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Abstract: Market globalisation, shortened patent lifetimes and the ongoing shift towards personalised
medicines exert unprecedented pressure on the pharmaceutical industry. In the push for continuous
pharmaceutical manufacturing, processes need to be shown to be agile and robust enough to handle
variations with respect to product demands and operating conditions. In this paper we examine the
use of operational envelopes to study the trade-off between the design and operational flexibility of
the fluid bed dryer at the heart of a tablet manufacturing process. The operating flexibility of this
unit is key to the flexibility of the full process and its supply chain. The methodology shows that for
the fluid bed dryer case study there is significant effect on flexibility of the process at different drying
times with the optimal obtained at 700 s. The flexibility is not affected by the change in volumetric
flowrate, but only by the change in temperature. Here the method used a black box model to show
how it could be done without access to the full model equation set, as this often needs to be the case
in commercial settings.

Keywords: pharmaceutical manufacture; uncertainty; operational flexibility; operational envelopes; modeling

1. Introduction

The power of big data, emanating from the process and from customers, is having
a number of effects on manufacturing. With coordinated access to reliable data, a man-
ufacturer can respond more rapidly and efficiently to supply chain demands. However,
with data comes the capability and often the demands from internal and external stake-
holders (customers, shareholders, regulators, neighbours, etc.) for greater transparency of
operations. Industry is going through something of a revolution to realise these aims. It is
known as Smart Manufacturing, Industry 4.0 or Digitalisation because of the capabilities
enabled by greater computing power, smarter algorithms, better measurement, and wider
connectivity. The smart manufacturing revolution is said to have three phases [1,2]:

1. Factory and enterprise integration and plant-wide optimisation,
2. Exploiting manufacturing intelligence,
3. Creating disruptive business models.

For the process industries, all three phases are likely to drive significant change [1–6].
To a considerable extent, the first phase has been well underway for a decade or more,
particularly plant wide optimisation. The exploitation of big data from enhanced process
measurement, as well as using data for demand, supply and the operating environment,
is enabling the second phase which is also to some extent underway. Key enablers are
methods to manage flexibility and uncertainty, responsiveness and agility, robustness
and security, the prediction of mixture properties and function, and new modelling and
mathematics paradigms [2]. The third phase is less clear, but the drivers for personalised
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medicine may affect the pharmaceutical industry more rapidly. Over the last decade
there has been an increasing industrial and research interest in the concept of continuous
pharmaceutical manufacturing (CPM). CPM offers the benefits of better resource utilisation,
reducing energy costs and the potential for operating at processing conditions that would
otherwise be prohibitive within the conventional batch setting [7,8]. A key issue related
to CPM is the systematic identification of the attainable regions, typically referred to as
the design space, in order to employ optimisation for the design and operation of such
processes [9].

Pharmaceutical processes involve a number of features which challenge current mod-
elling and control paradigms. They involve multiple phases: solids, liquids and gases
often with multiple liquid phases; they are typically combinations of batch and continuous
units; and there are tighter regulatory frameworks for their operation than for chemical
processes. Litster and Bogle [10] have highlighted the potential for Smart Manufacturing
in processes for formulated products which is the form of many pharmaceuticals. Formu-
lated products are structured, multiphase products (i.e., granules, tablets, emulsions, and
suspensions) whose performance characteristics—critical quality attributes (CQAs)—are
just as dependent on the product structure as they are on the chemical composition (see
for example [11,12]). To this end, a variety of process systems engineering tools have been
investigated for materialising Quality by Design (QbD) initiatives (see for example [13]).
Diab and Gerogiorgis [14] surveyed recent development for the design space identification
and visualisation for CPM while the same authors have proposed the use of flowsheeting
for technoeconomic assessment for the synthesis and crystallisation of rufinamide [14] and
nevirapine [15]. Recognising the inherent difficulty in accurately deriving first-principles
mechanistic models for CPM units, Boukouvala et al. [8,9] proposed the use of Kriging
data-driven models for the dynamic modelling of unit operations. In their work, dynamic
Kriging models showed the ability to efficiently adapt across transition regimes and out-
performed the accuracy of neural network modelling. Recently, Nagy et al. [16] presented a
dynamic, integrated flowsheet model for the continuous manufacturing of acetylsalicylic
acid which entailed a two-step flow synthesis and crystallisation.

Litster and Bogle [9] outlined the potential challenges and opportunities for Smart
Manufacturing for formulated products. Pressures on healthcare providers is requiring
greater efficiency and less inventory within a more changeable regulatory environment.
Personalised medicine will require much more responsive manufacturing for specific
patient groups. The industry is expected to bring products faster to market, as the recent
pandemic has demonstrated for vaccines. This all requires greater agility and flexibility
within the context of greater uncertainty of demand and of raw materials. This will
need greater use of mature model-based tools—for design, control and supply chain
optimization—to enable the managing of complexity and uncertainty. Many tools are
available but there is a lack of experience and often concern about the fidelity of the models
and their ability to predict with sufficient accuracy. This is exacerbated by the tendency
of optimisers to push operations to the limits of well understood operation. Recently,
Chen et al. [17] surveyed a variety of contributions from the process systems engineering
community and outlined challenges and opportunities for the deployment of digital twins
in pharmaceutical and biopharmaceutical manufacturing.

Uncertainty is caused by a wide range of factors: variability in quality and supply of
raw materials, in customer demand, and in environmental and utility conditions, and in
batch processes the effects of manual operations which is required. The potential impact of
uncertainty on the quality of pharmaceutical products in the context of continuous phar-
maceutical manufacturing has been widely recognized by the FDA [18,19]. Most plants
are over-designed to cope with such uncertainty. When data are available through exten-
sive experimentation, multivariate statistical methods such as PLS (partial least squares
regression) and PCA (principal component analysis) [20,21] as well as Bayesian tools have
been proposed [22]. Nonetheless, investigating the design space of a process through
experimentation comes at very high costs, due to the associated raw material and energy
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utilisation, and is time consuming. To overcome this issue, model-based probabilistic
frameworks have been examined. Laky et al. [23] presented two algorithms for the re-
finement of the flexibility test and index formulations, originally proposed by Swaney
and Grossmann [24]. Kusumo et al. [25] examined the use of a nested sampling strategy
to reduce the computational time required related to Bayesian approaches for the prob-
abilistic characterisation of design space characterisation. In order to ensure operation
within defined ranges it is important to define these regions for complex integrated batch
processing schemes. Samsatli et al. [26] developed a multi-scenario optimisation method
for determining operational envelopes for batch processes. Since formulated products have
a range of critical quality attributes, it is necessary that these envelopes reflect a number
of quality conditions. There has been work to include a more systematic approach to
handling uncertainty: through stochastic methods which use knowledge of the likelihood
of uncertain events or through defining more explicit operational windows where safety
and quality can be guaranteed [27,28]. More recently, in the context of CPM work has
been published on methods of global sensitivity analysis [29], flexibility analysis [23] and
clustering techniques [30]. Finally, the importance of Quality by Control (QbC) has been
highlighted by a number of research groups [31–34]

In this paper we examine the use of the concept of operational envelopes for a part of
the tableting process for continuous pharmaceutical manufacturing, the fluidised bed dryer
which helps control the quality of the tableting process shown in Figure 1. These envelopes
can then be used within a schema for rapidly devising new optimal operating schedules
for changes in the uncertain conditions which affect the ability to achieve a product of
suitable quality. The remainder of the article is organised as follows: in Section 2 the main
methodology is outlined, in Section 3 we apply the method of operating envelopes on a
segmented fluidised bed dryer and finally in Section 4 conclusions are drawn.
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Figure 1. Flowsheet of continuous pharmaceutical process of tableting process (DiPP pilot plant).

2. Methodology
2.1. Description of the Mathematical Model

The dynamic model of the segmented fluidised bed dryer being explored here is
implemented in the gPROMS modelling suite as part of the gPROMS FormulatedProducts®

library [31]. The underlying mathematical formulation is based on the mechanistic model
presented by Burgschweiger et al. [35,36] and model parameters have been validated using
the Diamond Pilot Plant (DiPP) at the University of Sheffield. For the sake of brevity, we
omit the presentation of the full mathematical model and the interested reader is referred to
Burgschweiger and Tsotsas [36]. Regarding the underlying assumptions of this model, we
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summarise them as follows: (i) plug flow in the bubble phase; (ii) the particle-free bubble
phase and the suspension phase within the bed are modelled separately, (iii) mass and heat
transfer between drying gas and bubbles is significant and included in the model; (iv) heat
transfer between the bed wall, particles, suspension gas, environment and bubble gas is
also included.

2.2. Deriving the Operational Envelopes

As described in Samsatli et al. [26] the aim of deriving the operational envelopes of a
process or unit operation is to find the maximum range of uncertain operating policies over
which the design can be guaranteed to meet specific targets. The union of the maximum
range of the uncertainty operating policies is referred to as the “operational envelope”. This
is particularly important for continuous pharmaceutical manufacturing as a multistage
process, since through the use of such decoupled envelopes for each unit operation it can
be ensured that the product specifications can be met if we restrict ourselves within the
operating limits denoted through these envelopes.

The geometry of these envelopes can be arbitrary. However, in this work we employ
hyperrectangular geometry for the sake of computational simplicity. Mathematically, if we
denote by b ∈

[
bmin, bmax] the vector of uncertain parameters and their respective limits,

which can be inferred either by expert knowledge or based on past observations, we seek
to maximise the following objective function:

z =
Nb

∏
i=1

bmax
i − bmin

i (1)

where the index i = 1, . . . , Nb is the index of the parameters under investigation. Instead
of this objective function, which is non-convex, Samsatli et al. [26] proposed the use of
a linear counterpart by introducing the difference in the magnitude of the ranges, i.e.,
∆bi = bmax

i − bmin
i ∀i. Following this step, Equation (1) is replaced by the linear Equation (2)

which reflects the scaled perimeter of the envelope.

f =
1

Nb

Nb

∑
i=1

∆bi − ∆bmin
i

∆bmax
i − ∆bmin

i
(2)

Intuitively, since Equation (2) reflects a scaled perimeter the objective function range
is [0,1] with an value of 0 reflecting the minimal envelope possible, i.e., ∆bi

= ∆bmin
i ∀i, and

the maximal envelope feasible is obtained at the value of 1 where ∆bi
= ∆bmax

i ∀i. With this
modification the overall problem that maximises f is given by model (M1).

max
a,bmin,bmax

f = 1
Nb

Nb
∑

i=1

∆bi−∆bmin
i

∆bmax
i −∆bmin

i

Subject to
Φ0
[ .
x0, x0, y0, a0, b0

]
= 0 ∀b ∈

[
bmin, bmax

]
h
( .
x, x, y, a, b

)
= 0 ∀b ∈

[
bmin, bmax

]
, t ∈ (0, τ], τ ∈ b

g
( .
x, x, y, a, b

)
≥ 0 ∀b ∈

[
bmin, bmax

]
, t ∈ (0, τ], τ ∈ b

∆b = bmax − bmin

∆bmin ≤ ∆b ≤ ∆bmax

(M1)

In model (M1), Φ0 represents the set of initial conditions for the system under
study; h(·) represents the vector of equality constraints which are part of the model, e.g.,
mass/energy balances; g(·) represents the vector of inequality constraints, e.g., product
specifications/resource limitations; x corresponds to differential state variables;

.
x their

derivatives with respect to time (t); y represents algebraic state variables; while a, b repre-
sent time variant and time invariant controls, respectively. Notice that in (M1) the upper
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bound of the time horizon is also allowed to be an “envelope” variable in case one wanted
to investigate suitable bounds, for example for drying times.

Model (M1) is a semi-infinite programming problem since it needs to be solved
for all the possible values of the b vector of variables. To overcome this issue, a two-
step multiscenario optimisation problem is solved in which the envelope variables are
discretised as described in Samsatli et al. [26].

3. Case Study: Segmented Fluidised Bed Dryer

In this section we demonstrate the methodology using the digital model of the con-
tinuous pharmaceutical process of the Diamond Pilot Plant (DiPP) at the University of
Sheffield, shown in Figure 1. The process is a tableting pilot plant at the heart of which is a
fluidised bed dryer (FBD) which is critical to the production of consistent quality product.
The fluidised bed dryer (FBD) fluidises the feed granules to reduce their moisture content.
In the process high-pressure hot air is introduced through a perforated bed of moist solid
granules. The wet solids are lifted from the bottom and when fluidised are suspended in a
stream of air. Heat transfer is accomplished by direct contact between the wet solid and hot
gases. The vaporised liquid is carried away by the gas stream. The temperature and rate
of input gas can be adjusted to save energy by, for example, aiming to shorten the drying
time and manipulate the desired product (pharmaceutical granules) quality subject to a
required range for the moisture content. The FBD is typically divided into a number of
vertical segments.

As the FBD is connected with continuous twin screw granulation, the segmented FBD
will ensure the wet granules in one cell are dried whilst the incoming wet granules flow
into the neighbouring cell. Once the drying process in one cell is finished, the respective
cell is emptied pneumatically and then conveyed to the downstream unit, in this case a
mill. More segments contribute to reducing moisture but consume more time. In this study
we set the FBD equipment to have two segments. Each segment size is 0.035 m3, with
initial charge of 0.1 kg wet air and 0.1 kg granulates (lactose), with a particle density of
750 kg/m2. With these equipment specifications and initial conditions, the drying time is
fixed by setting the volume and mass of the FBD, while temperature and flowrate of input
streams are time-varied operating variables for achieving the moisture content objective.
We implemented a single-factor experiment using gPROMS to investigate the effect of
drying times and the two operational parameters, temperature and flowrate of input gas,
on the envelope size. Using these studies enables us to find a suitable design that consumes
less time and energy but has a bigger operational envelope.

Within a time interval
[
τ0, τf

]
, solid particles flow through cells of the FBD, and air

with a temperature of T(τ) and a rate of V(τ) is continuously fed to the bottom of the FBD.
Through fluidisation of the particles and consequent drying of the particles, the moisture
content Γ(τ) of feed granules is reduced to the goal of a moisture content Γ (which could
be a point or an interval). V is the volumetric flowrate and T is the temperature.

Employing the approach for traditional optimal control, we used the FBD model de-
veloped within gPROMS as a black box model [31], adding end point and path constraints.
We used a black box model in order to show how it could be done without access to the full
model equation set since this often needs to be the case in commercial settings.
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The mathematical formulation is as follows:

min
x,y,T,Vø

f = Γø

Subject to :

Γ(t) = Φ(x(t), y, T(t), V(t), τ), 0 ≤ t ≤ τ

with

End point constraints : Γmin ≤ Γτ ≤ ΓmaxΓτ ≤ Γmax

Path constraints : Tmin ≤ T(t) ≤ Tmax, ∀t ∈ [0, τ]

Vmin ≤ V(t) ≤ Vmax, ∀t ∈ [0, τ],

(M2)

where min and max refer to the upper and lower bounds, respectively, for each operational
variable that is controllable. x and y refer to other model parameters that are uncontrollable.
The drying time τf is a design variable and is fixed.

For each fixed value of the drying time, we applied the methodology shown in
Section 2 to find an optimal operating envelope. We were then able to explore the design
sensitivity by varying the value of the drying time to find a suitable design that consumes
less time and energy but has a bigger operational envelope. The selected design would be
the one that consumes less energy and has more flexibility.

Using the methodology shown in Section 2, to obtain an optimal balance between
design and operational variables, we let b =

[(
Tmin, Tmax), (Vmin, Vmax)], and formulate

the following problem to determine the optimal operating envelope:

max
y,bmin,bmax

f ≡ 1
Nb

Nb
∑

i=1

∆bi−∆bmin
i

∆bmax
i −∆bmin

i

Subject to :

Γ′(τ) = f (x(τ), y, bi, τ), τ0 ≤ τ ≤ τf

Γmin ≤ Γτf ≤ Γmax or Γτf ≤ Γmax

ymin ≤ bi ≤ ymax

∆bi = bmax
i − bmin

i

∆bmin
i ≤ ∆bi ≤ ∆bmax

i

(M3)

The process modeling tool gPROMS [29] was used to implement and solve the model
to determine the optimal operating envelopes. The gPROMS modeling platform allows
existing models of processes to be converted to the envelope form and optimise their
dynamic operation. The solution steps are briefly illustrated as follows:

Step 1: fix the value of design variable τ, the upper and lower bounds ∆T, ∆V and
Γ, specify the interested range

((
Tmin, Tmax

)(
Vmin, Vmax

))
of the bounded variables,

and let
Tmin ≤ Tmin ≤ T ≤ Tmax ≤ Tmax

Vmin ≤ Vmin ≤ V ≤ Vmax ≤ Vmax
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Step 2: generate NS scenarios, each with a different set of operational variables (T, V).
For scenario k = 1, · · · , Ns, the values are given by:

T[i] = Tmin + p[k]
(
Tmax − Tmin)

V[i] = Vmin + p[k]
(
Vmax −Vmin)

where p[k] are normalized positions. For example, an optimization using two scenarios
(NS = 2), one corresponding to the bottom left and another to the top right of the feasible
region, we specify:

p[1] = (0, 0, . . . , 0), p[2] = (1, 1, . . . , 1)

Step 3: Then we define the objective function, variables and constraints from the FBD
model within gPROMS, and solve the optimization problem to obtain the best values of(

Tmin, Tmax) and
(
Vmin, Vmax).

The algorithms were run on a personal computer with four 3.50 GHz processors and
16.0GB RAM using the Windows 10 operating system. The model and the approach can be
used to optimise the steady-state and/or the dynamic behaviour of a continuous or batch
process; in this case the fluid bed dryer is continuous.

The sampling technique employed in this work was a grid-based quasi-Monte Carlo
sampling by using Sobol’ low discrepancy sequences [37]. They have been shown to provide
good distribution coverage even for fairly small sampling points. The design space was
partitioned into a number of square grids and then within each grid sampling points were
generated to evaluate feasibility. The interested reader is referred to Kucherenko et al. [38]
for an in-depth discussion on the subject. In brief, for a response variable Y(X1, X2, . . . , Xk)
which is a function of a set of input variables X1, X2, . . . Xk a unit hypercube can be defined
over the k-dimensions. Combining unit hypercubes over a grid-partitioned design space
with quasi-random sequences is the most uniform possible solution to secure coverage. This
is due to the fact that quasi-random points are selected from a sequence whilst knowing
the position of the previous points and thus filling gaps between them [38].

We constructed an independent FBD model (M2), to minimise drying time and mois-
ture content, respectively, subject to it being in the interval [10%, 40%]. Next, we took the
following steps:

Step 1: Specify the range of the operating variables:([
Tmin, Tmax

]
= [20 °C, 80 °C],

[
Vmin, Vmax

]
=
[
240 m3/h, 480 m3/h

])
Step 2: Determine the feasible operating range with a drying time of 900 s which

specifies a range of outputs of interest and hence a range of inputs. We uniformly sampled
13 temperatures in the range [20, 80] °C and 25 flow rates in the range [240, 480] m3/h.
Next, we simulated the FBD model to detect the feasible region (i.e., 13× 25 = 325 points)
that satisfies end point and path constraints. Finally, we found all feasible solutions where
the moisture falls in the range [10%, 40%]. This is shown in Figure 2.

Step 3: Run the optimisation model (M3) with a drying time of 900 s to obtain the
operating envelope for T and V.

(a) When ∆T and ∆V are allowed to vary freely we obtain the optimal operational
envelope as shown in Figure 3 which maximises the area of the rectangle within the
feasible boundary.

(b) When we constrain the variation that T and V can have to the following range
5 ≤ ∆T ≤ 20 °C and 10 ≤ ∆V ≤ 60m3/h, solving (M3) gives the optimal oper-
ational envelope as shown in Figure 4. This maximises the envelope size while also
maintaining the maximal distance to the feasible boundary using model (M3).
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Figure 4. Operational envelope for a drying time of 900 s while maintaining the maximal distance to
the feasible boundary: f = 0.325.

The final stage is to explore the trade-off between design and operational flexibility as
measured by the envelope size. The FBD model indicates that the feasible design space
varies with the drying time. Hence, we can select a best drying time by exploring the
envelope size. To do this we used a scenario-based algorithm with 10 candidate drying
times (600–1500 s) and allowed ∆T and ∆V to vary.

From the results shown in Figure 5, we found that the FBD process can obtain the
maximal envelope size with 700 s (as shown Figure 6 where a larger number of sampling
points, i.e., 1000, was used to increase the resolution of the results), which means that this
design has the best flexibility using the chosen operating variables. Figure 5 shows that
there is significant effect on the flexibility of the process at different drying times with the
optimal obtained at 700 s. Interestingly, in this case, the flexibility is not affected by the
change in ∆V but only by the change in temperature, for the specified ranges of uncertainty.
Nonetheless, we should point out that in this work the related nonlinear programming
models were solved with a local and not a global optimisation solver which could explain
some of the irregularities shown in Figure 5 for design options and envelope sizes.
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4. Conclusions

We have presented results for exploring the operational flexibility for a fluid bed
drying unit that is at the heart of formulation processes for tablet manufacture. The
methodology obtains a feasible operating envelope which is then reduced to one that
allows constrained flexibility in two key parameters (T and V) but maintains an optimal
distance from the feasible boundary. Finally, when using this optimal set of conditions, it is
possible to explore the trade-off between the envelope size and a key parameter, the drying
time. We have demonstrated the value of this approach to a process which is known to have
considerable uncertainty and which is key to operational excellence. We aim to broaden the
analysis to embrace all elements of the formulation process to explore operational flexibility
and demonstrate the value of using a model-based optimisation approach to managing
uncertainty in the pharmaceutical industry. It can add to the toolkit of the Quality by Design
approach being brought in to pharmaceutical process development and operations. The
approach seeks to support systematic development processes: in this case to systematically
identify operating flexibility with robustness guarantees subject to model accuracy. Further
work in tandem with experimental pilot plant work is needed to fully validate the approach
within the tight regulatory regime of pharmaceutical manufacture.
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Nomenclature

Symbols Definition
t time variables.
x differential state variables.
.
x derivatives of x with respect to time t.
y algebraic state variables.
a time-varying control and not bounded variables, which present the design decision

variable in process.
b time-varying control and bounded variables, which present the operational

variable in processes.
∆b sizes of the bound variables
Nb number of bounded variables
τ processing time.
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