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Abstract: Process chromatography modelling for process development, design, and optimization as
well as process control has been under development for decades. Still, the discussion of scientific
potential and industrial applications needs is open to innovation. The discussion of next-generation
modelling approaches starting from Langmuirian to steric mass action and multilayer or thermo-
dynamic consistent real and ideal adsorption theory or colloidal particle adsorption approaches
is continued.
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1. Introduction

Chromatography modelling started in the 1980s and reached its main application
and boom especially for simulated moving bed enantiomer separations [1]. Equilibrium
phase description proved to be the most sensitive for technical operation in overloaded
regions [2,3].

Modelling has been focussed on process design and optimization to reduce experi-
mental efforts with regards to a fully experimental pilot plant operation [2]. Afterward,
ideas for process control came up [4–6]; even the first artificial neuronal networks (ANN)
approaches were proposed [7] and compared with fuzzy-logic methods, which was quite
fancy in those times, with regards to standard process control systems (PCS) [8]. These PCS
actions were not transferred in industrial applications as to our knowledge [9].

In process development and design, the most-often utilized approach for equilibrium
phase separation description is the Langmuir isotherm [10], which can be enlarged for ion
exchange, hydrophobic interaction, or mixed-mode resins of large protein-type molecules
to a steric-mass-action (SMA) model [11]. All modelling approaches have in common
a thermodynamic inconsistency. Therefore, some research was focussed on transferring
approaches from gas to liquid phase adsorption [12,13] and to gain thermodynamically
consistence [14–16]. Nevertheless, in daily project work, these more sophisticated models
were not applied due to numerical complexity and higher efforts of experimental parameter
determination. As of this day, SMA-based models are the gold standard with modifications
for all macro-molecular chromatography units [17].

Nevertheless, besides the broad and successful utilization in industrial project work,
due to efficiency the academic discussion, whether there are better—i.e., thermodynamically
consistent—model descriptions on hand, has to be allowed.

The analytical diluted operation regions have been described and even retentions
times predicted by many approaches such as [18–21] based on quantum mechanics and
molecular structures as well as experimental databases. Other approaches include the
Derajaguin–Landau–Verwey–Overbeck (DLVO) theory, which was able to predict retention
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times in diluted analytical mode [15]. In addition, the porous media structures with regards
to appropriate material design have been analysed and modelled in more detail [22–27].

Artificial neural network ANN and evolutionary algorithm machine learning tech-
niques do have a revival either for evaluation of high-throughput process development
(HTPD) data from titration robotics [28–30], process design [31] or automation via process
control [32].

Two recent papers deal with the phenomena in overloaded manufacturing opera-
tion conditions on the example of monoclonal antibody purification on ion-exchange
again [33,34]. Here, the colloidal particle adsorption (CPA) model is proposed as a solution
to map the course of manufacturing chromatograms, while stating that in typical manu-
facturing overloaded conditions the peak shape could not even be met with SMA-type
models. Focussing in this discussion on the appropriate description not on thermodynamic
consistence. In one of the latest works [34], it is claimed that CPA is the superior adsorption
model, as it enables peak fronting to be described, which SMA cannot.

Form daily project work, we have observed that Langmuir, as well as SMA isotherms,
are able to describe peak shoulders. This is why we have decided to examine this claim
and to evaluate them based on the data given in the above-mentioned publication.

2. Materials and Methods

To carry out the calculations needed to evaluate the mentioned claims, a lumped pore
diffusion model for chromatography was used [10,35,36]. This is the same model as is used
in [34]. The mass balance of the stationary phase for the lumped pore diffusion model
is [10]:

εp,i·
∂cp,i

∂t
+
(
1− εp,i

)
·∂qi

∂t
=

6
dP
· (1− εS)

εS
·ke f f ,i·

(
ci − cp,i

)
(1)

where εP,i is the porosity of the component, cP,i is the concentration of the component in
the pores, t is the time, qi is the loading, dP is the mean diameter of the resin particle, εS is
the voidage, ke f f ,i is the effective mass transport coefficient, and ci is the concentration in
the continuous phase.

Different approaches for the modelling of adsorption have been described by different
working groups [10,11,35,37,38]. In this study, adsorption is modelled using a steric-mass
action isotherm as well as a Langmuir isotherm [37,39]; see (2).

qi =
qmax,i·Keq,i·ci

1 + Keq,i·ci
(2)

Here, qmax, i is the maximum loading capacity of the component and Keq,i is the
Langmuir coefficient of the component. Keq,i and qmax, i are related by the Henry coefficient
Hi; see (3) [10]. Salt influence can be described by (4) and (5) defining a1, a2, b1, and b2 as
material constants [35,40].

qmax,i·Keq,i = Hi (3)

qmax,i = b1·cp,1 + b2 (4)

Hi = a1·cp,1
a2 (5)

To evaluate the claims made about the steric mass action model, Equations (2)–(5)
were substituted with the SMA isotherm for ion exchange chromatography [41].

qp,i

cp,i
= Ai ∗

(
1−

m

∑
j=1

qp,j

qmax
p,,j

)νi

(6)

Ai = K̃eq,i

(
Λ

zScS

)νi

(7)
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In this model Ai represents the initial slope of the isotherm if qp,i → 0. A comprises
of the equilibrium constant K̃eq,i. and the relation between the ligand density Λ, the salt ion
charge zs, and the salt concentration cs.

The mass transfer coefficient ke f f ,i is given by Equation (8). Here, k f ,i is the film mass
transfer coefficient, rp the particle radius, and Dp,i the pore diffusion coefficient.

ke f f ,i =
1

1/k f ,i + rp/Dp,i
(8)

Dp,i is calculated according to the correlation of Carta [42] and k f ,i according to Wilson
and Geanoplis [43].

3. Results

To examine this claim, we took a Langmuirian adsorption model as well as an SMA
model to describe the experimental chromatograms given (dashed lines right); see Figure 1b
from the original publication [34].
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Figure 1. Comparison of the Langmuirian adsorption model (a) with the data given in [34] (b). A 
similar course can be noted, especially at the shoulder (1) and the maximum (2). 

As a result, the Langmuir isotherm (left) is able to describe the same effects as the 
colloidal particle adsorption (right). To examine the adsorption behavior, the Langmuir 
isotherms at different salt concentrations are given in Figure 2. 
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Figure 1. Comparison of the Langmuirian adsorption model (a) with the data given in [34] (b). A
similar course can be noted, especially at the shoulder (1) and the maximum (2).

As a result, the Langmuir isotherm (left) is able to describe the same effects as the
colloidal particle adsorption (right). To examine the adsorption behavior, the Langmuir
isotherms at different salt concentrations are given in Figure 2.
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The parameters obtained result in a concave Langmuir isotherm for 0 M modifier
concentration and convex runs for higher salt concentrations, which is a result of the
positive incline of qmax over the salt concentration in conjunction with the sharp drop in
the Henry coefficient, plotted in Figure 3 for visualization.
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Figure 3. Salt dependency of the Henry coefficient (a) and the maximum loading capacity for the
Langmuir isotherm (b).

While the course of the Henry coefficient is typical, the increase in maximum loading
capacity helps to depict the change from a concave to a convex shape as Keq is the major
influence in low concentration regions; see Equations (2) and (3).

This helps to describe the elution behavior of the protein; however, it suggests an
unrealistic behavior outside of the standard working range, as the maximum loading
capacity increases indefinitely with a higher salt concentration.

Trying to describe the Langmuir isotherm family using an SMA isotherm approach, it
can be seen that the SMA parameters are able to describe the concave–convex change, but
do not show the same unrealistic behavior for higher salt concentrations, as the maximum
loading capacity is not increased with higher salt concentrations. This effect is depicted
in Figure 4. Here, the SMA approach results are summarized as a comparison to the
Langmuirian dataset.
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Therefore, it could be proven that the behavior of the Langmuir isotherm, which leads
to the shoulder observed in the experimental data (see Figure 1b), can be emulated using
the SMA model. When modelling the chromatography with SMA parameters determined
via a least square error estimation scheme, the experimentally obtained data can be simu-
lated quite accurately. These SMA simulation results using the test chromatogram from
publication [34] are compared in Figure 5.
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Figure 5. Chromatogram comparison of experimental data from [33] (dashed) with SMA model
simulation (solid line).

This proves that an SMA isotherm is able to depict the shoulder of the overloaded
chromatogram quite well. Experimental data are calculated accurately with R2 = 99.6%. It
could even be stated that the fit is quite a bit better than the CPA data shown.

Moreover, the SMA approach q over c isotherm diagram show the same shift from a
classical Langmuir isotherm to an anti-Langmuirian course for higher salt concentrations
as shown in Figure 6.
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4. Discussion

Thermodynamic consistency is needed, but the prediction of mixture behaviour from
single component data is in most technical cases experimentally not feasible or inefficient



Processes 2022, 10, 715 6 of 8

as only mixtures are at first available. However, the appropriate prediction of separation
performance in overlapping and highly loaded conditions within a broad operation range
is needed. In process control, the calculation speed for set-point parameter optimization
and the ability to be adopted easily to any operational parameter shifts with the aid of
detector signals is dominating. Following the regulatory demanded quality-by-design
approach, the model accuracy and precision have to be proven distinctly. If magnitudes
of about 1000 over the full range of equally distributed datasets are not experimentally or
operational available, then physical–chemical-based rigorous process models are capable
of training machine learning algorithms well. In this context, process models gain new
application hype as digital twins.

The SMA approach is able to describe even overloaded preparative/technical chro-
matography peak shapes well. This is supported by the fact that the model parameter
values are all in typical realistic ranges and, moreover, that the experimental procedure for
a consistent model parameter determination for the SMA approach is straightforward.

In this case, a simple parameter determination by, e.g., numerical estimation routines
such as the minimization of the sum of least-square errors between a simulated and experi-
mental chromatogram does work well without prior parameter estimation or additional
experiments. As for the timeline, a few hours of work based only on one chromatogram
leads to a sufficient description of the underlying thermodynamic system.

Moreover, when following the necessity for validation of the data due to accuracy
and precision distinctly [44] for quantitative process predictions as needed in regulated
industries and especially manufacturing conditions, the typical range of SMA parameter
values is able to predict with sufficient validity due to pre-existing studies [36].

Author Contributions: Conceptualization, J.S.; methodology, F.L.V. and J.S.; calculations, F.L.V.;
writing, editing, and reviewing, F.L.V. and J.S.; supervision, J.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding. We kindly acknowledge the support of Open
Access Publishing Fund of the Clausthal University of Technology.

Data Availability Statement: Data cannot be made publicly available.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study, in the collection, analyses or interpretation of data; in the writing of the manuscript or in
the decision to publish the results.

References
1. Strube, J.; Jupke, A.; Epping, A.; Schmidt-Traub, H.; Schulte, M.; Devant, R. Design, optimization, and operation of SMB

chromatography in the production of enantiomerically pure pharmaceuticals. Chirality 1999, 11, 440–450. [CrossRef]
2. Strube, J. Technische Chromatographie: Auslegung, Optimierung, Betrieb und Wirtschaftlichkeit; Zugl.: Dortmund, Univ., Habil.-Schr.,

1999, Als Ms. gedr; Shaker: Aachen, Germany, 2000; ISBN 978-3-8265-6897-8.
3. Seidel-Morgenstern, A. Mathematische Modellierung der Präparativen Flüssigchromatographie; Zugl.: Berlin, Techn. Univ., Habil.-Schr.,

1994; DUV Dt. Univ.: Wiesbaden, Germany, 1995; ISBN 9783824420643.
4. Dünnebier, G.; Engell, S.; Epping, A.; Hanisch, F.; Jupke, A.; Klatt, K.-U.; Schmidt-Traub, H. Model-based control of batch

chromatography. AIChE J. 2001, 47, 2493–2502. [CrossRef]
5. Engell, S.; Toumi, A. Optimisation and control of chromatography. Comput. Chem. Eng. 2005, 29, 1243–1252. [CrossRef]
6. Klatt, K.-U.; Hanisch, F.; Dünnebier, G.; Engell, S. Model-based optimization and control of chromatographic processes. Comput.

Chem. Eng. 2000, 24, 1119–1126. [CrossRef]
7. Wang, C.; Klatt, K.-U.; Dünnebier, G.; Engell, S.; Hanisch, F. Neural network-based identification of SMB chromatographic

processes. Control. Eng. Pract. 2003, 11, 949–959. [CrossRef]
8. Erdem, G.; Abel, S.; Morari, M.; Mazzotti, M.; Morbidelli, M.; Lee, J.H. Automatic Control of Simulated Moving Beds. Ind. Eng.

Chem. Res. 2004, 43, 405–421. [CrossRef]
9. Strube, J.; Zobel-Roos, S.; Ditz, R. Process-Scale Chromatography. Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH GmbH

& Co. KGaA: Weinheim, Germany, 2000; pp. 1–47, ISBN 9783527306732.
10. Guiochon, G.; Felinger, A.; Shirazi, D.G.; Katti, A.M. Fundamentals of Preparative and Nonlinear Chromatography, 2nd ed.; Elsevier

Academic Press: Amsterdam, The Netherlands, 2006; ISBN 9780123705372.

http://doi.org/10.1002/(SICI)1520-636X(1999)11:5/6&lt;440::AID-CHIR15&gt;3.0.CO;2-K
http://doi.org/10.1002/aic.690471112
http://doi.org/10.1016/j.compchemeng.2005.02.034
http://doi.org/10.1016/S0098-1354(00)00492-0
http://doi.org/10.1016/S0967-0661(02)00212-5
http://doi.org/10.1021/ie030377o


Processes 2022, 10, 715 7 of 8

11. Brooks, C.A.; Cramer, S.M. Steric mass-action ion exchange: Displacement profiles and induced salt gradients. AIChE J. 1992, 38,
1969–1978. [CrossRef]

12. Rajendran, A.; Maruyama, R.T.; Landa, H.O.R.; Seidel-Morgenstern, A. Modelling binary non-linear chromatography using
discrete equilibrium data. Adsorption 2020, 26, 973–987. [CrossRef]

13. Ortner, F.; Ruppli, C.; Mazzotti, M. Description of Adsorption in Liquid Chromatography under Nonideal Conditions. Langmuir
2018, 34, 5655–5671. [CrossRef]

14. Ilić, M.; Flockerzi, D.; Seidel-Morgenstern, A. A thermodynamically consistent explicit competitive adsorption isotherm model
based on second-order single component behaviour. J. Chromatogr. A 2010, 1217, 2132–2137. [CrossRef]

15. Guélat, B.; Ströhlein, G.; Lattuada, M.; Morbidelli, M. Electrostatic model for protein adsorption in ion-exchange chromatography
and application to monoclonal antibodies, lysozyme and chymotrypsinogen A. J. Chromatogr. A 2010, 1217, 5610–5621. [CrossRef]
[PubMed]

16. Streb, A.; Mazzotti, M. Adsorption for efficient low carbon hydrogen production: Part 1—Adsorption equilibrium and break-
through studies for H2/CO2/CH4 on zeolite 13X. Adsorption 2021, 27, 541–558. [CrossRef]

17. Subramanian, G. (Ed.) Process Control, Intensification, and Digitalisation in Continuous Biomanufacturing; Wiley-VCH: Weinheim,
Germany, 2022; ISBN 3-527-82734-X.

18. Bendersky, M.; Davis, J.M. DLVO interaction of colloidal particles with topographically and chemically heterogeneous surfaces. J.
Colloid Interface Sci. 2011, 353, 87–97. [CrossRef] [PubMed]

19. Galushko, S.V.; Shishkina, I.; Urtans, E.; Rotkaja, O. ChromSword®: Software for Method Development in Liquid Chromatography.
In Software-Assisted Method Development in High Performance Liquid Chromatography; Fekete, S., Molnár, I., Eds.; World Scientific
(Europe): London, UK, 2018; pp. 53–94, ISBN 978-1-78634-545-5.

20. Mazza, C.B.; Sukumar, N.; Breneman, C.M.; Cramer, S.M. Prediction of protein retention in ion-exchange systems using molecular
descriptors obtained from crystal structure. Anal. Chem. 2001, 73, 5457–5461. [CrossRef]

21. Salvalaglio, M.; Paloni, M.; Guelat, B.; Morbidelli, M.; Cavallotti, C. A two level hierarchical model of protein retention in ion
exchange chromatography. J. Chromatogr. A 2015, 1411, 50–62. [CrossRef]

22. Grimes, B.A.; Skudas, R.; Unger, K.K.; Lubda, D. Pore structural characterization of monolithic silica columns by inverse
size-exclusion chromatography. J. Chromatogr. A 2007, 1144, 14–29. [CrossRef]

23. Liapis, A.I.; Grimes, B.A. Modeling the velocity field of the electroosmotic flow in charged capillaries and in capillary columns
packed with charged particles: Interstitial and intraparticle velocities in capillary electrochromatography systems. J. Chromatogr.
A 2000, 877, 181–215. [CrossRef]

24. Skudas, R.; Grimes, B.A.; Thommes, M.; Unger, K.K. Flow-through pore characteristics of monolithic silicas and their impact on
column performance in high-performance liquid chromatography. J. Chromatogr. A 2009, 1216, 2625–2636. [CrossRef]

25. Leinweber, F.C.; Lubda, D.; Cabrera, K.; Tallarek, U. Characterization of silica-based monoliths with bimodal pore size distribution.
Anal. Chem. 2002, 74, 2470–2477. [CrossRef]

26. Ndocko Ndocko, E.; Ditz, R.; Josch, J.-P.; Strube, J. New Material Design Strategy for Chromatographic Separation Steps in
Bio-Recovery and Downstream Processing. Chem. Ing. Tech. 2011, 83, 113–129. [CrossRef]

27. Reich, S.-J.; Svidrytski, A.; Höltzel, A.; Wang, W.; Kübel, C.; Hlushkou, D.; Tallarek, U. Transport under confinement: Hindrance
factors for diffusion in core-shell and fully porous particles with different mesopore space morphologies. Microporous Mesoporous
Mater. 2019, 282, 188–196. [CrossRef]

28. Walther, C.; Voigtmann, M.; Bruna, E.; Abusnina, A.; Tscheließnig, A.-L.; Allmer, M.; Schuchnigg, H.; Brocard, C.; Föttinger-Vacha,
A.; Klima, G. Smart process development: Application of machine-learning and integrated process modeling for inclusion body
purification processes. Biotechnol. Prog. 2022, e3249. [CrossRef] [PubMed]

29. Jiang, Q.; Seth, S.; Scharl, T.; Schroeder, T.; Jungbauer, A.; Dimartino, S. Prediction of the performance of pre-packed purification
columns through machine learning. J. Sep. Sci. 2022, 1–13. [CrossRef] [PubMed]

30. Hubbuch, J. Editorial: High-throughput process development. Biotechnol. J. 2012, 7, 1185. [CrossRef]
31. Mouellef, M.; Vetter, F.L.; Zobel-Roos, S.; Strube, J. Fast and Versatile Chromatography Process Design and Operation Optimization

with the Aid of Artificial Intelligence. Processes 2021, 9, 2121. [CrossRef]
32. Mouellef, M.; Szabo, G.; Vetter, F.L.; Siemers, C.; Strube, J. Artificial Neural Network for Fast and Versatile Model Param-eter

Adjustment utilizing PAT signals of Chromatography Processes for Process Control under Production Conditions. Processes 2022,
10, 709. [CrossRef]

33. Briskot, T.; Hahn, T.; Huuk, T.; Hubbuch, J. Protein adsorption on ion exchange adsorbers: A comparison of a stoichiometric and
non-stoichiometric modeling approach. J. Chromatogr. A 2021, 1653, 462397. [CrossRef]

34. Briskot, T.; Hahn, T.; Huuk, T.; Wang, G.; Kluters, S.; Studts, J.; Wittkopp, F.; Winderl, J.; Schwan, P.; Hagemann, I.; et al.
Analysis of complex protein elution behavior in preparative ion exchange processes using a colloidal particle adsorption model. J.
Chromatogr. A 2021, 1654, 462439. [CrossRef]

35. Zobel-Roos, S. Entwicklung, Modellierung und Validierung von Integrierten Kontinuierlichen Gegenstrom-Chromatographie-
Prozessen. Ph.D. Thesis, Universitätsbibliothek der TU Clausthal, Clausthal-Zellerfeld, Germany, 2018.

36. Zobel-Roos, S.; Mouellef, M.; Ditz, R.; Strube, J. Distinct and Quantitative Validation Method for Predictive Process Modelling
in Preparative Chromatography of Synthetic and Bio-Based Feed Mixtures Following a Quality-by-Design (QbD) Approach.
Processes 2019, 7, 580. [CrossRef]

http://doi.org/10.1002/aic.690381212
http://doi.org/10.1007/s10450-020-00220-9
http://doi.org/10.1021/acs.langmuir.8b00552
http://doi.org/10.1016/j.chroma.2010.02.006
http://doi.org/10.1016/j.chroma.2010.06.064
http://www.ncbi.nlm.nih.gov/pubmed/20663509
http://doi.org/10.1007/s10450-021-00306-y
http://doi.org/10.1016/j.jcis.2010.09.058
http://www.ncbi.nlm.nih.gov/pubmed/20950822
http://doi.org/10.1021/ac010797s
http://doi.org/10.1016/j.chroma.2015.07.101
http://doi.org/10.1016/j.chroma.2006.11.007
http://doi.org/10.1016/S0021-9673(00)00185-0
http://doi.org/10.1016/j.chroma.2009.01.079
http://doi.org/10.1021/ac011163o
http://doi.org/10.1002/cite.201000158
http://doi.org/10.1016/j.micromeso.2019.02.036
http://doi.org/10.1002/btpr.3249
http://www.ncbi.nlm.nih.gov/pubmed/35247040
http://doi.org/10.1002/jssc.202100864
http://www.ncbi.nlm.nih.gov/pubmed/35262290
http://doi.org/10.1002/biot.201200333
http://doi.org/10.3390/pr9122121
http://doi.org/10.3390/pr10040709
http://doi.org/10.1016/j.chroma.2021.462397
http://doi.org/10.1016/j.chroma.2021.462439
http://doi.org/10.3390/pr7090580


Processes 2022, 10, 715 8 of 8

37. Carta, G.; Jungbauer, A. Protein Chromatography: Process Development and Scale-Up; Wiley-VCH: Weinheim, Germany, 2010;
ISBN 978-3-527-31819-3.

38. Seidel-Morgenstern, A.; Guiochon, G. Modelling of the competitive isotherms and the chromatographic separation of two
enantiomers. Chem. Eng. Sci. 1993, 48, 2787–2797. [CrossRef]

39. Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403.
[CrossRef]

40. Seidel-Morgenstern, A. Experimental determination of single solute and competitive adsorption isotherms. J. Chromatogr. A 2004,
1037, 255–272. [CrossRef] [PubMed]

41. Mollerup, J.M. A Review of the Thermodynamics of Protein Association to Ligands, Protein Adsorption, and Adsorption
Isotherms. Chem. Eng. Technol. 2008, 31, 864–874. [CrossRef]

42. Carta, G.; Rodrigues, A.E. Diffusion and convection in chromatographic processes using permeable supports with a bidisperse
pore structure. Chem. Eng. Sci. 1993, 48, 3927–3935. [CrossRef]

43. Wilson, E.J.; Geankoplis, C.J. Liquid Mass Transfer at Very Low Reynolds Numbers in Packed Beds. Ind. Eng. Chem. Fund. 1966, 5,
9–14. [CrossRef]

44. Sixt, M.; Uhlenbrock, L.; Strube, J. Toward a Distinct and Quantitative Validation Method for Predictive Process Modelling—On
the Example of Solid-Liquid Extraction Processes of Complex Plant Extracts. Processes 2018, 6, 66. [CrossRef]

http://doi.org/10.1016/0009-2509(93)80189-W
http://doi.org/10.1021/ja02242a004
http://doi.org/10.1016/j.chroma.2003.11.108
http://www.ncbi.nlm.nih.gov/pubmed/15214669
http://doi.org/10.1002/ceat.200800082
http://doi.org/10.1016/0009-2509(93)80371-V
http://doi.org/10.1021/i160017a002
http://doi.org/10.3390/pr6060066

	Introduction 
	Materials and Methods 
	Results 
	Discussion 
	References

