease of 54% could be achieved through the replacement of
diesel generation with geothermal energy and purchased gas generation.
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Figure 10. Reduction in tCOyeq/kWh for the scenarios considered for OFA and OFB.

These results underline a significant opportunity for Colombian oilfield operators to
reduce their carbon footprints.

4. Conclusions

Colombia is a country with significant potential for renewable energy development,
building on an already large portfolio of hydroelectric power infrastructure. The geothermal
energy potential in the country has been estimated at 1170 MWe [76]. Across the two oil
fields that were the subject of this study, and based on thermodynamic calculations, the
maximum theoretical potential for geothermal energy production is 2260 kWe for OFA and
657 kWe for OFB. This work has demonstrated the technical feasibility of this geothermal
energy in oilfield applications, which may serve as an example for others in the industry
to follow.

In the OFA oil field, the carbon emissions intensity from power production was
equivalent to 260 tons COzeq/kWh, compared to OFB, where the carbon emissions intensity
from power production was 185 tonCO;eq/kWh. The gas treatment stage is the process
that has the largest impact on overall emissions intensity. In scenarios that already consider
the emissions reductions realized through geothermal co-generation, in OFA, 87.3% of
emissions were attributable to gas treatment, and in OFB, gas treatment accounted for up
to 63.2% of GHG emissions. Based on the assessments performed in this study, a carbon
footprint reduction of 19% could be realized in OFA and a reduction of 11% could be
achieved in OFB.

Non-renewable sources of energy such as gas and diesel are the source of almost all
greenhouse gases in co-production systems. By varying the sources of power generation in
OFA and OFB, our study found an optimal solution in Scenario 1, wherein 100% of liquid
fuel consumption (diesel) is replaced by purchased gas.

Aside from the benefits quantified and confirmed in this investigation, it is clear that
more widespread implementation of geothermal energy co-generation systems would be a
benefit to the efforts of the oil and gas industry to decarbonize activities. The regulatory
precedents may help resolve obstacles that stand in the way of conventional hydrothermal
geothermal developments. These regulatory pathways will be key to attracting the interest
and investment required to meaningfully develop a geothermal industry in Colombia and
further diversify Colombia’s energy matrix.

This project is an important example of how Colombia can implement innovative
strategies to meet increasing energy needs while mitigating the effects of climate change.

For future research, we propose broadening the evaluation to include other environ-
mental impacts outside of the carbon footprint, including fossil fuel and metal depletion,
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land impacts, and acidification throughout the supply chain. Technical and economic
analyses should also be implemented to provide a framework for holistic decision-making
on sustainability.

Author Contributions: Conceptualization, S.C., N.A.C., G.F, D.J, DM, M.G,, ].P, J.R,, EB.C. and
C.AF; methodology, S.C., N.A.C.,,GF,DJ., DM, MG, J.P,]JR, EB.C. and C.AF; software, S.C. and
N.A.C.; formal analysis, S.C. and N.A.C,; investigation, S.C., N.A.C,, GE,DJ, DM, MG, J.P,J R,
EB.C. and C.AF; writing—original draft preparation, S.C. and N.A.C.; writing—review and editing,
S.C,N.AC,GF,DJ,DM,6MG,]P,JR, EB.C. and C.A.E. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by MINCIENCIAS under project number 7995-869-76099.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Acknowledgments: The authors acknowledge MINCIENCIAS, Parex Resources Colombia Ltd., and
Universidad Nacional de Colombia for their financial and logistic support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

Vilches, A.; Gil Pérez, D.; Toscano, J.; Macias, O. La Transicion Energética. Una Nueva Cultura de la Energia; OEI: Madrid, Spain,
2014; ISBN 978-84-7666-213-7.

Vie, P; Bonanni, A.; Lewiner, C.; Cozzens, R.; Modi, G.; Klingberg, A.; Lindhaus, J.; Lemaitre, E.; Sinha, N.; Ghosh, A. World
Energy Markets Observatory-Wemo 2020, 22 edition, November 2020. France. Available online: https:/ /inis.iaea.org/search/
searchsinglerecord.aspx?recordsFor=SingleRecord&RN=51124578 (accessed on 27 January 2020).

EPA. Global Grenhouse Gas Emissions Data. Available online: https:/ /www.epa.gov/ghgemissions/global-greenhouse-gas-
emissions-data (accessed on 27 January 2020).

Agreement, P. Adoption of the Paris Agreement’ fccc/cp/2015/L; UNFCCC: Bonn, Germany, 2015; Volume 9.

UNFCCC. The 2021 United Nations Climate Change Conference. In Proceedings of the 2021 United Nations Climate Change
Conference, Glasgow, UK, 31 October-13 November 2021.

Alvarez-Espinosa, A.C.; Ordoériez, D.A.; Nieto, A.; Wills, W.; Romero, G.; Calderén, S.L.; Hernandez, G.; Argtiello, R.; Delgado-
Cadena, R. Economic Evaluation of Colombia’s Commitment at COP21. Desarro. Soc. 2017, 79, 15-54. [CrossRef]
CAMPETROL. Transformacion Energética en Colombia; Unavision de Campetrol: Quito, Ecuador, 2019.

Radomes, A.A., Jr.; Arango, S. Renewable energy technology diffusion: An analysis of photovoltaic-system support schemes in
Medellin, Colombia. J. Clean. Prod. 2015, 92, 152-161. [CrossRef]

Garcia, C. Mapa Energético de Colombia 2019-2050. Available online: https:/ /www1.upme.gov.co/DemandaEnergetica/PEN_
documento_para_consulta.pdf (accessed on 27 January 2020).

Caspary, G. Gauging the future competitiveness of renewable energy in Colombia. Energy Econ. 2009, 31, 443-449. [CrossRef]
Alfaro, C. Improvement of Perception of the Geothermal Energy as A Potential Source of Electrical Energy in Colombia, Country
Update. In Proceedings of the World Geothermal Congress 2015, Melbourne, Australia, 15-24 April 2015; pp. 19-24.

Alfaro, C.; Ponce, P.; Monsalve, M.L.; Ortiz, I.; Franco, J.V.; Ortega, A.; Torres, R.; Gomez, D. A Preliminary Conceptual Model
of Azufral Geothermal System, Colombia. In Proceedings of the World Geothermal Congress, Melbourne, Australia, 15-24
April 2015.

Arias-Gaviria, J.; Carvajal-Quintero, 5.X.; Arango-Aramburo, S.J.R.E. Understanding dynamics and policy for renewable energy
diffusion in Colombia. Renew. Energy 2019, 139, 1111-1119. [CrossRef]

Salazar, S.S.; Muiioz, Y.; Ospino, A. Analysis of geothermal energy as an alternative source for electricity in Colombia. Geotherm.
Energy 2017, 5, 27. [CrossRef]

Bachu, S.; Ramon, J.C,; Villegas, M.E.; Underschultz, ].R. Geothermal regime and thermal history of the Llanos Basin, Colombia.
AAPG Bull. 1995, 79, 116-128. [CrossRef]

Lozano, E.J.G. Hot springs and geothermal energy in Colombia. Geothermics 1988, 17, 377-379. [CrossRef]

Marzolf, N.C. Emprendimiento de la Energia Geotérmica en Colombia. Available online: https://publications.iadb.org/
publications/spanish/document/Emprendimiento-de-la-energ%C3%ADa-geot7%C3%A9rmica-en-Colombia.pdf (accessed on 27
January 2020).

Mejia, E.; Rayo, L.; Méndez, J.; Echeverri, ]. Geothermal development in Colombia. In Short Course VI on Utilization of Low- and
Medium-Enthalpy Geothermal Resources and Financial Aspects of Utilization; UNU-GTP LaGeo: Santa Tecla, El Salvador, 2014.
Moreno-Rendén, D.A.; Lépez-Sanchez, J.; Blessent, D. Geothermal Energy in Colombia as of 2018. Ing. Univ. 2020, 24, 1-27.
Available online: https://10.11144/Javeriana.iyu24.geic. (accessed on 27 January 2020). [CrossRef]


https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=51124578
https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=51124578
https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data
https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data
http://doi.org/10.13043/dys.79.1
http://doi.org/10.1016/j.jclepro.2014.12.090
https://www1.upme.gov.co/DemandaEnergetica/PEN_documento_para_consulta.pdf
https://www1.upme.gov.co/DemandaEnergetica/PEN_documento_para_consulta.pdf
http://doi.org/10.1016/j.eneco.2008.12.007
http://doi.org/10.1016/j.renene.2019.02.138
http://doi.org/10.1186/s40517-017-0084-x
http://doi.org/10.1306/8D2B14D0-171E-11D7-8645000102C1865D
http://doi.org/10.1016/0375-6505(88)90065-X
https://publications.iadb.org/publications/spanish/document/Emprendimiento-de-la-energ%C3%ADa-geot%C3%A9rmica-en-Colombia.pdf
https://publications.iadb.org/publications/spanish/document/Emprendimiento-de-la-energ%C3%ADa-geot%C3%A9rmica-en-Colombia.pdf
https://10.11144/Javeriana.iyu24.geic.
http://doi.org/10.11144/Javeriana.iyu24.geic

Processes 2022, 10, 568 21 of 22

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.

37.
38.

39.

40.

41.

42.

43.

44.

45.

46.
47.

Leitch, A.; Haley, B.; Hastings-Simon, S. Can the oil and gas sector enable geothermal technologies? Socio-technical opportunities
and complementarity failures in Alberta, Canada. Energy Policy 2019, 125, 384-395. [CrossRef]

Toth, A.N.; Szucs, P,; Pap, J.; Nyikos, A.; Fenerty, D.K. Converting Abandoned Hungarian Oil and Gas Wells into Geothermal
Sources. In Proceedings of the 43rd Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 12-14 February 2018.
Watson, S.M.; Falcone, G.; Westaway, R. Repurposing hydrocarbon wells for geothermal use in the UK: The onshore fields with
the greatest potential. Energies 2020, 13, 3541. [CrossRef]

Nugroho, W.; Hermawan, S.; Lazuardi, B.; Mirza, R. Drilling Problems Mitigation in Geothermal Environment, Case Studies
of Stuck Pipe and Lost Circulation. In Proceedings of the SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, Bali,
Indonesia, 17-19 October 2017.

Harris, B. A CFD Study on the Extraction of Geothermal Energy from Abandoned Oil and Gas Wells. Master’s Thesis, McMaster
University, Hamilton, ON, Canada, 2017.

Kharseh, M.; Al-Khawaja, M.; Hassani, F. Optimal utilization of geothermal heat from abandoned oil wells for power generation.
Appl. Therm. Eng. 2019, 153, 536-542. [CrossRef]

Wang, S.; Yan, J.; Li, F.; Hu, J.; Li, K. Exploitation and utilization of oilfield geothermal resources in China. Energies 2016, 9, 798.
[CrossRef]

Wang, K.; Yuan, B.; Ji, G.; Wu, X. A comprehensive review of geothermal energy extraction and utilization in oilfields. J. Pet. Sci.
Eng. 2018, 168, 465-477.

Choi, Y; Lee, C.; Song, J. Review of renewable energy technologies utilized in the oil and gas industry. Int. ]. Renew. Energy Res.
2017, 7, 592-598.

Raos, S.; llak, P; Rajsl, I; Bili¢, T.; Trullenque, G. Multiple-criteria decision-making for assessing the enhanced geothermal systems.
Energies 2019, 12, 1597. [CrossRef]

Chiasson, A.D. Geothermal Heat Pump and Heat Engine Systems: Theory and Practice; John Wiley & Sons: London, UK, 2016.

Liu, X.; Falcone, G.; Alimonti, C.J.E. A systematic study of harnessing low-temperature geothermal energy from oil and gas
reservoirs. Energy 2018, 142, 346-355. [CrossRef]

Gosnold, W.; Mann, M.; Salehfar, H. Challenges in Implementing a Multi-Partnership Geothermal Power Plant; University of North
Dakota: Grand Forks, ND, USA, 2017.

Gosnold, W.; Crowell, A.; Nordeng, S.; Mann, M. Co-produced and low-temperature geothermal resources in the Williston Basin.
GRC Trans. 2015, 39, 2015.

Vraa, H.; Picklo, M.; Hertz, E.; Gosnold, W. Geothermal Energy Utilization of Multi-Well Oil Pads via the Application Of Organic
Rankine Cycle Systems. Geotherm. Resour. Counc. Trans. 2019, 43, 1078-1084.

Gosnold, W.; LeFever, R.; Klenner, R.; Mann, M. Geothermal Power form Coproduced Fluids in the Williston Basin. In Proceedings
of the Geothermal Resources Council 2010 Annual Meeting, Sacramento, CA, USA, 24-27 October 2010.

Gosnold, W.; Abudureyimu, S.; Tisiryapkina, I.; Wang, D.; Ballesteros, M. The Potential for Binary Geothermal Power in the
Williston Basin. GRC Trans. 2019, 43, 114-126.

Gosnold, W.; Mann, M.; Salehfar, H. The UND-CLR binary geothermal power plant. GRC Trans. 2017, 41, 1824-1834.

Bennett, K.; Horne, R.N.; Li, K. Power Generation Potential from Coproduced Fluids in the Los Angeles Basin; Stanford University:
Stanford, CA, USA, 2012.

Singh, H.; Falcone, G.; Volle, A.; Guillon, L. Harnessing Geothermal Energy from Mature Onshore Oil Fields, The Wytch Farm
Case Study. In Proceedings of the 42nd Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 13-15 February
2017; pp. 13-15.

Milliken, M. Geothermal Resources at Naval Petroleum Reserve-3 (NPR-3), Wyoming. In Proceedings of the Thirty-Second
Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 22-24 January 2007.

Nordquist, ].; Johnson, L. Production of Power from the Co-Produced Water of Oil Wells, 3.5 Years of Operation. In Proceedings
of the Geothermal Resources Council Transactions, Geothermal Resources Council 2012 Annual Meeting, 2012, Reno, NV, USA,
30 September-8 October 2012; pp. 207-210.

Johnson, L.; Simon, D.L. Electrical Power from An Oil Production Waste Stream. In Proceedings of the Thirty-Forth Workshop on
Geothermal Reservoir Engineering, Stanford, CA, USA, 9-11 February 2009.

Reinhardt, T.; Johnson, L.A.; Popovich, N.; Poplar, N. Systems for Electrical Power from Coproduced and Low Temperature
Geothermal Resources. In Proceedings of the 36th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 31
January-2 February 2011.

Xin, S.; Liang, H.; Hu, B.; Li, K. A 400 kW geothermal power generator using co-produced fluids from Huabei oilfield. Geotherm.
Resour. Counc. Trans. 2012, 36, 219-223.

Li, T; Liu, Q.; Xu, Y;; Dong, Z.; Meng, N.; Jia, Y.; Qin, H. Techno-economic performance of multi-generation energy system driven
by associated mixture of oil and geothermal water for oilfield in high water cut. Geothermics 2021, 89, 101991. [CrossRef]
Gutiérrez Pulido, H.; Vara Salazar, R.d.l. Andlisis y Disefio de Experimentos; McGraw-Hill: New York, NY, USA, 2012.
Akhmadullin, I. Utilization of Co-Produced Water from Oil Production: Energy Generation Case. In Proceedings of the SPE
Health, Safety, Security, Environment, & Social Responsibility Conference-North America, New Orleans, LA, USA, 18-20
April 2017.


http://doi.org/10.1016/j.enpol.2018.10.046
http://doi.org/10.3390/en13143541
http://doi.org/10.1016/j.applthermaleng.2019.03.047
http://doi.org/10.3390/en9100798
http://doi.org/10.3390/en12091597
http://doi.org/10.1016/j.energy.2017.10.058
http://doi.org/10.1016/j.geothermics.2020.101991

Processes 2022, 10, 568 22 of 22

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.
64.

65.

66.

67.

68.
69.

70.

71.

72.

73.

74.
75.

76.

Augustine, C.; Falkenstern, D.M. An Estimate of the Near-Term Electricity-Generation Potential of Coproduced Water From
Active Oil and Gas Wells. SPE J. 2014, 19, 530-541. [CrossRef]

Auld, A.; Hogg, S.; Berson, A.; Gluyas, J. Power production via North Sea hot brines. Energy 2014, 78, 674—684. [CrossRef]
Banks, J.; Willems, C.J.; Cowper, A.; Nadkarni, K.; Poulette, S.; Van Allen, C. Geothermal Power Potential of the Virginia Hills Oil
Field, Part of the Swan Hills Carbonate Complex; Alberta, Canada. In Proceedings of the World Geothermal Congress, Reykjavik,
Iceland, 27 April 2020.

Li, T.; Zhu, J.; Zhang, W. Cascade utilization of low temperature geothermal water in oilfield combined power generation,
gathering heat tracing and oil recovery. Appl. Therm. Eng. 2012, 40, 27-35. [CrossRef]

Yang, Y.; Huo, Y,; Xia, W.; Wang, X.; Zhao, P.; Dai, Y. Construction and preliminary test of a geothermal ORC system using
geothermal resource from abandoned oil wells in the Huabei oilfield of China. Energy Econ. 2017, 140, 633-645. [CrossRef]
Tester, J.; Anderson, B. Impact of Enhanced Geothermal Systems (egs) on the United States in the 21st Century. In The Future of
Geothermal Energy; Massachusetts Institute of Technology: Cambridge, MA, USA, 2006.

Pratt & Whitney Power Systems Organic Rankine Cycle Technology. Available online: https://www.prnewswire.com/
news-releases/pratt--whitneys-waste-heat-to-power-organic-rankine-cycle-solutions-now-eligible-for-the-california-self-
generation-incentive-program-133537828.html (accessed on 5 February 2020).

Sanyal, S.K.; Butler, S.J. Geothermal Power Capacity from Petroleum Wells-Some Case Histories of Assessment. Proceedings of
World Geothermal Congress, Bali, Indonesia, 2-30 April 2010; pp. 25-30.

McKenna, J.; Blackwell, D.; Moyes, C.; Patterson, P.D. Geothermal electric power supply possible from Gulf Coast, midcontinent
oil field waters. Oil 2005, 103, 34-40.

Gosnold, W.D. Electric Power Generation from Low to Intermediate Temperature Resources; University of North Dakota: Grand Forks,
ND, USA, 2015.

Rahman, M.M.; Canter, C.; Kumar, A. Greenhouse gas emissions from recovery of various North American conventional crudes.
Energy 2014, 74, 607-617. [CrossRef]

Nassar, Y.F,; Salem, M.A.; Iessa, K.R.; AlShareef, LM.; Ali, K.A.; Fakher, M.A. Estimation of CO 2 emission factor for the energy
industry sector in Libya: A case study. Environ. Dev. Sustain. 2021, 23, 13998-14026. [CrossRef]

Mesa, S.L.; Orjuela, ].M.; Ramirez, A.T.O.; Sandoval, J.-A. Review of the current state of wastewater management in the Colombian
oil industry. Gestion Ambiente 2018, 21, 87. [CrossRef]

Vélez, F,; Segovia, ].J.; Martin, M.C.; Antolin, G.; Chejne, F; Quijano, A. A technical, economical and market review of organic
Rankine cycles for the conversion of low-grade heat for power generation. Renew. Sustain. Energy Rev. 2012, 16, 4175-4189.
[CrossRef]

Zabek, D.; Penton, J.; Reay, D.J. Optimization of waste heat utilization in oil field development employing a transcritical Organic
Rankine Cycle (ORC) for electricity generation. Appl. Therm. Eng. 2013, 59, 363-369. [CrossRef]

Dickson, M.H.; Fanelli, M. Geothermal Energy: Utilization and Technology; Routledge: New York, NY, USA, 2013.

Calm, ].M.; Hourahan, G.C. Physical, Safety, and Environmental Data for Current and Alternative Refrigerants. In Proceedings of
the 23rd International Congress of Refrigeration (ICR2011), Prague, Czech Republic, 21-26 August 2011; pp. 21-26.

Federation, W.E. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington,
DC, USA, 2005.

ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Geneva, Switzer-
land, 2006.

IPCC. IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual; Intergovernmental Panel on Climate Change
(IPCC): Kanagawa, Japan, 1996.

Hamburg, I. Umberto LCA+; ifu: Hamburg, Germany, 2017.

Bejan, A. Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture. Int. J.
Energy Res. 2002, 26, 545-565. [CrossRef]

Chacartegui, R.; Sanchez, D.; Muiioz, J.; Sanchez, T. Alternative ORC bottoming cycles for combined cycle power plants. Appl.
Energy 2009, 86, 2162-2170. [CrossRef]

Feng, Y.; Hung, T,; Greg, K.; Zhang, Y.; Li, B.; Yang, ]. Thermoeconomic comparison between pure and mixture working fluids of
organic Rankine cycles (ORCs) for low temperature waste heat recovery. Energy Convers. Manag. 2015, 106, 859-872. [CrossRef]
Alfaro, C.; Rueda-Gutiérrez, J.; Casallas, Y.; Rodriguez, G.; Malo, J. Approach to the geothermal potential of Colombia. Geothermics
2021, 96, 102169. [CrossRef]

Bu, X.; Ma, W,; Li, H. Geothermal energy production utilizing abandoned oil and gas wells. Renew. Energy 2012, 41, 80-85.
[CrossRef]

Barbier, E. Geothermal energy technology and current status: An overview. Renew. Sustain. Energy Rev. 2002, 6, 3-65. [CrossRef]
Daneshipour, M.; Rafee, R. Nanofluids as the circuit fluids of the geothermal borehole heat exchangers. Int. Commun. Heat Mass
Transf. 2017, 81, 34—41. [CrossRef]

Junrong, L.; Rongqgiang, L.; Zhixue, S. Exploitation and utilization technology of geothermal resources in oil fields. In Proceedings
of the World Geothermal Congress 2015, Melbourne, Australia, 19-24 April 2015.


http://doi.org/10.2118/163142-PA
http://doi.org/10.1016/j.energy.2014.10.056
http://doi.org/10.1016/j.applthermaleng.2012.01.049
http://doi.org/10.1016/j.energy.2017.09.013
https://www.prnewswire.com/news-releases/pratt--whitneys-waste-heat-to-power-organic-rankine-cycle-solutions-now-eligible-for-the-california-self-generation-incentive-program-133537828.html
https://www.prnewswire.com/news-releases/pratt--whitneys-waste-heat-to-power-organic-rankine-cycle-solutions-now-eligible-for-the-california-self-generation-incentive-program-133537828.html
https://www.prnewswire.com/news-releases/pratt--whitneys-waste-heat-to-power-organic-rankine-cycle-solutions-now-eligible-for-the-california-self-generation-incentive-program-133537828.html
http://doi.org/10.1016/j.energy.2014.07.026
http://doi.org/10.1007/s10668-021-01248-9
http://doi.org/10.15446/ga.v21n1.69792
http://doi.org/10.1016/j.rser.2012.03.022
http://doi.org/10.1016/j.applthermaleng.2013.06.001
http://doi.org/10.1002/er.804
http://doi.org/10.1016/j.apenergy.2009.02.016
http://doi.org/10.1016/j.enconman.2015.09.042
http://doi.org/10.1016/j.geothermics.2021.102169
http://doi.org/10.1016/j.renene.2011.10.009
http://doi.org/10.1016/S1364-0321(02)00002-3
http://doi.org/10.1016/j.icheatmasstransfer.2016.12.002

	Introduction 
	Methodology 
	Estimation of Geothermal Potential in Two Colombian Oil Fields 
	Effect of Oilfield Geothermal Energy on Carbon Emissions Intensity Using the Life Cycle Analysis Approach 

	Results 
	Geothermal Energy Potential 
	Production of the First Pilots in Colombia: Electrical Power Production 
	Carbon Footprint Calculation for the Two Colombian Oil Fields 
	System Boundaries and Carbon Footprint Inventory Data 
	Carbon Footprint Accounting for Energy Production from Non-Renewable Resources and Geothermal Energy Co-Generation Systems 
	Effect of the Variation in Consumption of Non-Renewable Resources on the Carbon Footprint in the Geothermal Energy Co-Generation System 


	Conclusions 
	References

