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Abstract: Flash calculations, including phase split and phase classification for both n-octane/water
blends and paraffinic aromatic synthetic naphtha (PASN)/water blends present significant compu-
tational challenges. Calculations to establish the two-phase and three-phase regions, as well as the
transitions between regions, were addressed by a phase classification method proposed in a recent
contribution involving machine learning (ML). This work focusses on the phase-split calculations,
considering (a) the lack of numerical convergence of the traditional calculations and their related
numerical issues for water/n-octane and PASN/water systems based on the Rachford–Rice derived
surfaces and (b) the successful implementation of an ML approach based on a K-nearest-neighbor
(KNN) algorithm, which uses the abundant experimental data obtained in a CREC-VL cell.
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1. Introduction

Phase equilibrium calculations deal with two main problems [1]: (i) phase stability or
the number of phases present, and (ii) phase split or the establishment of the composition
and amount of each phase present. For water/hydrocarbon mixtures, conventional ap-
proaches to determine phase equilibrium are computationally expensive. Furthermore, the
various analyses are penalized by the lack of good initial estimates of equilibrium phase
ratios [2,3].

While the number of phases at thermodynamic equilibrium is an unknown condition,
as considered in our previous work [4–6], experimental data from the CREC-VL cell can
be used to determine whether two-phase or three-phase regions are present. This allows
for, in combination with ML, an effective “a priori” classification of the number of phases.
This also reduces the computational cost and gives better initial estimates of the phase-split
calculation once the model is trained.

Traditionally, the designated Rachford–Rice equations [7] can be used to solve the
phase-split calculations for a flash unit (Figures 1 and 2). The equations for both two-phase
and three-phase calculations are summarized in Equations (1)–(3).

F(β) =
N

∑
i=1

zi(Ki − 1)
1 + β(Ki − 1)

= 0 (1)

F(β) =
N

∑
i=1

zi
(
Km

i − 1
)

Hi
= 0 (2)

Hi = 1 + βL
(

KL
i − 1

)
+ βW

(
KW

i − 1
)

(3)

where β corresponds to the vapor mole fraction, zi is the molar fraction of component i, Ki
stand for the equilibrium constants, and Hi is an auxiliary variable.
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Calculations using the Rachford–Rice equations may involve different numerical
approaches as reported in the technical literature, such as successive substitution, quasi-
Newton, Newton, steepest-descend, and their modifications and combinations [2].

In the present study, two-phase and three -flash calculations are specifically developed
for water/n-octane and PASN/water blends using the Soave–Redlich–Kwong–Kabadi–
Danner equation of state (SRKKD EoS). Following this, convergence calculations and
numerical issues for water/n-octane and for PASN/water systems are established by
using the resulting Rachford–Rice derived surfaces. Once this is accomplished, phase-split
computations are compared with those from the ML approach in terms of vapor pressure.
The outcome of this highlights the importance of an ML approach for accurate predictions,
which is developed quite effectively by using the abundant research data available from
the CREC-VL Cell experiments [8].

2. Mathematical Model
Soave–Redlich–Kwong–Kabadi–Danner (SRKKD) Equation of State

Traditionally, the Peng–Robinson (PR) equation of state (EoS) is one of the most popu-
lar EoSs, for calculating hydrocarbon-based PVT behavior, including vapor pressures [9].
When using simulation software, such as HYSYS V9 or Aspen Plus V9, it is considered one
of the most improved thermodynamic models available, given its large binary interaction
parameter database.

However, the PR EoS displays limitations when it is considered for water or aqueous
hydrocarbon mixtures [10]. In these cases, as suggested by previous research from our
CREC-UWO group [8], the PR EoS does not describe well the system under study, and a
different EoS must be used. In binary systems, such as n-octane/water mixtures, an activity
coefficient model can be used, as we proposed in our previous work [4].

Nevertheless, classical activity coefficient models are limited to low pressures (≤10 bar)
with no C7+ species included. In the case of water and heavy hydrocarbons, such as naphtha
or bitumen (C7+), as in the present study, a cubic equation of state is strongly suggested. In
this work, the Soave–Redlich–Kwong (SRK) EoS with a Kabadi–Danner [11] modification
is used. These authors suggested that the SRK EoS with Kabadi–Danner modification
improves the VLLE calculations for water–hydrocarbon systems, particularly under highly
diluted hydrocarbons in water, which is of great interest for this research.
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Given the reported advantages of using the Kabadi–Danner modification with the
Soave–Redlich–Kwong EoS (SRKKD EoS) for VLL equilibrium calculations for hydrocarbon–
water blends [12,13], the SRKKD EoS was used in the present study. The SRKKD EoS can
be defined by Equations (4)–(8) as follows:

P =
RT

V − b
− a

V(V + b)
(4)

a = 0.42748
R2T2

C
PC

[
1 + Ω

(
1− T1/2

r

)]2
(5)

b = 0.08664
RTC
PC

(6)

Ω = 0.480 + 1.574ω− 0.176ω2 (7)

Z3 − Z2 +
(

A′ − B′ − B′2
)

Z− A′B′ = 0 (8)

where A′ = aP
(RT)2 and B′ = bP

RT .

The mixing rules required to determine the SRK EoS parameters are given by
Equations (10) and (11), with the Kabadi–Danner modification being reported by
Equations (9) and (12)–(14) [11].

amix = a0 + aKD (9)

a0 =
N

∑
i=1

N

∑
j=1

xixj
(
1− kij

)√
aiaj (10)

bmix =
N

∑
i=1

xibi (11)

aKD =
N

∑
i=1

a′′wix
2
wxi (12)

a′′wi = Gi

[
1−

(
T

Tcw

)0.8
]

(13)

Gi = ∑
l

gl (14)

With respect to Gi, it can be calculated using group contribution methods, which
account for the sum of the contributions of the different functional groups included in every
hydrocarbon molecule. Values from various functional groups can be obtained from the
table published by Kabadi–Danner (1985) [11]. The kij parameters used for the calculations
reported in this work were taken from HYSYS V9 software.

Furthermore, to compute the fugacity coefficient with the SRKKD EoS, Equations (15)
and (16) can be used [14] as follows:

ln φi =
bi
b
(Z− 1)− ln

(
Z− B′

)
− Ci′ ln

Z + B′

Z
(15)

C′i =
A′

B′

(
− bi

b
+

2
a

N

∑
j=1

xj
√

aiaj
(
1− kij

))
(16)

3. Materials and Methods
3.1. Materials

Distilled water was used with a pH of 7 ± 0.05 and a total organic carbon of less
than 0.1 ± 0.02 ppm for all experimental studies. In the case for the alkane compounds,
Sigma-Aldrich HPLC assay purity reagents were used. The purity of those hydrocarbons
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was represented in mole percent as follows: n-hexane >97%, n-heptane >96%, n-octane
>99%, n-decane >99%, n-dodecane >99%. The water content of the n-alkanes was 0% for
n-octane and n-dodecane, 0.01% for n-hexane and n-decane, and 0.02% for n-heptane.
Toluene was obtained from Fisher Scientific with a purity >99% and 0.008% water content.

3.2. CREC Vapor–Liquid Equilibrium Cell

The Chemical Reactor Engineering Center (CREC) developed a CREC VL-Cell [15]
that allows for the measurement of VLL equilibrium (Figure 3). This unit uses a “dynamic
method”. The temperature of the cell increases progressively by using a thermal ramp of
1.2 ◦C/min. As a result, every run provides plenty of vapor–liquid equilibrium data at 10
Hz every 0.01 s. Additional explanations about the cell operation are reported in [8,15].
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patterns inside the CREC VL-Cell.

The CREC VL-Cell uses a marine type of impeller (propeller). The unit propeller helps
to ensure a well dispersed and homogeneous blend of non-miscible liquids. This provides a
good heat distribution inside the CREC VL-Cell. Furthermore, the special cell design allows
one to directly analyze a process sample. It also avoids losses of light volatile components
due to sample transfers.

The CREC VL-Cell has two thermocouples strategically located inside the CREC VL-
Cell and connected to a temperature data acquisition unit. The thermocouples help to
measure both the gas- and liquid-phase temperatures within the VL-Cell through a USB
desktop computer port. As a result, experimental data can be stored and displayed in real
time on a PC using Omega temperature data acquisition software.

In addition to these features, the CREC VL-Cell includes a pressure transducer placed
alongside a pressure gauge. The combinations of two separate pressure instruments
allows for simultaneous measurement and validation of the saturation vapor pressure.
The pressure transducer is logged into a desktop USB port, allowing for observation and
registration of the changes of pressure through the Omega software. Thus, one should note
that the instrumentation implemented into the CREC VL-Cell delivers accurate temperature
and pressure data [15]. In addition, the automatization of the CREC VL-Cell permits the
collection of large amounts of vapor pressure data per experiment, which constitute a very
valuable source of information for VLL equilibrium simulations and modeling.

4. Results and Discussion
4.1. Traditional Phase-Split Calculations

Traditionally, phase-split calculations are performed by solving Rachford–Rice (RR)
equations involving phase equilibrium constants. Rachford–Rice equations are nonlinear
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functions obtained from the equal chemical potentials combined with species material
balances [2].

In the case of the three-phase flash, the main equations (Equations (17)–(21)) are
reported below, with the hydrocarbon phase used as a as reference [2,16].

fV(β) = RRV =
N

∑
i=1

(
yi − xL

i

)
=

N

∑
i=1

zi
(
KV

i − 1
)

Hi
= 0 (17)

fW(β) = RRW =
N

∑
i=1

(
xW

i − xL
i

)
=

N

∑
i=1

zi
(
KW

i − 1
)

Hi
= 0 (18)

Hi = 1 + βV
(

KV
i − 1

)
+ βW

(
KW

i − 1
)

(19)

Or

fV(β) =
N

∑
i=1

zi
(
1− KV

i
)

ti
= 0 (20)

fW(β) =
N

∑
i=1

zi
(
1− KW

i
)

ti
= 0 (21)

ti = 1− βV
(

1− KV
i

)
− βW

(
1− KW

i

)
(22)

In this respect, the root-finding calculation is a complex one, given these equations
present discontinuities at their extremes (division by zero) and may have an almost flat
slope near their roots [17].

Additionally, in solving the Rachford–Rice equations, the choice of numerical method
is influenced by the independent variables that are selected, such as component mole
fractions, equilibrium ratios, or the logarithm of equilibrium ratios [18].

When equilibrium constant ratios or logarithms of equilibrium constants are con-
sidered, a Newton–Raphson method is typically applied. In the case of mole fractions,
either a Newton method or a minimization of Gibbs free energy can be considered [19].
Logarithms of K calculations are usually preferred, given the use of mole fractions may
create an ill-defined Jacobian, and the natural logarithm stabilizes the Newton method
when K values of different orders of magnitude are involved [18].

Regarding multiphase flash-split calculations with three or more phases, they typically
involve an outer loop, where the equilibrium constants are calculated, and an inner loop,
where the mass balances (Rachford–Rice equations) are evaluated. The end goal is to
determine the phase mole fractions and the compositions for a given set of K values [20].
This inner loop is known as “constant-K” flash [21].

Given the above, a general algorithm to solve multiphase flash calculations is described
in Figure 4. It can be observed that within each successive substitution step, the Rachford–
Rice equations designated as “constant-K” flash are solved independently.

One should note that the solution of the two-phase constant-K flash calculation is
a relatively easy one. However, and in the case where one has to account for a three-
phase flash, these calculations may become extensive and challenging. This is due to the
non-linearity of the objective resulting functions [18].

The “constant-K” flash is discussed in Section 4.2. In this respect, in phase-split calcu-
lations, good initial estimates increase the probability of finding the global minimum Gibbs
free energy, with an initial guess from stability testing or the previous simulation timestep
being an option [2]. To accomplish this, constraints for the initial estimates are usually
needed, as suggested previously by Okuno et al. [20] and Leibovici and Neoschil [22].
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4.2. Constant-K Flash Solution

The solution of the “constant-K flash” has been studied previously using two different
approaches [24], which include (i) minimization techniques and (ii) direct solution of
the RR equations. Tranenstein (1985) [19] proposed a constrained minimization of the
Gibbs free energy to solve the two-phase problem, whereas Leibovicy and Jean (1995) [22]
used a Newton procedure with a relaxation parameter to solve the multiphase problem.
Furthermore, Okuno et al. (2010) [20] minimized the non-monotonic convex function using
the independent-phase mole fractions. Haugen et al. (2011) [24] used a two-dimensional
bisection method to provide good initial guesses for the Newton algorithm in the three-
phase case. Li and Firoozabadi (2012) [2] employed stability testing as an initial guess for
phase-split calculations with a two-dimensional bisection method for two and three phases.
Yan and Stenby (2014) [25] proposed Householder’s high-order iteration method together
with a method to improve the initial estimate for the two-phase problem. More recently,
Fernandez-Martinez et al. (2020) [17] applied an associated polynomial to obtain all the
roots of a two-phase isothermal flash.

One of the most popular approaches to solve the “constant-K” flash problem is to use
a Newton–Raphson method to solve Rachford–Rice equations (Equations (17) and (18)),
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obtaining values for βV and βW . In that case, the Newton–Raphson method considered is
given by Equations (23)–(27).

βm, new = βm, old −
[
∇ f (βm)T

]−1
[ f (βm)] (23)

βm, new = βm, old − [J(βm)]−1[ f (βm)] (24)

βm =

[
βV

βW

]
(25)

f (βm) =

[
fV(βm)
fW(βm)

]
(26)

J(βm) =


N
∑

i=1

−zi(KV
i −1)

2

Hi
2

N
∑

i=1

−zi(KV
i −1)(KW

i −1)
Hi

2

N
∑

i=1

−zi(KV
i −1)(KW

i −1)
Hi

2

N
∑

i=1

−zi(KW
i −1)

2

Hi
2

 (27)

Or

J(βm) =


N
∑

i=1

zi(1−KV
i )

2

ti
2

N
∑

i=1

zi(1−KV
i )(1−KW

i )
ti

2

N
∑

i=1

zi(1−KV
i )(1−KW

i )
ti

2

N
∑

i=1

zi(1−KW
i )

2

ti
2

 (28)

The Newton–Raphson method solution can converge to a non-desired root value, with
this being a function of the initial guest. It can also lead to numerical divergence, with this
being an inherent characteristic of the non-linear equations being solved [18]. As shown
by Hinojosa-Gomez et al. (2012) [26], Newton’s method fails to converge near the critical
point and phase boundaries. Thus, good initial guesses are required for the phase fraction
(β) calculations, with poor initial estimates leading to incorrect roots or being unable to
find a numerical solution [24,26].

In this respect, the initial guess for βV , βW should be constrained within the proper
solution domain. In this sense, when approaching the numerical solution of the constant-K
flash, it is advantageous to consider this as an iterative constrained minimization calculation
instead of being a root-finding problem [20]:

βm, new = βm, old −
[
∇2F(βm)

]−1
[∇F(βm)] (29)

F(β) refers to a convex function, as proven by Okuno et al., 2010 [20], with N linear
constrains and with f representing the F gradient, with the condition of having a symmetric
Jacobian matrix [20,27]. If this is the case, the F(β) scalar function involves a gradient vector,
which represents the RR equations [20].

By integrating f j (Equations (20) and (21)) with respect to βj, one can obtain
Equation (31), with the integration constant set to zero:

F(β) =
N

∑
i=1

zi ln|Hi| (30)

Or, alternatively:

F(β) =
N

∑
i=1
−zi ln|ti| (31)

When examining the possible mathematical solutions for a multiphase system at
equilibrium with the number of phases larger than 2 (Np > 2), one can notice that the range
of these solutions is wider than the space of the physical solutions [22]. To address this
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matter, Leibovicy and Neoschil (1995) [22] proposed that numerical solutions should be
limited by hyperplanes defined by:

1 +
l=Np

∑
l=2

(Kli − 1)βl = 0 (32)

1 + βV
(

KV
i − 1

)
+ βW

(
KW

i − 1
)
= 0 (33)

In this respect, it is important to notice that in Equation (31), the region ti > 0 is
unbounded if the following applies: (a) the function is monotonic, (b) it does not have a
minimum, and (c) there is no solution to the constant-K flash with Np phases [20].

In that sense, Okuno et al. [20] proposed a feasible solution region based on the non-
negativity of phase-component mole fractions in a given phase, L (0 ≤ xL

i ≤ 1 (i = 1, 2, . . . Nc)),
such as:

xL
i =

zi
Hi

=
zi
ti

(34)

xW
i = xL

i KW
i (35)

yi = xL
i KV

i (36)

Then, from Equation (34) and with positive phase-component mole fractions in phase
L, it results:

0 ≤ zi
ti
≤ 1 (37)

0 ≤ zi ≤ ti (38)

0 ≤ zi ≤ 1− βV
(

1− KV
i

)
− βW

(
1− KW

i

)
(39)

0 ≤ βV
(

1− KV
i

)
+ βW

(
1− KW

i

)
≤ 1− zi (40)

And from Equations (35) and (36):

0 ≤ zi
ti

KW
i ≤ 1 (41)

0 ≤ ziKW
i ≤ ti (42)

0 ≤ ziKW
i ≤ 1− βV

(
1− KV

i

)
− βW

(
1− KW

i

)
(43)

0 ≤ βV
(

1− KV
i

)
+ βW

(
1− KW

i

)
≤ 1− ziKW

i (44)

0 ≤ ziKV
i ≤ ti (45)

0 ≤ ziKV
i ≤ 1− βV

(
1− KV

i

)
− βW

(
1− KW

i

)
(46)

0 ≤ βV
(

1− KV
i

)
+ βW

(
1− KW

i

)
≤ 1− ziKV

i (47)

Equations (40), (44), and (47) can be summarized as follows:

βV
(

1− KV
i

)
+ βW

(
1− KW

i

)
≤ min

(
1− zi, 1− ziKW

i , 1− ziKV
i

)
(48)

For i = 1, 2, . . . Nc.
Okuno et al. [20] proposed a general definition of these thermodynamic parameters

as: aT
i β ≤ bi with ai = 1− Kp

i , β =
[
βV , βW] and bi = min

(
1− zi, min

(
1− ziK

p
i

))
.
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The constant-K flash problem is solved by Equation (49).

Minimize : F(β) =
N

∑
i=1
−zi ln|ti| subject to aT

i β ≤ bi (49)

In that sense, Equation (49) accounts for the “negative flash” case. One should note
that when the iterative flash procedure yields β values in the β < 0 or β > 1 ranges,
this leads to a “negative flash” [28]. These “negative flashes”, although “not physically
acceptable” roots, can be preserved for the next calculation step. This is the case, given the
anticipated function continuity. It is interesting to mention that Okuno et al.’s resulting
algorithm performs better with initial negative roots than when the condition 0 ≤ β ≤ 1 is
complied from the very beginning in the first calculation step [28].

4.3. Algorithm to Solve the Flash Unit for Water/PASN Mixtures

After addressing the numerical solution of the constant-K flash problem, it is possible
to complete the flash calculations as described in Figure 4. In this sense, the steps involved
in the flash calculations are as follows:

1. Input the operating and feed conditions: T, P, zi;
2. Provide an initial guess for the K-values;
3. Solve Rachford–Rice equations as discussed in Section 4.2, minimizing Equation (49);
4. Calculate xL

i , xw
i , and yi from Equations (34)–(36);

5. Calculate the fugacity coefficients from Equation (15);
6. Calculate objective functions and compare with tolerance:

FV
obj = ln KV

i − ln φL
i + ln φV

i (50)

FW
obj = ln KW

i − ln φL
i + ln φW

i ; (51)

7. Update K-values:
ln KV

i = ln φL
i − ln φV

i (52)

ln KW
i = ln φL

i − ln φW
i ; (53)

8. Check that
N
∑

i=1
xL

i = 1,
N
∑

i=1
xW

i = 1, and
N
∑

i=1
yi = 1.

The main problem with the proposed algorithm is that it may be computationally
very expensive [1] as a function of the initial guesses chosen, as well as presenting both
convergence and accuracy issues.

When applying the Newton–Raphson method (Equations (23)–(27)) using an initial
estimate within the set boundaries (as presented in the following section), such as βV

sup = 0.4
and βW

sup = 0.2, for the water/PASN, employing SRKKD EoS model and Python, the result
is βV = 0.10004025 and βW = 0.44494793 root with four iterations only. In this respect, the
HYSYS V9 results in this case were βV = 0.1 and βW = 0.4449395, with the difference being
much lower than 0.1%. In contrast and as expected, for the water/n-octane system, the
calculation reaches the 10,000 maximum number of iterations with the obtained results not
having physical meaning: βV = −10.9198 and βW = 2.6645 ∗ 10−15.

Given the above, the function F(β) (Equation (49)) for the water/PASN mixture was
minimized using different methods within the minimize functions available in the Python
Optimize library. Tolerance was set in the 10−8 range, with the percentage of difference for
the calculated β values being lower than 0.3%. Table 1 reports the various methods tested.
Best results were obtained using the constrained optimization by linear approximation
(COBYLA) method.
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Table 1. Results for water/PASN system using different methods for the minimize function of
Scipy-Optimize package for Python.

Initial Estimate Method Result % Difference

β =
[

0.4 0.2
] Constrained Optimization BY

Linear Approximation
(COBYLA)

β =
[

0.10004048 0.44494783
] [

0.04% 0.0019%
]

β =
[

0.4 0.2
] Sequential Least Squares

Programming (SLSQP) β =
[

0.10004144 0.44494715
] [

0.04% 0.0017%
]

β =
[

0.4 0.2
]

trust-constr β =
[

0.09995574 0.44541656
] [

0.04% 0.1072%
]

β =
[

0.9 0.1
] Constrained Optimization BY

Linear Approximation
(COBYLA)

β =
[

0.1000405 0.44494781
] [

0.04% 0.0019%
]

β =
[

0.9 0.1
] Sequential Least Squares

Programming (SLSQP) β =
[

0.09993294 0.44500976
] [

0.07% 0.016%
]

β =
[

0.9 0.1
]

trust-constr β =
[

0.09976697 0.44642034
] [

0.23% 0.32%
]

However, in spite of this, none of the considered methods led us to meaningful
physical solutions for water/n-octane blends, as reported in Table 2. Not even a genetic al-
gorithm was able to numerically solve this case, arriving at a result of β =

[
−20.7 14.2

]
.

Additional explanations of this matter are described in Section 4.4.

Table 2. Results for water/n-octane system using different methods for the minimize function of
Scipy-Optimize package for Python.

Initial Estimate Method Result

β =
[

0.4 0.2
] Constrained Optimization BY

Linear Approximation
(COBYLA)

β =
[
−0.1780 0.6150

]
β =

[
0.4 0.2

] Sequential Least Squares
Programming (SLSQP) β =

[
0.4146 0.2220

]
β =

[
0.4 0.2

]
trust-constr β =

[
0.4150 0.2224

]
β =

[
0.9 0.1

] Constrained Optimization BY
Linear Approximation

(COBYLA)
β =

[
−0.0142 0.5063

]
β =

[
0.9 0.1

] Sequential Least Squares
Programming (SLSQP) β =

[
0.8080 −0.0388

]
β =

[
0.9 0.1

]
trust-constr β =

[
0.8086 −0.0377

]
Regarding the VLLE for water/PASN, it can be calculated accordingly, as reported in

Table 3. In this case, the bubble pressure (βV = 0), which is of interest for this research, can
be calculated using both Python and Hysis V9.

However, when comparing VLLE results from HYSYS V9 and results from SRKKD
EoS implemented with Python, the described Python algorithm for water/PASN works
better to calculate pressure results than HYSYS V9, as shown in Figures 5 and 6, with
SRKKD EoS implemented with Python achieving better agreement with experimental data
from the CRE VL-Cell.
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Table 3. Pressure calculation results for water/PASN system in VLLE region (no air).

Conditions Python Results (kPa) HYSYS V9 Results (kPa) Difference (%)

T = 80 ◦C
86.10 91.53 6.31%Zw = 0.5

T = 80 ◦C
86.10 91.53 6.31%Zw = 0.1

T = 80 ◦C
86.10 91.53 6.31%Zw = 0.9

T = 110 ◦C
242.55 254.41 4.89%Zw = 0.5

T = 110 ◦C
242.55 254.41 4.89%Zw = 0.1

T = 110 ◦C
242.55 254.41 4.89%Zw = 0.9
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On the other hand, in the case of water/n-octane blends, the described algorithm
presents convergence problems. To describe these issues, it is important to establish how the
numerical Rachford–Rice equations (Equations (17)–(19)) influence these types of iterative
calculations for both water/n-octane and water/PASN mixtures. To address this matter,
the following section evaluates the approach proposed by Li and Firoozabadi [29] and the
boundaries set by Okuno et al. [20].

4.4. Issues with Constant-K Solution Calculations

Li and Firoozabadi [29] reported some examples of how RRy and RRw surfaces
(Rachford–Rice surfaces) change, whereas βV and βw are varied, with βV and βw pa-
rameters representing the vapor and water fraction, respectively. A display of one of the
examples reported by Li and Firoozabadi for a general case [29] is shown in Figure 7 for
RRy and RRw intersecting the z = 0 plane.
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The triangle defined in Figure 7a by the vertices (0,1), (0, 0), and (1, 0) represents the
solution domain [29], with the solution at RRy = 0 and RRw = 0 plane shown with a
red dot.

In this regard, if one attempts to develop a similar Python-based calculation for an
octane/water blend “constant-K” flash, one can observe that it is not possible to obtain
a converging iterative solution. This is also true for a wide range of octane in water
concentrations in the 0.5–99.75 wt.% range.

As a result, to provide a sound explanation of the findings, the following steps
were followed:

(a) The first step involves the SRKKD EoS model and HYSYS V9 with “constant-K” flash
simulations. Equilibrium constants are approximated on this basis and used later for
a thorough analysis of Rachford–Rice equations.

(b) The second step considers a “constant-K” flash calculation using the equilibrium con-
stant calculated in step 1. This helps to provide a good understanding of how the
Rachford–Rice equations perform in such hydrocarbon/water mixtures.

4.4.1. Octane–Water Blends

To illustrate the calculations, a three-phase separator was specified in HYSYS V9
feeding a 100 kgmol/h blend with a 50% mol water/50% mol n-octane mixture for the first
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step. Working conditions for this three-phase separator were T = 80 ◦C and a vapor fraction
of 0.1. In this case, the presence of air was not considered. Results obtained are reported in
Table 4.

Table 4. HYSYS V9 results for three-phase flash calculations at T = 80 ◦C using SRKKD.

Molar Fraction
Molar Flow
(kgmol/h) Water n-Octane

Feed 100.00 0.5 0.5
Hydrocarbon Phase 46.94 6.09 × 10−3 0.9939

Aqueous Phase 43.06 ≈1.0 1.20 × 10−6

Vapor 10.00 0.6651 0.3349

In developing the second calculation step, using the KV
i and KW

i constants obtained
from HYSYS V9 in Python, the RRy and RRw values were in a low-level range, as shown
in Figure 8a. The values of βV and βw also changed in a restricted domain. Furthermore,
if the βV value was higher than 0.63 or βw was higher than 0.58, the solution for RRy and
RRw did not converge.
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Additionally, when RRy and RRw were considered at z = 0, the obtained βw for different
values of βV led to two parallel and z = 0 plane-superimposed RRy and RRw straight lines,
as shown in Figure 9. In contrast, an HYSYS V9 solution was obtained, as identified with a
red dot in Figure 9.
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As a result of this and under these conditions, one can understand why the iterative
calculations trying to find an intersection of the RRy and RRw lines fail and the “constant-K”
solution remains unknown.

Regarding these results, Haugen and Firoozabadi [24] advanced that algorithms of
this type solving RR equations can fail when the lines at RRy = 0 and RRw = 0 are parallel
in the domain of interest. In this respect, these authors designated these conditions as
the result of a “bicritical point” where two of the phases have very similar compositions.
They identified three different kinds of “bicritical regions” [24]: (i) KV

i ≈ 1, (ii) KW
i ≈ 1

or (iii), and KV
i ≈ KW

i . In this case, the K values for water/n-octane mixtures are as
follows: KV

i =
[
1.0925102, 3.369210−1] and KW

i =
[
1.6426102, 1.210510−6]. As a result

and given the conditions considered involving KV
i ≈ KW

i , they could be considered in
partial agreement with case (iv) from the Haugen and Firoozabadi criteria [24].

For different temperatures (in this case, 110 ◦C) (Table 5), the behavior of n-octane/water
mixtures displays similar calculation challenges, as can be observed in Figures 10 and 11.

Table 5. HYSYS V9 results for three-phase flash calculations at T = 100 ◦C using SRKKD.

Molar Fraction
Molar Flow
(kgmol/h) Water n-Octane

Feed 100.00 0.3 0.7
Hydrocarbon Phase 61.38 1.60 × 10−2 0.9840

Aqueous Phase 8.62 ≈1.0 2.06 × 10−6

Vapor 30.00 0.6799 0.3201
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110 °C. 

Figure 10. RRy and RRw surfaces intersecting the z = 0 plane for 30% mole water/n-octane at
T = 110 ◦C.
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Haugen et al. (2011) [24] described that the non-converging lines problem leads to
a very large number of iterations, with the numerical solution becoming unacceptably
expensive.

Thus, in the case of octane/water mixtures, the described shape of the RRy and RRw
surfaces make it very challenging for a proposed algorithm, such as the SRKKD EoS model
with Python algorithm, to converge towards a “constant-K” flash solution.

4.4.2. PASN/Water Blends

In contrast with the “non-convergence” results described in Sections 4.3 and 4.4.1 for
n-octane/water blends, the PASN/water mixtures evaluated with the SRKKD EoS model
with Python can provide consistent “constant-K” flash-convergent simulations. This is the
case when performing flash calculations for a 50%mole water/PASN mixture. Results after
convergence are presented in Table 6.

Table 6. PASN/water mixture three-phase flash calculations at T = 80 ◦C and P = 83.16 kPa using
SRKKD model, the Rachford–Rice equations and the Python calculations of the present study.

Molar Fraction
Molar Flow
(kgmol/h) Water n-Hexane n-Heptane n-Octane n-Decane Toluene n-Dodecane

Feed (Water) 50.00 1 0 0 0 0 0 0
Feed (PASN) 50.00 0 0.11939808 0.2259054 0.540451 4.34 × 10−2 5.88 × 10−2 1.21 × 10−2

Hydrocarbon
Phase 45.51 5.48 × 10−3 0.0967 0.2171 0.5623 4.75 × 10−2 5.75 × 10−2 1.33 × 10−2

Aqueous
Phase 44.49 ≈1.00 5.80 × 10−17 5.11 × 10−19 2.74 × 10−21 8.65 × 10−28 2.70 × 10−12 1.47 × 10−34

Vapor 10.00 0.4951 0.1599 0.1481 0.1604 2.47 × 10−3 3.37 × 10−2 1.32 × 10−4

Figure 12 reports the calculated RRy and RRw, using Ki
V and Ki

W from the SRKKD
model using the Python calculations. In this case, values of βV and βW are smaller than 0.5,
providing converging numerical solutions in all cases.
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Ki approximated by HYSYS V9 (Figure 11), the boundary conditions proposed by Okuno 

et al. [20] result in Equations (54) and (55), with the hyperplanes superimposed to the lines 

for 𝑹𝑹𝒚 = 0 and 𝑹𝑹𝒘 = 0, as presented in Figure 14.  

−108.2527𝛽𝑉 − 163.2577𝛽𝑊 ≤ −81.1289 (54) 

0.6631𝛽𝑉 + 𝛽𝑊 ≤ 0.5 (55) 

Figure 12. RRy and RRw surfaces intersecting the z = 0 plane for 50 mol% water/PASN at T = 80 ◦C.
(a) 3D surfaces, (b) top view.

Figure 13 further describes the “constant-K” flash solution for the RRy = 0 and
RRw = 0 lines, displaying the numerical βV and βW solutions with convergence assured.
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4.4.3. Boundary Conditions

Regarding the boundary conditions, if one considers the water/n-octane mixture
with Ki approximated by HYSYS V9 (Figure 11), the boundary conditions proposed by
Okuno et al. [20] result in Equations (54) and (55), with the hyperplanes superimposed to
the lines for RRy = 0 and RRw = 0, as presented in Figure 14.

− 108.2527βV − 163.2577βW ≤ −81.1289 (54)

0.6631βV + βW ≤ 0.5 (55)
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Figure 14. Boundaries for βV and βW as poposed by Okuno et al. [20] for water/n-octane mixtures.
Notes: (i) reported lines are for RRy = 0; (ii) the two superimposed blue lines encompass both
Equations (54) and (55) lines.

Furthermore, in applying the boundary conditions proposed by Okuno et al. [20] for
the water/PASN blend, the hyperplanes related to Equations (56)–(62) can be represented
as in Figure 15.

− 89.43 βV − 181.62 βW ≤ −90.31 (56)

− 0.6535 βV + βW ≤ 0.9013 (57)

0.3178 βV + βW ≤ 0.8870 (58)

0.7147 βV + βW ≤ 0.7297 (59)

0.9479 βV + βW ≤ 0.9783 (60)

0.9901 βV + βW ≤ 0.9940 (61)

0.4134βV + βW ≤ 0.9706 (62)
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Figure 15. Boundaries for βV and βW as poposed by Okuno et al. [20] for water/PASN mixtures.
Notes: (i) the blue solid lines are related to RRw = 0, (ii) the green solid lines to RRy = 0, and (iii) the
cyan broken lines represent the boundaries according to Equations (56)–(62).
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4.4.4. Remarks

On the basis of results from “constant-K” flash calculations for n-octane/water and
PASN/water blends, one can conclude that the composition of hydrocarbon/water blends
is a key factor in allowing for a viable numerical calculation using the Rachford–Rice
equations. Thus, to address possible calculation uncertainty and ambiguity resulting for
octane/water blends, an alternate methodology to calculate the molar fractions and mixture
pressure is proposed in the upcoming sections.

4.5. Liquid-Phase K-Values from Experimental Data for Water/n-Octane Mixtures

As discussed in the previous sections, the initial guess for K values affects the con-
vergence of the flash calculation algorithm (Figure 4). Usually, Wilson correlation [30]
(Equation (63)) is used as a first approximation for the K value in the hydrocarbon phase.
For the K values in the water phase, Connolly et al. [1] suggested values based on the initial
feed, as presented in Equation (64).

ln KWilson
i = ln

PC
i
P

+ 5.373(1−ωi)

(
1−

TC
i

T

)
(63)

KH2O
i =

0.999
zi

(64)

In this sense, another advantage of the CREC VL-Cell developed by CREC researchers
is that it allows one to determine the solubility values based on the VLLE data obtained.
The transition from the three-phase and two-phase regions defines the solubility limit.
Figure 16 presents the solubility limit regions for a water/n-octane mixture at 110 ◦C. This
region is characterized by the transition from three phases to two phases.Processes 2022, 10, x FOR PEER REVIEW 19 of 26 
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Figure 16. Solubility limit regions for water/octane at 110 ◦C.

The applicability of the CREC-VL-Cell for establishing solubility and solubility limits
is not restricted to any type of hydrocarbon/water blend. Thus, the CREC-VL-Cell can be
of special value in dealing with hydrocarbon/water blends involving intrinsic convergence
uncertainties observed by octane–water mixtures while using the Rachford–Rice equations
(refer to Section 4.4).

Figure 17 shows that the solubility limit for an octane/water blend can be calcu-
lated from the intersection between the lines that define the three-phase and two-phase
domain. The calculated solubilities at 110 ◦C are xL

w = 0.01810534 ± 2.5 × 10−3 and
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xW
oct = 0.00084875± 2.6× 10−4, considering the 95% confidence interval defined by the blue

region. Although the solubility of water in n-octane is in close agreement with xL
w = 0.016

calculated, the value using HYSYS V9 with SRKKD EoS and Rachford–Rice equations
yields a solubility for n-octane in water two orders of magnitude higher compared with the
xW

oct = 2.06× 10−6 Hysis V9-predicted value.
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Figure 17. Calculated solubility limit for water/octane at 110 ◦C. Note: magenta solid lines represent
the two-phase region, whereas the blue solid line represents the three-phase region. Blue bands
represent the 95% confidence interval.

As a result, once the solubility values are obtained from the CREC-VL-Cell, it is

possible to calculate KW
i =

xW
i

xL
i

water-phase constants as KW
i =

[
55.185 8.64× 10−4 ].

Furthermore, for the vapor phase species at equilibrium, one can obtain an approxima-

tive value using yi =

xL
i φL

i
φV

i

∑N
i

xL
i φL

i
φV

i

and KV
i = yi

xL
i

. Assuming the vapor phase behaves as an

ideal gas, then φV
i ≈ 1, and the obtained results are yw ≈ 0.7347 ± 2.38 × 10−2 and

KV
i =

[
40.5772 0.2702

]
.

The mean value obtained has a 16.04% difference from the value predicted by HYSYS
V9 (yw ≈ 0.6799). However, the HYSYS V9 value is within the range of the 95% confidence
interval. Figures 18 and 19 report the observed solubilities of water in n-octane and n-octane
in water, respectively, as determined in the CREC VL-Cell and compared with the values
reported by Maczynski et al. (2004) [31] for both water in n-octane and n-octane in water.

Furthermore, on the basis of the experimental data obtained in the CREC-VL-Cell, a
correlation to obtain the K values for water/octane mixtures in the temperature range of
interest and low pressure (1–3 atm) is proposed. This correlation is given by the following
Equation (65), with the constants involved reported in Table 7. A comparison with calcu-
lated values from experimental results is also reported in Figure 20, showing the adequate
fitting of the experimental values by this correlation.
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Figure 19. Solubility of n-octane in water in the temperature range of interest. Note: blue bands
represent the 95% confidence interval.

Table 7. Constants for K-value correlation of water/n-octane system.

Compound m b R2

KW
i Water 1.3366 −9.3022 0.9786

KW
i Octane 0.01390 −0.0483 0.9563

KV
i Water −1.3113 9.8849 0.9851

KV
i Octane 1.2099 −6.9870 0.9910
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in V phase, (d) K value for octane in V phase.

ln Kp
i = m ln T + b (65)

Given the observed differences with the experimental points reported in Figure 6 and
obtained in the CREC-VL-Cell, it is important to provide a more precise methodology to
calculate the pressures at VLLE, accounting for the uncertainties related to the experimental
values. This will be discussed in the following section.

4.6. Machine Learning Approach

As shown in the previous sections of this work (Section 4.1–4.5), traditional thermo-
dynamic models for multiphase systems based on Rachford–Rice equations overpredict
vapor pressure in cases unable to provide converging and meaningful solutions.

Thus, to implement machine learning, linear regression, KNN, SVM, and decision
tree regressor (DTR) are considered. On this basis, the prediction errors, coefficients
of determination (R2), mean squared errors (MSE), and mean absolute errors (MAE) are
established. To accomplish this for each experimental condition, the following is considered:
(a) the predicted number of phases together with the feed molar fraction and temperature
as input parameters [4,6] and (b) the system pressure as target variable. Additional details
of the classification methodology can be found in a recent publication of our research
group [4].
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In the case of KNN, SVM, and DTR, the parameters were tuned using a grid search
with cross validation (GridSearchCV). This method allows for determination of the best
set of parameters in each model based on the coefficient of determination (R2). The
training set was selected by randomly splitting the sample into 80% for training and 20%
testing (train_test_split function). Results for the grid search are summarized in Table 8,
showing the best parameters for each method calculated by the GridSearchCV function by
comparing R2.

Table 8. Models selected for the prediction of pressure for water/n-octane.

Model # Type Tuned Hyper-Parameters Best Parameters

1 Linear Regression N/A

2 KNN

n_neighbors: [2, 3, 4, 5, 10,
15, 20], weights: [uniform,

distance’], algorithm: [auto,
ball_tree, kd_tree, brute],

leaf_size: [10, 30, 50]

n_neighbors: 10 weights:
distance algorithm:

ball_tree leaf_size: 30

3 SVR

kernel: [linear, poly, rbf,
sigmoid], degree: [2, 3], C:
[1, 10, 100, 1000], epsilon:

[0.1, 0.2]

kernel: rbf degree: 2C:
1000 epsilon: 0.2

4 DTR
max_depth: [2, 3, 5, 10],

min_samples_split: [2, 5, 10],
min_samples_leaf: [1, 2, 5, 10]

max_depth: 10
min_samples_split: 2
min_samples_leaf: 5

Table 9 reports the coefficient of determination (R2), mean squared error (MSE), and
mean absolute error (MAE) for the selected models (best score) for octane/water using the
abundant testing dataset obtained in the CREC VL cell. Figure 21 describes a comparison for
the pressures measured and the predicted values, showing that the KNN model provides
the best approximation, with an R2 value of 0.99 and MSE values as low as 43.78 and
4.91 parameters. The KNN method is selected as the best model to predict the pressure of
water/n-octane mixtures in the range of interest.

Table 9. Metrics for the selected models. Note: calculated based on test dataset.

R2 MSE MAE

Linear Regression 0.7723 386.58 13.66
KNN 0.9911 43.78 4.91
SVR 0.8287 286.61 10.12
DTR 0.9847 29.2887 4.22
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Figure 21. Test pressure vs. calculated pressure for the different models are as follows: (a) lin-
ear regression, (b) KNN, (c) SVC, and (d) decision tree regressor. Note: red line represents a
perfect prediction.

The best ML model to describe the behavior of pressure for n-octane/water blends
is KNN, with this model overcoming the issues of the traditional thermodynamic mod-
els involving the Rachford–Rice equations, significantly reducing the uncertainty of any
theoretically thermodynamically based algorithm.

In the same way, if a pseudo-binary mixture is assumed for PASN/water mixtures,
a KNN model based on the experimental results can also be applied with an R2 = 0.9933
MSE = 34.24 and MAE = 4.41, as presented in Figure 22. The pseudo-component for the
PASN is defined using the hydrocarbon blends reported in Table 6.
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Although the ML model developed in the present study has the ability to predict vapor
pressure efficiently, it requires a significant number of experimental data points allowing
for both the training of the proposed model, as well as its validation. In this respect, the
availability of laboratory equipment, such as the CREC VL-Cell, providing abundant phase
equilibrium data, is critical for both ML model development and validation.

5. Conclusions

(a) Flash calculations for n-octane/water and PASN/water systems can be described,
in principle, using the SRKKD EoS and Rachford–Rice equations. However, the
SRKKD EoS and Rachford–Rice equations involve convergence issues in the case of
n-octane/water mixtures. These convergence issues were clarified considering the
parallelism of the RRx and RRy (Rachford–Rice) planes for n-octane/water systems.

(b) Flash calculations for synthetic naphtha/water (PASN/water) blends implemented
using a Python-based algorithm showed numerical solutions free of converging issues,
although with numerical solutions showing a lack of accurate prediction of naphtha–
water solubility.

(c) Data from the CREC VL-Cell can be used to propose correlations for the calculation
of solubility of n-octane in water and water in n-octane, as well as the equilibrium
constant values.

(d) Data from the CREC VL-Cell and the developed ML approach with the KNN model
showed the best performance with, an R2 = 0.9911, for accurately predicting the total
pressure in water/n-octane mixtures, and R2 = 0.9933 in the case of PASN/water mix-
tures.
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Nomenclature
Symbols with Latin letter
i identifies component i of the solution
j summation index running through all components
k identifies a subgroup
m summation index running through all subgroups present in the solution

v(i)k number of subgroups, k, present in component i
Rk relative volume of subgroup k (tabulated)

https://ir.lib.uwo.ca/etd/7283/
https://ir.lib.uwo.ca/etd/7283/
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Qk relative surface area of subgroup k (tabulated)
amk interaction energy between subgroups m and k
Acronyms
ANN Artificial neural network
EoS Equation of state
FNN Feedforward neural network
KNN K -nearest-neighbor algorithm
logsig Logarithmic sigmoid (activation function)
ML Machine learning
NRU Naphtha recovery unit
PASN Paraffinic aromatic synthetic naphtha
PNN Probabilistic neural network
PR-EoS Peng–Robinson equation of state
SRKKD Soave–Redlich–Kwong–Kabadi–Danner equation of state
RBF Radial basis transfer
RVM Relevance vector machines
SRK-EoS Soave–Redlich–Kong equation of state
TPR Three-phases region
tansig Hyperbolic tangent sigmoid
VLE Vapor–liquid equilibrium
VLLE Vapor–liquid–liquid equilibrium
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