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Abstract: In this paper, we investigate the problem of species separation in minimal time. Droop
model is considered to describe the evolution of two distinct populations of microorganisms that
are in competition for the same resource in a photobioreactor. We focus on an optimal control
problem (OCP) subject to a five-dimensional controlled system in which the control represents the
dilution rate of the chemostat. The objective is to select the desired species in minimal-time and to
synthesize an optimal feedback control. This is a very challenging issue, since we are are dealing
with a ten-dimensional optimality system. We provide properties of optimal controls allowing the
strain of interest to dominate the population. Our analysis is based on the Pontryagin Maximum
Principle (PMP), along with a thorough study of singular arcs that is crucial in the synthesis of
optimal controls. These theoretical results are also extensively illustrated and validated using a direct
method in optimal control (via the Bocop software for numerically solving optimal control problems).
The approach is illustrated with numerical examples with microalgae, reflecting the complexity of
the optimal control structure and the richness of the dynamical behavior.

Keywords: optimal control; modelling; microalgae; chemostat; nonlinear control; Pontryagin’s
principle; singular control; Droop model; photobioreactor

1. Introduction

The interaction between species coexisting in an ecosystem is complex and affected
by external factors. Depending on their environment, some species will dominate, while
others, less adapted, will progressively decline. This Darwinian pressure, when it can be
manipulated [1], provides the opportunity of guiding the evolution of species of interest.
This concept can be applied to artificial ecosystems to select individuals with a desired trait.
Here, we focus on microalgae, unicellular photosynthetic microorganisms with promising
potential for industrial applications [2,3]. The great biodiversity of microalgae opens the
door for a large range of applications [4]. They are grown for their pigments, antioxidants or
essential fatty acids [5], and, over the longer term, their efficient way of producing proteins,
bricks for green chemistry, biofuel and CO2 mitigation [2,6,7]. To date, microalgae do not
have the place they deserve in biotechnology (see, e.g., [8–10]) and many optimization
steps must be carried out to improve the economic and environmental performances of
these processes at a large scale [6,11]. Currently, only wild organisms sampled in nature
are used on an industrial scale. One of the key challenges is to improve the productivity of
these strains.

Species in agriculture have been improved after centuries of selection and hybridiza-
tion. The objective of this work is to develop an alternative approach adapted to microor-
ganisms to select, on a shorter time scale, more productive microalgae strains, by Darwinian
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pressure. The idea is based on the competitive exclusion principle in a continuous reac-
tor [12] stating that the species which more efficiently uses the available resources will win
the competition. The conditions for a bacterial or microalgal species to win the competition
for a limiting substrate have been well established, and the outcome of the competition is
known to depend on the minimum requested substrate to support a growth rate equal to
the dilution rate [12,13].

Experimental works for maintaining a long-term selection process to favour indi-
viduals of interest have already been carried out [14,15]. Since the experiments can last
several months or several years, these approaches are costly in time. There is a margin of
improvement by applying optimal control theory [16] to enhance the selection process for
N strains competing for the same resource (the control parameter being the dilution rate).

One main issue is to decrease the operating time when the species of interest starts
to dominate. Several works addressed the question of improving the selection process in
minimal time in the case of the chemostat system with Monod’s laws [17,18]. Microalgae
are more complicated microorganisms better represented by the Droop model, taking into
account the internal accumulation of the limiting nutrient [19,20]. Such a model for two
strains in competition leads to a five-dimensional problem. The minimal time selection
problem with this model is the main focus of the paper. It has been tackled in [21,22]
after a simplification allowing for reducing the model dimension. This necessitated to
oversimplify the initial dynamics which can play a role in the minimal time selection.

Optimal control [23] strategies ensuring the domination of the strain of interest are
derived using the Pontryagin maximum principle [24]. Since the system is affine w.r.t. the
control, we obtain various possible structures for an optimal control, namely, the concate-
nation of several bang arcs or of a bang arc with a singular arc of first order satisfying
Legendre–Clebsch’s condition. The paper is structured as follows: in Section 2, we intro-
duce the model and present the optimal control problem. We also prove the reachability
of the target set. In Section 3, we make explicit the necessary conditions provided by the
Pontryagin Maximum Principle and we introduce properties of the switching function.
A thorough study of singular arcs is provided in Section 4 thanks to geometrical control
theory. The paper is concluded with numerical simulations of optimal strategies using a
direct method in Section 5.

2. The Optimal Control Problem (OCP)
2.1. Droop Model and Main Assumptions

We consider the Droop model [19]. This emblematic variable yield model represents
the growth rate of microorganims which can intracellularly store nutrients. When two
strains are in competition, it results in a five-dimensional system. The growth of each strain
depends on the intracellular quota-storage (q-variable) of the limiting nutrient (s-variable).
More precisely, when two species/strains, of biomass concentrations x1 and x2 are compet-
ing for one limiting nutrient s in the bioreactor, the Droop model reads as follows:

ṡ = (sin − s)D(t)− ρ1(s)x1 − ρ2(s)x2,

q̇1 = ρ1(s)− µ1(q1)q1,

ẋ1 = [µ1(q1)− D(t)]x1,

q̇2 = ρ2(s)− µ2(q2)q2,

ẋ2 = [µ2(q2)− D(t)]x2,

(1)

where qi is the quota storage of the i-th species and sin is the input substrate concen-
tration. The dilution rate D(·) is a bounded non-negative control function such that
D(t) ∈ [0, Dmax], where Dmax > 0 is the maximal admissible value of the dilution rate,
above the maximum actual growth rates [22] (this will be made more precise in Section 2.3)
of the two species as shown in Figure 1. In addition, for i = 1, 2, ρi is a non-negative func-
tion representing the rate of substrate absorption, i.e., the uptake rate of the free nutrient
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s, and µi is also a non-negative function representing the growth rate of the i-th species
(see [25]).

Following for instance [25], we suppose that the uptake rates ρi(s) are expressed as,

ρi(s) =
ρmi s

Ki + s
, (2)

which corresponds to Michaelis–Menten’s kinetics. Here, the parameters Ki and ρmi are
positive, i = 1, 2. In addition, we assume that, for i = 1, 2, there is ki > 0 such that
cell division does not occur if k < ki. Concerning the Droop model, the kinetics µi are
defined by ∣∣∣∣∣∣

µi(qi) = 0, 0 ≤ qi ≤ ki,

µi(qi) = µi∞

(
1− ki

qi

)
, ki ≤ qi.

(3)

In addition, for i = 1, 2, let Mi stand for,

Mi := sup
s∈[0,sin ]

ρi(s) = ρi(sin) < ρmi ,

and let q̄1,q̄2 be such that µi(q̄i)q̄i = Mi, i = 1, 2 (observe that q̄1, q̄2 are uniquely defined).
Thus, one has,

ρi(sin) = µi(q̄i)q̄i.

System (1) satisfies the following invariance property.

Proposition 1. For every qm1 ≥ q̄1, and for every qm2 ≥ q̄2, the set

Ω := (0, sin)× [k1, qm1 ]×R∗+ × [k2, qm2 ]×R∗+, (4)

is forward invariant by (1).

Proof. First, observe that, for i = 1, 2, xi never vanishes whenever x0
i = xi(0) > 0. Now,

(0, sin) is clearly invariant by the dynamics of s(·) since ṡ ≥ 0 (resp. ṡ ≤ 0) whenever s = 0
(resp. s = sin). Similarly, for i = 1, 2:

qi = ki ⇒ q̇i = ρi(s) > 0,
qi = qmi ⇒ q̇i ≤ Mi − µi(qmi )qmi ≤ 0,

where the last inequality follows from the choice of Mi and the fact that qmi ≥ q̄i, i = 1, 2.
This ends the proof.

The parameter qmi represents the maximum internal storage quota. Since Ω is invariant
by (1) (Proposition 1), we notice that q̄i stands for the effective maximum internal storage quota
for s ∈ (0, sin). Thus, in the sequel, we consider without loss of generality that qmi = q̄i for
i = 1, 2. In the sequel, we also assume that ρ1, ρ2 fulfill the following hypothesis:

Assumption 1. The affinity of species 1 for the substrate is higher than the one of species 2,
i.e., Ks2 > Ks1 , or equivalently:

ρ′′2
ρ′2

>
ρ′′1
ρ′1

. (5)

From (2), we deduce that, for s ≥ 0,

ρ′′2 (s)ρ
′
1(s)− ρ′′1 (s)ρ

′
2(s) =

2K1K2ρm1 ρm2(K2 − K1)

(K1 + s)3(K2 + s)3 .

It means that species 1 with the lower Ki absorbs nutrients slightly faster.



Processes 2022, 10, 461 4 of 23

We are now in a position to formulate the OCP of interest.

2.2. Statement of the Optimal Control Problem (OCP)

In this work, we suppose that the first species (with biomass concentration x1) is the
one of interest. Our aim is to compute the best feeding strategy, that is, the optimal (dilution
rate) control function D(·), such that x1 becomes predominant in the photobioreactor in
minimal-time. This can be formulated and quantified in terms of the ratio between the two
competing species. Intuitively, we wish to find an adequate control strategy (if possible
optimal) D(·) for which, at the end of the process, we have x1

x2
� 1.

Firstly, the set of admissible controls is defined as,

D := {D : [0,+∞)→ [0, Dmax] ; D(·) ∈ L∞
loc(R+)},

where L∞
loc(R+) is the space of locally integrable functions on every compact on R+ and

Dmax > 0 is the maximum pump feeding capacity. In practice, Dmax is designed above the
maximum growth rates of the coexisting species (see Section 2.3).

To handle the selection process between the two species, let us define a subset T of
Ω as,

T := {X := (s, q1, x1, q2, x2) ∈ Ω ; x2 ≤ εx1}.

We choose the parameter ε > 0 such that ε � 1 in such a way to quantify the
contamination rate of the interesting strain x1. Whenever a trajectory reaches the target set
T , this means that the biomass of the first species is significantly greater than the other one
when reaching the target T at the terminal time (if possible).

Objective 1. The optimal control problem (OCP) can then be stated: determine a dilution-based
control strategy D(·) in such a way that trajectories of (1) starting from an initial condition within
the set Ω reach the target set T in minimal-time, i.e.,

inf
D∈D

tD
f s.t. X(tD

f ) ∈ T and X0 ∈ Ω, (6)

where X(·) is the unique solution of (1) associated with D(·) ∈ D such that X(0) = X0 ∈ Ω and
tD

f ∈ (0,+∞] is the first entry time of X(·) into the target set. In the sequel, we will use the simpler
notation t f instead of tD

f .

In other words, for every positive initial conditions X0 = (s0, q0
1, x0

1, q0
2, x0

2) such that
q0

i > ki, we are seeking an admissible control strategy D = DX0 ∈ D, steering the trajectory
X(t) of the system (1) from X0 to the target set T in minimal-time, for a fixed Dmax (Figure 1)
and a given contamination rate ε� 1. Note that, if one is able to synthesize such an optimal
control for every X0 ∈ Ω, then one is able to construct an optimal feedback control over Ω as
X0 7→ DX0(0). Such an optimal control problem falls into the class of minimal-time control
problems governed by a mono-input affine controlled system, for which the synthesis of an
optimal feedback control, thanks to geometric control theory, is a crucial (but also delicate)
issue. In particular, handling the high dimension of the Droop model in competition and
its resulting optimality system is challenging. Note also that the linearity of the problem
w.r.t. D (in contrast, for instance, with strictly convex cost functionals) leads to technicalities
because singular arcs usually occur in this setting, see Section 4.

2.3. Basic Properties

We now introduce the so-called actual growth rates. These key functions will have
an important role in the optimal separation strategy. For that, let us firstly start with the
following observations:

• The mapping ρi : [0, sin]→ [0, Mi] is one-to-one with Mi < ρmi ;
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• For every qi ∈ [ki, q̄i], one has qiµi(qi) ∈ [0, Mi] and qi 7→ qiµi(qi) is one-to-one from
[ki, q̄i] into [0, Mi];

• It follows that the composition δi : [ki, q̄i]→ [0, sin] such that

δi(qi) := ρ−1
i (qiµi(qi)) =

Kiqiµi(qi)

ρmi − qiµi(qi)
, qi ∈ [ki, q̄i],

is well-defined and is also one-to-one;
• Hence, the mapping δ−1

i : [0, sin]→ [ki, q̄i] such that

δ−1
i (s) :=

kiKiµi∞ + (ρmi + µi∞ki)s
µi∞(Ki + s)

, s ∈ [0, sin],

is well-defined over [0, sin) with values in [ki, q̄i] and is one-to-one.

From these observations, one can immediately check that the mappings δi, i = 1, 2 and
δ−1

i are increasing.
Indeed, for i = 1, one can write δ−1

1 (s) = c1 +
c2

s+c3
with c1, c3 > 0 and

c2 := δ−1
i (s) = C + Ks1

[
kk1 µ1∞

k1µ1∞ + ρm1

− 1
]
< 0,

which implies that δ−1
i is increasing.

The actual growth rate of species i is then defined as the mapping µi ◦ δ−1
i ,

µi(δ
−1
i (s)) =

ρmi µi∞s
kiKiµi∞ + (ρmi + µi∞ki)s

, s ∈ [0, sin], i = 1, 2.

The resulting generic functions are illustrated in Figure 1: Let us now define,

∆(s) := µ1(δ
−1
1 (s))− µ2(δ

−1
2 (s)), s ∈ [0, sin]. (7)

Throughout the paper, we suppose that ∆ satisfies the following assumption.

Assumption 2. There is a unique ŝ ∈ (0, sin) such that ∆(s) > 0 for every s ∈ (0, ŝ) and
∆(s) < 0 for every s ∈ (ŝ, sin). In addition, ∆ has a unique maximum sc ∈ [0, ŝ].

Taking into account that ∆(ŝ) = 0, the inequalities satisfied by ∆ according to
Assumption 2 can also be written:

∆(s)(s− ŝ) < 0, s ∈ (0, sin)\{ŝ}.

If we assume that s is regulated to s∗(t) = sc using an appropriate control D, we notice
that the q-variables are regulated to some unique qic ∈ [ki, qmi], for i = 1, 2. The unique
point (sc, q1c, q2c), where sc ∈ [0, sin], plays a crucial role in the optimal control strategy of
(OCP) as discussed in Section 5. Finally, Dmax (the maximum dilution rate) is assumed to
be large enough in order to drive competition between the two species. More precisely, we
assume that Dmax satisfies the hypothesis:

Assumption 3. The maximal value of the dilution rate Dmax satisfies

∀s ∈ [0, sin], Dmax > max
(

µ1(δ
−1
1 (s)), µ2(δ

−1
2 (s))

)
.

These assumptions will ensure reachability (as detailed in the next section) of the
target T , and establishes a generic framework where both species may win the competition
for sufficiently large time (considering for instance various constant control parameters D
that favor species 1 or 2). Thus, under these considerations, we ensure the well-posedness
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of the optimal control problem of interest. In this general framework, the objective is then
to determine the optimal D that steers the trajectories in minimal-time to the desired target.

0
0

0
0

0

Figure 1. The illustrated absorption functions ρi and growth rates µi lead to a generic form of the
actual growth rates s 7→ µi(δi(s)) where both species may win the competition. The maximum
dilution rate Dmax is a fixed constant value above the maximum of the functions s 7→ µi(δi(s)) for
i = 1, 2, as stated in Assumption 3.

2.4. Reachability of the Target

Our next aim is to show that the target is reachable from every initial condition. First,
let us recall that the set

M := {X ∈ Ω ; x1q1 + x2q2 + s = sin} (8)

is an invariant and attractive manifold for (1) for a given persistently exciting control (i.e.,
an admissible control function D(·) such that

∫ +∞
0 D(t) dt = +∞).

Proposition 2. For every initial condition X0 ∈ Ω, there exists an admissible control D(·) and
a time te ≥ 0 such that X(te) ∈ T , where X(·) is the unique solution of (1), starting from X0,
associated with D(·).

Proof. Let s† ∈ (0, ŝ) and X0 ∈ Ω. Without any loss of generality, we may assume that
s(0) = s†. Indeed, observe that s = s† is not a steady-state of ṡ whenever D = 0 over R+ or
D = Dmax over R+. Thus, if we apply D = 0 (in that case ṡ < 0) or D = Dmax (in that case
ṡ > 0), then s(t) = s† is reached in a finite horizon. Consider the feedback control function,

D†(x1, x2) :=
ρ1(s†)x1 + ρ2(s†)x2

sin − s† ,

in such a way that the unique solution of (1) associated with this control satisfies s(t) = s†

for every time t ≥ 0 (Cauchy–Lipschitz’s Theorem). We claim that there exists t1 ≥ 0 large
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enough such that D†(x1(t), x2(t)) ∈ [0, Dmax] for every time t ≥ t1. Indeed, when t→ +∞,
taking into account (8), it follows:

D†(x1(t), x2(t)) ∼ D̄(t) :=
ρ1(s†)x1(t) + ρ2(s†)x2(t)

x1(t)q1(t) + x2(t)q2(t)
.

Now, when t → +∞, it is easy to see that q1(t) converges to ρ1(s†)
µ∞

1
+ k1, since q1

satisfies the linear ODE q̇1 + µ∞
1 q1 = ρ1(s†) + µ∞

1 k1). At steady-state, we thus have

ρ1(s†) = q1µ1(q1).

In conclusion, when t→ +∞,

D̄(t) ∼ q1µ1(q1((t))x1(t) + q2(t)µ2(q2(t))x2(t)
x1(t)q1(t) + x2(t)q2(t)

,

or, equivalently, using that, at steady state, s† = ρ−1
1 (q1µ1(q1)) that is, q1 = δ−1

i (s†), we
end up with

D̄(t) ∼
µ1(δ

−1
1 (s†))q1(t)x1(t) + µ2(δ

−1
2 (s†))q2(t)x2(t)

x1(t)q1(t) + x2(t)q2(t)
.

Thanks to Assumption 3, this last expression is upper bounded by Dmax for t large
enough, which proves our claim. Finally, posit yi := ln(xi) and observe that

ẏ1 − ẏ2 = ∆(s†) > 0.

It follows that y1(t)− y2(t)→ +∞ when t→ +∞, which implies that limt→+∞
x2(t)
x1(t)

= 0.
This ends the proof.

2.5. Motivation of Studying the OCP

Thanks to Proposition 2, the target set is reachable from any initial condition, thus the
existence of an optimal control of (6) is standard (namely because the dynamics is affine
w.r.t. the control): it is an application of the Fillipov Theorem, see, e.g., [26–28]. Considering
such a control as in the proof of Proposition 2 then indeed allows the system to let the
species of interest dominate the reactor, but this process can be long (see, for instance,
Example 1). Another possible strategy is to use a constant control D. Following [12],
depending on the value of D, species 1 may win the competition, i.e.,

lim
t→+∞

x1(t) > 0 ; lim
t→+∞

x2(t) = 0.

In that case, this (simple) strategy indeed allows for reaching the target. However, this
convergence is asymptotic and depends on the value of D as in the competitive exclusion
principle. Roughly speaking, if D > µ1(q̃1) (where q̃1 and s† are such that q̃1 := δ−1

1 (s†)

and (µ1 ◦ δ−1
1 )(s†) = (µ2 ◦ δ−1

2 )(s†)), then species 2 wins the competition, whereas, if
D < µ1(q̃1), species 1 wins the competition. We refer to [12] for more details about the
asymptotic behavior of (1) for a constant control D. Thus, the target set may not always be
reachable with a constant control D. Our objective in this paper is precisely to propose a
methodology to compute a control strategy to reach the target set T faster, playing on the
control D(·) as illustrated in Figure 2.

Example 1. Let us consider the following parameters: ρ1m = 0.8, ρ2m = 0.95, Ks1 = 1, Ks2 = 1.4,
k1 = 1.1, k2 = 1.4, µ1∞ = 1.8, µ2∞ = 1.7, sin = 10. The contamination rate is fixed to ε = 0.05.
The initial conditions are given by: s0 = 2, q0

i = 2.5 and x0
i = 1. As illustrated in Figure 2,

the target T is reached after t f = 46.774 days using the control D(t) = Dopt, while x1 dominates
the culture after t f = 62.68 days using the constant control D = 0.48. Let us also point out
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that, using an arbitrary constant control D ∈ [0, Dmax], we are not even sure that x1 wins the
competition (trajectories do not reach the target in that case).

0 10 20 30 40 50 60 70

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70

0

5

10

15

20

Figure 2. It is possible to find a constant feeding strategy D ∈ [0, Dmax] that could favor one species
or the other. However, this is a risky time-consuming process, while the target is reached much faster
using an optimized control Dopt, thus saving several days of costly cultures.

3. Necessary Conditions on Optimal Controls

We start this section by generalizing previously obtained results [22,29] characterizing
optimal solutions of (6). For that, we apply the PMP which allows for obtaining necessary
conditions satisfied by optimal controls of (6). We denote by X = (s, q1, x1, q2, x2) and
λ = (λs, λq1 , λx1 , λq2 , λx2), respectively, the state and adjoint variables (also called co-state
or covector). The Hamiltonian associated with the optimal control problem

H = H(s, q1, x1, q2, x2, λs, λq1 , λx1 , λq2 , λx2 , λ0, D),

is given by

H = λ0 − (ρ1(s)x1 + ρ2(s)x2)λs + (ρ1(s)− µ1(q1)q1)λq1 + µ1(q1)x1λx1

+(ρ2(s)− µ2(q2)q2)λq2 + µ2(q2)x2λx2 + D[(sin − s)λs − x1λx1 − x2λx2 ].

Let X0 ∈ Ω\T and let (X(·), u(·)) be an optimal pair such that X(·) reaches the
set T in a time t f ≥ 0. Thanks to the PMP, there exist an absolutely-continuous map
λ : [0, t f ]→ R5 and λ0 ≤ 0 such that:

• The pair (λ(·), λ0) is non-trivial, i.e., (λ(·), λ0) 6= (0, 0).
• The covector satisfies

λ̇(t) = −∇X H(X(t), λ(t), λ0, D(t)) a.e. t ∈ [0, t f ]. (9)

• The Hamiltonian maximization condition writes

D(t) ∈ arg max
ξ∈[0,Dmax]

H(X(t), λ(t), λ0, ξ) a.e. t ∈ [0, t f ]. (10)

• At the terminal time, the transversality condition writes:

λ(t f ) ∈ −NT (X(t f )). (11)

Here, NT (X) = {p ∈ R5 ; ∀Y ∈ T , p · (Y− X) ≤ 0} stands for the normal cone to T
at some point X ∈ T , see [28]. The adjoint Equation (9) is equivalent to:

λ̇s =
(
ρ′1(s)x1 + ρ′2(s)x2

)
λs − ρ′1(s)λq1 − ρ′2(s)λq2 + Dλs,

λ̇q1 = µ1∞λq1 − µ′1(q1)x1λx1 ,

λ̇x1 = ρ1(s)λs − µ1(q1)λx1 + Dλx1 ,

λ̇q2 = µ2∞λq2 − µ′2(q2)x2λx2 ,

λ̇x2 = ρ2(s)λs − µ2(q2)λx2 + Dλx2 .

(12)
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We define an extremal as a quadruplet (X(·), λ(·), λ0, D(·)) such that (λ(·), λ0) is non
zero and such that (1) and (9)–(11) is verified. Whenever λ0 = 0, we say that the extremal
is abnormal ; if λ0 6= 0, then we say that the extremal is normal. Because (6) is autonomous
(i.e., the system does not depend explicitly on time), the Hamiltonian computed along an
extremal is constant. In addition, since the terminal time is not fixed, we classically obtain,
following optimal control theory, that H = 0.

The transversality condition is crucial for obtaining properties on optimal controls by
reasoning backward in time from the terminal time t = t f . We shall next extend earlier
results [22] by taking into account explicitly the fact that T is a half-space of R5 and
exploiting that X(t f ) belongs to the set E := {X ∈ R5 ; x2 − εx1 = 0} (the boundary of the
target set). Then, condition (11) can be transformed more explicitly as follows. At X(t f ),
the normal cone to T writes

NT (X(t f )) = R+(0, 0,−ε, 0, 1).

Therefore, inclusion (11) is then equivalent to

λs(t f ) = λq1(t f ) = λq2(t f ) = 0, (13)

together with
λx1(t f ) + ελx2(t f ) = 0, (14)

and the inequalities λx1(t f ) ≥ 0 and λx2(t f ) ≤ 0. Actually, one has λx1(t f ) > 0 and
λx2(t f ) < 0. Suppose indeed that λx1(t f ) = 0. Then, (14) would imply λx2(t f ) = 0,
and, since (9) is linear w.r.t. λ, we would obtain λ ≡ 0 over [0, t f ]. Using the constancy of
H, we would also obtain λ0 = 0 contradicting the PMP. We can then conclude that

λx1(t f ) > 0 and λx2(t f ) < 0. (15)

Throughout the paper, we suppose that only normal extremals occur, i.e., λ0 < 0,
and, without any loss of generality, we may assume that λ0 = −1 (up to a renormalization
of the necessary conditions that are linear w.r.t. λ).

Remark 1. Abnormal extremals are not generic. They correspond to the optimal path reaching the
target set in some particular subset of the target set and are such that λ0 = 0 (and thus λ(·) 6= 0).
From the conservation of H, this implies that µ1(q1(t f )) = µ2(q2(t f )) in such a way that λ(t f )
is not uniquely defined in contrast with the normal case (see below). At such a singular point, the
value function (the minimal time as a function of X0) is also non-differentiable.

Going back to the normal case, i.e., λ0 = −1, the covector λ at t = t f can be completely
determined (thanks to the conservation of H) as follows:

λs(t f ) = λq1(t f ) = λq2(t f ) = 0,

λx1(t f ) =
1

x1(t f )(µ1(q1(t f ))− µ2(q2(t f )))
> 0,

λx2(t f ) = −
λx1(t f )

ε
< 0.

(16)

Notice that the quantity µ1(q1(t f ))− µ2(q2(t f ))) is non-zero along a normal extremal.
As a consequence, the transversality condition (11) coupled with the conservation of H are
equivalent to (16). The computation of λ at t = t f is useful to integrate the state adjoint
system backward in time from the target set.

We now wish to exploit the Hamiltonian condition (10). It is of particular interest
to introduce the switching function, which allows us to determine the optimal control D
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according to the sign of the switching function. For that, let us denote by Φ̃ the switch-
ing function:

Φ̃ := −(x1λx1 + x2λx2) + (sin − s)λs,

associated with the control function D(·).

Φ̃(t) > 0 ⇒ D(t) = Dmax,
Φ̃(t) < 0 ⇒ D(t) = 0,

(17)

for a.e. t ∈ [0, t f ].
In the case where Φ̃ > 0, resp. Φ̃ < 0 over a time interval [t1, t2], we say that the

optimal control u is of bang type (denoted by B+, resp. B−). When the control D(·) is
non-constant in every neighborhood of a time tc ∈ (0, tc), we say that tc is a switching
time, and one must have Φ̃(tc) = 0. Next, when the switching function Φ̃ vanishes over
a time-interval [t1, t2], we state that a singular arc occurs. In this case, the corresponding
trajectory is singular over [t1, t2], and such an arc will be denoted by S . Singular arcs
are essential to optimize the time to steer an initial condition to the target set. Now, we
are ready to state some main features of the switching function Φ̃, and then investigate
properties of the singular paths.

Lemma 1.

(i) The function Φ̃ is continuously differentiable over [0, t f ] and, moreover,

˙̃Φ = (sin − s)(ρ′1(s)[x1λs − λq1 ] + ρ′2(s)[x2λs − λq2 ]). (18)

(ii) At the terminal time t = t f , it holds:

Φ̃(t f ) =
˙̃Φ(t f ) = 0. (19)

Proof. By differentiating Φ̃ w.r.t. t, we find that

˙̃Φ = −ṡλs + (sin − s)λ̇s − [ẋ1λx1 + ẋ2λx2 ].

Using (1) and (9), we obtain (18), which proves (i). For proving (ii), note that x(t f ) ∈ E
and λ(t f ) ∈ E⊥, thus Φ̃(t f ) = 0. Using (13), we also obtain ˙̃Φ(t f ) = 0, which ends
the proof.

Remark 2. Following the formalism of geometric control theory, ˙̃Φ never involves D explicitly,
but D is present in the expression of Φ̃(2k), k ≥ 1, see [27]. If k ≥ 1 is the first integer for which the
control is present in the expression of Φ̃(2k), we usually say that the singular arc is of order k.

At this step, an optimal control is a concatenation of bang and singular arcs:

B±,B±B∓,B±S ,B±B∓S ,B±B∓SB±, . . .

with possibly infinitely many crossing times (in particular, if there is a singular arc of
order 2 [27]). The occurrence and properties of singular arcs as well as the various (possible)
structure for an optimal control of (6) will be precisely the matter of the next section.
The goal is to reduce (if possible) the number of possible structures for an optimal control.

4. Singular Arcs and Insights into Optimal Solutions
4.1. Legendre–Clsebsch’s Necessary Condition and Computation of the Singular Control

The analysis of singular arcs requires to compute ¨̃Φ. Indeed, the Hamiltonian condition
does not give any information about an optimal control during a singular phase. Thanks to
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the next computations, we shall also be able to deduce an expression of the singular control
during a singular arc.

Doing so, let us define θ1, θ2 : [0, T]→ R as

θ1 := ρ′1(s)[x1λs − λq1 ] + ρ′2(s)[x2λs − λq2 ],

θ2 := ρ′′1 (s)[x1λs − λq1 ] + ρ′′2 (s)[x2λs − λq2 ].

Hereafter, to simplify the layout, we do not write the dependency of θi, s, xi, λs, λqi

w.r.t. the time. To shorten the notation, we also do not write explicitly the dependency of
certain functions w.r.t. some variables. Using (12)–(18), one can write

˙̃Φ = (sin − s)θ1 and λ̇s = θ1 + Dλs. (20)

Lemma 2.

(i) The derivative of θ1 can be expressed as:

θ̇1 =θ2 ṡ + [ρ′1x1 + ρ′2x2]θ1 + λs[x1µ1ρ′1 + x2µ2ρ′2]

− ρ′1[µ1∞λq1 − µ′1(q1)x1λx1 ]− ρ′2[µ2∞λq2 − µ′2(q2)x2λx2 ].
(21)

(ii) The second derivative of Φ̃ fulfills the equality:

¨̃Φ = [−θ1 + (sin − s)θ2]ṡ + (sin − s)[ρ′1x1 + ρ′2x2]θ1 + (sin − s)λs[x1µ1ρ′1 + x2µ2ρ′2]

− (sin − s)ρ′1[µ1∞λq1 − µ′1(q1)x1λx1 ]− (sin − s)ρ′2[µ2∞λq2 − µ′2(q2)x2λx2 ]. (22)

Proof. By differentiating θ1 w.r.t. t, we have

θ̇1 = θ2 ṡ + ρ′1[ẋ1λs + x1λ̇s − λ̇q1 ] + ρ′2[ẋ2λs + x2λ̇s − λ̇q2 ].

Using (20) and (12), we obtain (21). Using that ¨̃Φ = −ṡθ1 + (sin − s)θ̇1, we ob-
tain (22).

Note that these computations have been verified thanks to a symbolic computation
software. The next step is to establish whether Legendre–Clebsch’s condition is verified or
not along a singular arc. Recall that this condition is necessary for optimality and that it
can be stated as follows (see, e.g., [27,30,31]).

Theorem 1 (Legendre–Clebsch’s condition [27]). Let I = [t1, t2] be such that the trajectory is
singular over [t1, t2]. Then, one has:

¨̃Φ|D ≥ 0, (23)

which is fulfilled over I = [t1, t2].

Using the expression of the derivative ¨̃Φ given in (22), we provide in the next lemma
the expression of the second derivative, ¨̃Φ|D .

Lemma 3. Let I = [t1, t2] be such that the trajectory is singular over [t1, t2]. Then, one has:

¨̃Φ|D = (sin − s)2θ2 = (x1λs − λq1)
(ρ′′1 ρ′2 − ρ′′2 ρ′1)

ρ′2
. (24)

Proof. In (22), the only term involving the control D is related to ṡ. We obtain (24) using
that θ1 ≡ 0 over [t1, t2].

Proposition 3. Along a singular arc that occurs over a time interval [tc, t f ], it holds that:

λs = 0,
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over [tc, t f ] and Legendre–Clebsch’s condition (with a strict inequality) is fulfilled over [tc, t f ).

Proof. Because the trajectory is singular over [tc, t f ], one has θ1 ≡ 0 over this interval; thus,
λs(·) satisfies:

λ̇s = Dλs, λs(t f ) = 0.

It follows that λs ≡ 0 over [tc, t f ]. In a left neighborhood of t = t f , one has from (12)
λ̇q1 < 0; thus, since λq1 vanishes at t = t f , we necessarily have λq1 > 0 in a left neighbor-
hood of t f . Because λs is zero over [tc, t f ], we deduce that x1λs − λq1 = −λq1 < 0 over

[tc, t f ) (at t = t f , λq1 vanishes at t f , as well as ¨̃Φ|D ). Over [tc, t f ], we note that

λ̇x1 = λx1(D− µ1(q1)),

hence λx1 does not vanish over [tc, t f ]. Suppose that λq1 vanishes over [tc, t f ] at a time
t′ ∈ [tc, t f ]. Then, one must have λ̇q1(t

′) ≥ 0 since λq1 > 0 over (t′, t f ). However, at t = t′,
the adjoint equation implies that

λ̇q1(t
′) = −µ′1(q1(t′))x1(t′)λx1(t

′) < 0

because q1(t′) > k1, µ′1 > 0 over (k1,+∞), x1 > 0, and λx1 > 0 over [tc, t f ]. This is a
contradiction and thus λq1 does not vanish over tc, t f . Assumption 1 implies that ρ′′1 ρ′2 −
ρ′′2 ρ′1 < 0, thus ¨̃Φ|D > 0 over [tc, t f ) as desired. We can then conclude that Legendre–
Clebsch’s condition (with a strict inequality) is fulfilled over the whole interval [tc, t f ).

A consequence of the previous proposition is that, when a singular arc occurs over
some time interval [tc, t f ], then it is of order 1. Based on this proposition, we shall only
consider singular arcs of first order in the remaining of the paper. If Legendre–Clebsch’s
condition holds true, the singular arc is said to be of turnpike type [26]. The expression
defining the singular control can then be derived using (22). Next, let ς(X, λ) be defined by:

ς(X, λ) := θ2[ρ1x1 + ρ2x2]− λs(x1µ1ρ′1 + x2µ2ρ′2)− ρ′1[µ1∞λq1 − µ′1(q1)x1λx1 ]

− ρ′2[µ2∞λq2 − µ′2(q2)x2λx2 ].
(25)

We now give an expression of the singular control as a feedback of the state and covector.

Proposition 4. Suppose that an extremal is singular over [t1, t2] and that (23) is verified over
[t1, t2] with a strict inequality. Then, the singular control Ds is given by

Ds(X, λ) :=
ς(X, λ)

(sin − s)θ2
, (26)

where we recall that θ2 = ρ′′1 (s)[x1λs − λq1 ] + ρ′′2 (s)[x2λs − λq2 ] and ς is given by (25).

Proof. This expression follows from (22) in which ṡ is replaced by (sin − s)D− ρ1x1 − ρ2x2

and θ1 ≡ 0 (since ˙̃Φ = Φ̃ = 0).

Corollary 1. If the singular arc occurs over some time interval [tc, t f ), expression (26) simpli-
fies into

Ds(X, λ) :=
ς̃(X, λ)

(sin − s)θ2
, (27)

where ς̃ is given by

ς̃(X, λ) := θ2[ρ1x1 + ρ2x2]− ρ′1[µ1∞λq1 − µ′1(q1)x1λx1 ]− ρ′2[µ2∞λq2 − µ′2(q2)x2λx2 ],

and, in this case, θ2 simplifies also into θ2 = −ρ′′1 λq1 − ρ′′2 λq2 because λs ≡ 0.
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Remark 3.

(i) Note that Legendre–Clebsch’s condition (with a strict inequality) is equivalent to θ2 > 0 (and
that this condition is always verified over [tc, t f ) with tc close to t f .

(ii) In view of the general expression giving the singular control, see (26), there is no guarantee a
priori that the singular control Ds is always with values in [0, Dmax], i.e., that the singular
arc is always admissible (even if Legendre–Clebsch’s condition is verified). This can bring
additional difficulties; however, we may discard this point by choosing Dmax large enough.

(iii) Notice that (27) is at least active at t = t f in the case where a singular arc Ds steers the model
trajectories towards the target T , since the transversality conditions ensure that λs(t f ) = 0.

4.2. About the Occurrence of a Terminal Singular Arc at the Terminal Time

The aim of this section is to discuss the possibility of having a singular arc over some
time interval [t f − τ, t f ] (with τ > 0) and the structure of optimal controls. Our main
questioning is as follows:

Does any optimal trajectory contain a singular arc over some time interval [t f − τ, t f ]?

To analyze this point, let us summarize properties of the switching function at t = t f
(that are consequences of transversality conditions associated with the codimension 1 target):

• The switching function and its derivative vanish at t = t f :

˙̃Φ(t f ) = Φ̃(t f ) = 0. (28)

• The second derivative of the switching function satisfies:

¨̃Φ|D (t f ) = 0. (29)

• In addition, Legendre–Clebsch’s condition (23) is always satisfied along a singular arc
defined in a left neighborhood of the terminal time t = t f .

The necessary conditions (28) and (29) are a very good indication for the occurrence of
a singular arc and are thus strong arguments to answer positively to the above question.
Thus, we could now wonder whether or not conditions (28) and (29) are sufficient to ensure
the occurrence of a singular arc in some time interval [t f − τ, t f ]. It appears that this
question is complex and falls into the setting of geometric optimal control theory. As far
as we know, such conditions are not equivalent to the occurrence of a singular arc over
some time interval [t f − τ, t f ] (this may depend, in particular, on the initial condition).
It is, however, worth mentioning that these conditions (in particular (28)) are commonly
used numerically to implement a singular arc in shooting methods [32]. In our context
of Droop model, it is very interesting to notice that singular arcs are the cornerstone of
the optimal control, in particular for a large set of initial conditions that are biologically
meaningful (typically for heterogeneous cultures where x0

1/x0
2 ≈ 1). However, the answer

to the above question is not always true and depends on the initial condition (as it has
been confirmed using direct optimization methods, see Section 5). Indeed, as illustrated
in Example 2—Section 5, when the initial conditions x0

i are taken very close to the target
(x2(t f )/x1(t f ) = ε), and µ1(q0

1)− µ2(q0
2) > 0, the singular arc does not appear or appears

marginally at t = t f to satisfy the transversality conditions.

Recall that Φ̃(t f ) = ˙̃Φ(t f ) = 0. Hence, the sign of Φ̃ depends on ¨̃Φ(t f ) that is
computed in the next lemma.

Lemma 4. At the terminal time, one has

µ1(q1(t f ))− µ2(q2(t f )) > 0. (30)
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In addition, the second derivative of the switching function exists at t = t f and:

¨̃Φ(t f ) =
[sin − s(t f )][ρ

′
2(s(t f ))µ

′
2(q2(t f ))− ρ′1(s(t f ))µ

′
1(q1(t f ))]

µ2(q2(t f ))− µ1(q1(t f ))
. (31)

Proof. Inequality (30) follows from the expression of λ(t f ) and the transversality condi-

tion (16). The expression of ¨̃Φ(t f ) in (31) follows from (22).

We can now define the function:

t 7→ ξ(t) := ρ′2(s(t))µ
′
2(q2(t))− ρ′1(s(t))µ

′
1(q1(t)).

From the previous lemma, we deduce the behavior of an optimal path near the
terminal time:

• First, the target set can only be reached at some point X(t f ) such that (30) is fulfilled.
• In addition, if ξ(t f ) 6= 0, then, in a left neighborhood of t = t f , the optimal control

D(·) is of bang type and satisfies

D(t) = sign(ξ(t)).

• If a singular arc occurs in a left neighborhood of t = t f , then one must have ξ(t f ) = 0,
i.e., a singular arc reaches the target in the subset of T defined as:

T ′ := {X = (s, q1, x1, q2, x2) ∈ T ; µ1(q1)− µ2(q2) > 0 and

ρ′2(s)µ
′
2(q2)− ρ′1(s)µ

′
1(q1) = 0}.

4.3. Toward an Optimal Synthesis Characterizing the Optimal Solutions

Reducing the number of switching times is in general non-tractable for nonlinear opti-
mal control problems governed by a system in dimension greater than three. Nevertheless,
thanks to the properties of singular arcs, we obtained previously and of the switching
function at t = t f , we can expect a limited number of possible structures for an optimal
control as we formulate in the next conjecture.

Conjecture 1. Every initial condition in Ω is steered optimally to the target set via a control D that
has a finite number of switching times. In addition, for almost every initial condition, an optimal
control presents the following structure:

B±B∓S .

For a large set of initial conditions in some subset Ω† ⊂ Ω (far from the target), there is a
single bang arc and a terminal singular arc, whereas, for some initial conditions close to the target
set, no singular arc occurs (i.e., S is of zero duration).

This conjecture has been verified numerically for a large number of initial conditions
(see Section 5). Our argumentation to confirm this conjecture is as follows.

• From the PMP, we have seen that, for every initial condition in Ω, an optimal control
is a concatenation of bang arcs B± and singular arcs S .
Moreover, since the switching function Φ̃ satisfies the strong requirements ˙̃Φ(t f ) =

Φ̃(t f ) = 0, ¨̃Φ|D (t f ) = 0
(from the transversality conditions) as well as Legendre–Clebsch’s condition, we
conjecture that, for almost all initial conditions, an optimal control is singular in a
left neighborhood of the terminal time. This implies in particular that the number
of switchings is finite since we proved that any terminal singular arc is of first order.
In addition, the number of switchings is minimal in general (apart when chattering
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occurs, see [27], which is not the case here). Thus, an optimal control should be of type
B±B∓S with one or two bang arcs before the terminal singular arc.
As we have seen, we also must have ξ(t f ) = 0, which only involves state variables at
the terminal time. This surprising condition mixing the first derivative of the basic
functions in the Droop model, with the s variable on one side and the qi variables on
the other side, is, however, hard to interpret biologically.

• For some marginal—-but admissible—initial conditions outside of Ω†, the structure of
an optimal control of (6) may be of bang type for almost all t ∈ [0, t f ), or [0, t f − τ],
with very small τ > 0 (see, e.g., Example 2 in the next section). This is the case when
typically x0

1 � x0
2, i.e., the initial condition is very close to the target set T , with in

addition µ1(q0
1)− µ2(q0

2) > 0. Thus, the requirement µ1(q1(t f ))− µ2(q2(t f )) > 0 is
easily satisfied. Thus, in this particular situation, it comes as no surprise that the
fastest path to reach the target T is the one exploiting the fact that ẋ1(0) � ẋ2(0)
(since x0

1 � x0
2) along with D(t) = 0, since it maximizes ẋ1(t) (we recall that ẋi =

(µi(qi)− D(t))xi).

It is worth noticing that, when no singular arc occurs, the strategy mainly consists of
“pushing” x1 and x2 as quickly as possible towards the target T using D = 0, when the
initial conditions x0

1 and x0
2 are very close to T . Nevertheless, this strategy may not be the

optimal one whenever q0
1 and q0

2 are “far” from satisfying µ1(q1(t f ))− µ2(q2(t f )) > 0. This
is typically the case illustrated in Example 3 in the next section.

For an optimal control of type B±S , the occurrence of a singular arc is related to the so-
called turnpike phenomenon that we now explain in this framework. For a large subset of
initial conditions S† ⊂ Ω that are biologically the most relevant, the structure of the optimal
control is bang-singular B±S . The singular arc is the control Ds given in (27) that reaches the
target T . Moreover, this singular phase coincides with optimal trajectories (s(t), q1(t), q2(t))
that stay most of the time close to the critical point (sc, q1c, q2c) defined in Section 2.3 (related
to the actual growth rates and the function ∆(s) = µ1(δ

−1
1 (s))− µ2(δ

−1
2 (s))). Observe, for

instance, the trajectories s, q1 and q2 in Figure 3a.We also believe that the concatenation of
bang arcs before the major singular phase exclusively aims at moving (s0, q0

1, q0
2) towards

(sc, q1c, q2c). Then, the singular arc Ds takes over at a switching-time instant t = ts and
ensures that the associated singular trajectory, denoted (ss(t), q1s(t), q2s(t)), satisfies the
so-called turnpike inequality (see, e.g., [33]),

‖ss(t)− sc‖+ ‖q1s(t)− q1c‖+ ‖q2s(t)− q2c‖ ≤ a1

(
e−a2t + ea2(t−t f )

)
,

a1, a2 > 0, for all t ∈ [ts, t f ].
(32)
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Figure 3. (a) Optimal state in Droop model, (b) the resulting optimal co-state trajectories, which
satisfy in particular all the transversality conditions of the PMP.

This is, for instance, the case for optimal controls illustrated in Figure 4 (of type B−S)
and in Figure 5a (of type B−B+S). The inequality (32) usually holds when the time interval



Processes 2022, 10, 461 16 of 23

[0, t f ] is not excessively short [33–35], which is the generic case in the Droop model (1)
associated with (6). Indeed, in practice, the most significant biological experiments aim
to separate species and select x1 starting from an homogeneous culture (a well-balanced
initial culture with x0

1/x0
2 ≈ 1) or even from x0

2 � x0
1 with the challenging issue of selecting

the minority species (x1), which is not naturally promoted. In these cases, Droop’s kinetics
ensure that the minimum selection time t f cannot be excessively short and therefore
singular arcs as well as the turnpike-type behavior appear systematically in the optimal
strategy of (6).
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Figure 4. The optimal control in Example 2 (s0 = 4, q0
i = 1.9, x0

i = 0.3) is of bang(0)-singular type.
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Figure 5. (a) The optimal state trajectories s, q1 and q2 (associated with the optimal control D in
Figure 6) get closer over time to the critical point (sc, q1c, q2c). The target T , with ε = 0.08, is reached
quickly, without resorting to the singular arc. The transversality conditions are satisfied, and in
particular λs(t f ) = λq1 (t f ) = λq1 (t f ) = 0, as illustrated in (b).
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Figure 6. Evolution of the quantity ρ′2(s(t))µ
′
2(q2(t))− ρ′1(s(t))µ

′
1(q1(t)) along the optimal trajecto-

ries given in Figure 3a.
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5. Direct Optimization and Numerical Results

In this section, a direct-optimization approach is performed in order to solve (6) and
illustrate the different cases discussed in Section 4.3. The numerical direct methods that
we use throughout this paper are implemented in Bocop [36] (an optimal control toolbox),
and they have the characteristic to transform the studied (6) into a nonlinear programming
problem (NLP) in finite-dimension [37], through the discretization step of the control and
the state variables [38]. Numerical results are organized as follows:

• An optimal control of type B−S is developed throughout Example 1.
• An optimal control of type B− is developed throughout Example 2.
• An optimal control of type B−B+S is developed throughout Example 3.

In all the numerical examples, we consider the model parameters given in Table 1,
with the settings in Table 2.

Table 1. The model parameters used in Section 5.

ρmi Ki µi∞ ki

Species/strain 1 7 0.3 1.7 1.75
Species/strain 2 8 0.6 1.8 1.80

Table 2. Model and OCP settings. The contamination rate ε characterizes the target set T .

sin Control D Contamination Rate ε

6 [0, Dmax = 1.5] 0.08

Assumption 3 is verified when Dmax = 1.5, namely because Dmax is precisely chosen
above the maximum actual growth rates of the species. The contamination rate in all the
examples is fixed to a significantly small value, ε = 0.08.

In Bocop, the state variables (and even the time, in minimal-time OCPs) of the Droop
model (1) are discretized with a Lobatto scheme based on Runge–Kutta methods of type
Lobatto-IIIC of order 6, which uses an implicit trapezoidal rule. The main settings used
in Bocop are given in Table 3.

Table 3. Bocop settings used in Section 5.

Discretization Method Lobatto IIIC (Implicit, 4-Stage, Order 6)

Time steps 130
NLP tolerance <10−14

Example 2. In the first example, we consider the Droop model resulting from the parameters in
Table 1 and Figure 7, associated with the settings in Tables 2 and 3, and the initial conditions given
in Table 4.

Table 4. The initial conditions used in Example 2.

s0 q0
1 x0

1 q0
2 x0

2

4 1.9 0.3 1.9 0.3
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Figure 7. Growth and absorption (uptake) functions, respectively µi and ρi, i = 1, 2, produced using
the model parameters given in Table 1, and used throughout the Examples 1–3. We note that the
value of s that maximizes the function ∆(s) is given sc = 0.092. This point maximizes the difference
between the actual growth rates (as discussed in Section 2.3) and defines the unique static solution
(sc, q1c, q2c). All the assumptions that ensure the well-posedness of the generic (6) are satisfied in this
case. In particular, we highlight that ∆(s) can be positive and negative, and both species may win the
competition using an appropriate control D (see Section 2.4).

In this example, we have a well-balanced initial culture since x0
1/x0

2 = 1 (see Section 4.3).
The direct optimization method allows us to determine the optimal control D, given

in Figure 4, that steers the model trajectories towards T (with ε = 0.08) in minimal-time
t f = 18.3526 days.

We check and analyze the evolution of the switching function Φ̃, its derivatives, and the
co-state of the substrate s (Figure 8) in order to characterize the switching instant ts ∈ (0, t f ).
This time-instant coincides with λs = 0 (since the singular arc is the one reaching the target
T ), Φ̃ = ˙̃Φ = 0 (thus activating Ds, according to the PMP). We also notice that the condition
¨̃Φ(t f ) = 0 is also satisfied. The optimal state and co-state trajectories are depicted in
Figure 3, where we notice that s(t), q1(t) and q2(t) evolve around the static critical point
(sc, q1c, q2c) for almost all t ∈ [ts, t f ], see the turnpike-like property discussed in Section 4.3.

The optimal control strategy aims to maximize the difference between the actual
growth rates (the function ∆(s)) as illustrated in Figure 9. The initial arc bang(0) drives
s0 towards sc (we recall that ṡ = (sin − s)D − ρ1(s)x1 − ρ2(x2), s0 = 4, sin = 6, and,
sc = 0.092). The quantity µ1(q1(t))− µ2(q2(t)) is maximized, with a delayed-dynamics,
as a consequence of maximizing ∆(s). At the final time of t f = 18.3526 days, we have
µ1(q1(t f ))− µ2(q2(t f )) > 0. Finally, we check in Figure 6 that, at t = t f , we have

ρ′2(s)
ρ′1(s)

(t f ) =
µ′1(q1)

µ′2(q2)
(t f ).
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Figure 8. Characterization of the switching instant and of the singular arc in Example 2. (a) The
switching function and its derivatives. (b) The co-state of the substrate s.
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Figure 9. (a) Evolution of ∆(s(t)) and µ1(q1(t))− µ2(q2(t)) along the optimal trajectories. The opti-
mal control aims to maximize the function ∆. We also check in (b), using the optimal model trajectories
given in Figure 3, that s(t) + q1(t)x1(t) + q2(t)x2(t) converges towards sin (see Section 2.4).

The behavior of the optimal control and optimal trajectories described in Example 2
is definitively the most compelling one (with bang(0)-singular or bang(Dmax)-singular arcs)
from a biological standpoint, since it is the one that systematically appears when the final
time is not extremely short. Indeed, in practice, initial conditions start more commonly
sufficiently “far” from the target T , leading to a final time that allows the singular arc and
the turnpike-like behaviors to hold.

Example 3. Now, let us consider the initial conditions in Table 5.

Table 5. The initial conditions used in Example 3.

s0 q0
1 x0

1 q0
2 x0

2

1 2.5 1.2 2 0.1

It is worth noticing that the initial conditions in Example 3 are intuitively favourable
for reaching the target T in a very short time, since µ1(q0

1)− µ2(q0
2) > 0 and x0

2/x0
1 = 0.083,

while ε = 0.08 (very close to the target). The optimal control in this case is mainly a bang(0)
over time, as illustrated in Figure 10 (see Section 4.3 for more details). The optimal state
trajectories and co-state trajectories (that satisfy the transversality conditions) are illustrated
in Figure 5.



Processes 2022, 10, 461 20 of 23

0 0.05 0.1 0.15 0.2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
(a)

0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
(b)

Figure 10. The optimal control given in (a) is bang(0) almost everywhere over [0, t f ). It achieves
species separation (b) and selects the species x1 at t f = 1.1810 days, since x1(t f ) = 1.3425 and
x2(t f )/x1(t f ) = ε = 0.08.

Example 4. In the last example, let us consider the initial conditions in Table 6.

Table 6. The initial conditions used in Example 4.

s0 q0
1 x0

1 q0
2 x0

2

5 1.8 2.2 5 0.18

In this situation, we notice that initial conditions are still favourable for reaching
the target T in a very short time because x0

2/x0
1 = 0.0818 (with ε = 0.08, so x0

i are
very close to the target). However, we also note that µ1(q1(0)) − µ2(q2(0)) < 0, while
µ1(q1(t f )) − µ2(q2(t f )) should be positive at t = t f (see Section 3). Thus, the issue of
minimal-time separation is slightly more complex than Example 3, and we obtain a struc-
ture for the optimal control of bang(0)-bang(1)-singular type, as illustrated in Figure 11.
The corresponding model trajectories and optimal co-states are provided in Figure 12.
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Figure 11. The optimal control given in (a) is bang(0)-bang(Dmax)-singular over [0, t f ), where t f =

4.5541 days. A first switching instant from bang(0) to bang(Dmax) occurs around 0.3 days, then ts

occurs when λs = 0, as illustrated in (b), starting the singular arc that steers the model trajectories
towards T , with ε = 0.08.
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Figure 12. The optimal model trajectories (a), and the optimal co-state trajectories (b) that satisfy the
transversality conditions.

6. Conclusions

The minimal-time OCP for the competition between two microbial species accumu-
lating nutrients is a key issue. Progressing along this problem will definitely help for
experiments that nowadays last more than 6 months [14,15]. However, the competition
described by the Droop model turns out to be significantly more complicated than for
the Monod model in dimension 2 [17]. We have improved the preliminary results about
this problem to be found in [22,29] in order to provide an optimal synthesis depending on
the initial condition. In particular, we applied the PMP, we discussed the structure of the
optimal control, and we identified the singular arc steering optimal paths to the desired
target set in a minimal amount of time. This study also highlights the turnpike behavior [33]
although an exact verification in our case is not possible in our setting since the problem is
affine w.r.t. entries in contrast with [35] that, in general, requires coercive hypotheses on
the Hamiltonian w.r.t. entries. As usual in optimal control problems that are affine in the
control, the study of singular arcs via geometric methods is a crucial issue.

This study also raised a mathematical (open) question outside the scope of this pa-
per on the existence or not of a terminal singular arc whenever the switching function,
its derivative, and second derivative w.r.t. the input vanish on a terminal manifold of
codimension 1 (see, e.g., [39]).

Future work will focus on the determination of closed loop (sub-optimal) controllers
to be applied for bioreactor control subject to uncertainties that are inherently present in
biological systems. Finally, the proposed strategy must now be tested experimentally to
assess the gain in experimental time it can offer.
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